Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = Triple beam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 56644 KiB  
Article
A 1.8 m Class Pathfinder Raman LIDAR for the Northern Site of the Cherenkov Telescope Array Observatory—Technical Design
by Otger Ballester, Oscar Blanch, Joan Boix, Paolo G. Calisse, Anna Campoy-Ordaz, Sidika Merve Çolak, Vania Da Deppo, Michele Doro, Lluís Font, Eudald Font-Pladevall, Rafael Garcia, Markus Gaug, Roger Grau, Darko Kolar, Alicia López-Oramas, Camilla Maggio, Manel Martinez, Òscar Martínez, Victor Riu-Molinero, David Roman, Samo Stanič, Júlia Tartera-Barberà, Santiago Ubach, Marko Zavrtanik and Miha Živecadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(6), 1074; https://doi.org/10.3390/rs17061074 - 18 Mar 2025
Cited by 1 | Viewed by 989
Abstract
This paper presents the technical design of the pathfinder Barcelona Raman LIDAR (pBRL) for the northern site of the Cherenkov Telescope Array Observatory (CTAO-N) located at the Roque de los Muchachos Observatory (ORM). The pBRL is developed for continuous atmospheric characterization, essential for [...] Read more.
This paper presents the technical design of the pathfinder Barcelona Raman LIDAR (pBRL) for the northern site of the Cherenkov Telescope Array Observatory (CTAO-N) located at the Roque de los Muchachos Observatory (ORM). The pBRL is developed for continuous atmospheric characterization, essential for correcting high-energy gamma-ray observations captured by Imaging Atmospheric Cherenkov Telescopes (IACTs). The LIDAR consists of a steerable telescope with a 1.8 m parabolic mirror and a pulsed Nd:YAG laser with frequency doubling and tripling. It emits at wavelengths of 355 nm and 532 nm to measure aerosol scattering and extinction through two elastic and Raman channels. Built upon a former Cherenkov Light Ultraviolet Experiment (CLUE) telescope, the pBRL’s design includes a Newtonian mirror configuration, a coaxial laser beam, a near-range system, a liquid light guide and a custom-made polychromator. During a one-year test at the ORM, the stability of the LIDAR and semi-remote-controlled operations were tested. This pathfinder leads the way to designing a final version of a CTAO Raman LIDAR which will provide real-time atmospheric monitoring and, as such, ensure the necessary accuracy of scientific data collected by the CTAO-N telescope array. Full article
(This article belongs to the Special Issue Remote Sensing: 15th Anniversary)
Show Figures

Figure 1

12 pages, 1371 KiB  
Article
Multi-Beam-Energy Control Unit Based on Triple-Bend Achromats
by Liuyang Wu, Zihan Zhu, Bingyang Yan, Jiawei Yan and Haixiao Deng
Photonics 2025, 12(3), 275; https://doi.org/10.3390/photonics12030275 - 17 Mar 2025
Viewed by 470
Abstract
X-ray free electron lasers (XFELs) are the new generation of particle accelerator-based light sources, capable of producing tunable, high-power X-ray pulses that are increasingly vital across various scientific disciplines. Recently, continuous-wave (CW) XFELs driven by superconducting linear accelerators have garnered significant attention due [...] Read more.
X-ray free electron lasers (XFELs) are the new generation of particle accelerator-based light sources, capable of producing tunable, high-power X-ray pulses that are increasingly vital across various scientific disciplines. Recently, continuous-wave (CW) XFELs driven by superconducting linear accelerators have garnered significant attention due to their ability to enhance availability by supporting multiple undulator lines simultaneously. In this paper, we introduce a novel delay system comprising four triple-bend achromats (TBAs). This delay system was combined with fast kickers and can be employed to generate electron beams on a bunch-to-bunch basis in a CW-XFEL facility. Based on the parameters of the Shanghai High-Repetition-Rate XFEL and Extreme Light Facility, start-to-end simulations demonstrate that the TBA-based delay system achieves excellent electron beam qualities while providing a wide beam-energy-tuning range from 1.39 to 8 GeV. Full article
Show Figures

Figure 1

21 pages, 3003 KiB  
Article
Evaluating the Effectiveness of Probiotic and Multivalent Vaccination Strategies in Mitigating Bacterial Chondronecrosis with Osteomyelitis Lameness Using a Hybrid Challenge Model
by Amanda Anthney, Khawla Alharbi, Ruvindu Perera, Anh Dang Trieu Do, Andi Asnayanti, Reginald Onyema, Sara Reichelt, Antoine Meuter, Palmy R. R. Jesudhasan and Adnan A. K. Alrubaye
Animals 2025, 15(4), 570; https://doi.org/10.3390/ani15040570 - 16 Feb 2025
Cited by 1 | Viewed by 873
Abstract
Bacterial chondronecrosis with osteomyelitis (BCO) is caused by several bacteria, including Salmonella, Staphylococcus spp., Escherichia coli, Enterococcus spp., and Mycoplasma spp., and BCO is a significant animal health and welfare issue in broiler production, causing 1–2% of bird condemnation at marketing [...] Read more.
Bacterial chondronecrosis with osteomyelitis (BCO) is caused by several bacteria, including Salmonella, Staphylococcus spp., Escherichia coli, Enterococcus spp., and Mycoplasma spp., and BCO is a significant animal health and welfare issue in broiler production, causing 1–2% of bird condemnation at marketing age and resulting in annual losses of tens of millions of dollars. This study evaluated the efficacy of a probiotic program alone and combined with a multivalent electron beam (eBeam)-inactivated vaccine in reducing BCO lameness. The probiotic program included an Enterococcus faecium spray (E. faecium 669, at 2 × 109 CFU/bird) at hatch and a triple-strain Bacillus-based product (B. subtilis 597, B. subtilis 600, and B. amyloliquefaciens 516 at 1 × 109 CFU/bird/day) in drinking water from day 1 to day 56. An aerosol transmission challenge model simulated commercial bacterial exposure. Birds were divided into five groups: a positive control (PC) group (T1) and a negative control (NC) group (T2) receiving no treatment and three treatment groups receiving the probiotic program (T3), the multivalent vaccine (T4), or both the probiotic program and the multivalent vaccine (T5). Data analyzed via ANOVA (p < 0.05) showed T3, T4, and T5 had significantly lower lameness (43.7%, 40.3%, and 40.7%) than T2 (71.0%) and T1 (83.0%). T5 resulted in reductions comparable to T4, indicating no significant synergistic effect. These findings show that probiotics alone or with a vaccine effectively mitigate BCO lameness, enhance broiler welfare, and reduce economic losses. Full article
Show Figures

Figure 1

20 pages, 10901 KiB  
Article
Flexural Behavior of 3D-Printed Carbon Fiber-Reinforced Nylon Lattice Beams
by Muhammet Muaz Yalçın
Polymers 2024, 16(21), 2991; https://doi.org/10.3390/polym16212991 - 25 Oct 2024
Cited by 4 | Viewed by 1971
Abstract
This study investigates the flexural behavior of 3D-printed multi-topology lattice beams, with a specific emphasis on octet and cube lattice geometries created through fused deposition modeling (FDM). The mechanical properties of these beams were evaluated through quasi-static three-point bending tests. A comparative analysis [...] Read more.
This study investigates the flexural behavior of 3D-printed multi-topology lattice beams, with a specific emphasis on octet and cube lattice geometries created through fused deposition modeling (FDM). The mechanical properties of these beams were evaluated through quasi-static three-point bending tests. A comparative analysis of load-carrying capacity, energy absorption, and specific energy absorption (SEA) indicates that octet lattice beams exhibit superior performance to cube lattice beams. The octet lattice beam in the triple-layer double-column (TL-DC) arrangement absorbed 14.99 J of energy, representing a 38% increase compared to the 10.86 J absorbed by the cube lattice beam in the same design. The specific energy absorption (SEA) of the octet beam was measured at 0.39 J/g, which exceeds the 0.29 J/g recorded for the cube beam. Two distinct types of deformations were identified for the struts and the beam layers. Octet struts exhibit enhanced performance in stretch-dominated zones, whereas the cube system demonstrates superior efficacy in compressive-dominated regions. The results highlight the enhanced efficacy of octet lattice structures in energy absorption and mechanical stability maintenance. The investigation of sandwich lattice topologies integrating octet and cube structures indicates that while hybrid designs may exhibit efficiency, uniform octet structures yield superior performance. This study provides valuable insights into the structural design and optimization of lattice systems for applications requiring high-energy absorption and mechanical robustness. Full article
(This article belongs to the Special Issue Additively Manufactured Polymers: Design, Testing and Applications)
Show Figures

Figure 1

18 pages, 6867 KiB  
Article
Modeling and Experimental Study of Vibration Energy Harvester with Triple-Frequency-Up Voltage Output by Vibration Mode Switching
by Jiawen Xu, Zhikang Liu, Wenxing Dai, Ru Zhang and Jianjun Ge
Micromachines 2024, 15(8), 1013; https://doi.org/10.3390/mi15081013 - 6 Aug 2024
Cited by 1 | Viewed by 3405
Abstract
Conventional wireless sensors rely on chemical batteries. Replacing or charging their batteries is tedious and costly in some situations. As usable kinetic energy exists in the environment, harvesting vibration energy and converting it into electrical energy has become a hotspot. However, the power [...] Read more.
Conventional wireless sensors rely on chemical batteries. Replacing or charging their batteries is tedious and costly in some situations. As usable kinetic energy exists in the environment, harvesting vibration energy and converting it into electrical energy has become a hotspot. However, the power output capability of a conventional piezoelectric energy harvester (PEH) is limited by its low operational frequency. This paper presents a new mechanism for achieving continuous triple-frequency-up voltage output in a PEH. The proposed system consists of a slender piezoelectric cantilever with two short cantilever-based stoppers. The piezoelectric cantilever undergoes a pure bending mode without contacting the stoppers. In addition, the beam switches into a new vibration mode by contacting the stoppers. The vibration modes switching yields reverses the signs of voltage outputs, inducing triple-frequency-up voltage output. Analytical and experimental investigations are presented, and it is shown that a significant triple-frequency up-conversion of the voltage output can be obtained over a wide frequency range. A peak power output of 3.03 mW was obtained. The proposed energy harvester can support a wireless sensor node. Full article
(This article belongs to the Special Issue Self-Tuning and Self-Powered Energy Harvesting Devices)
Show Figures

Figure 1

12 pages, 10766 KiB  
Article
Conversion Efficiency of 45.0% in InGaP/InGaAs/Ge Triple-Junction Solar Cells for Laser Power Beaming
by Masahiro Koga, Shunsuke Shibui, Nozomi Matsuoka, Tomoya Sudo and Shiro Uchida
Energies 2024, 17(13), 3299; https://doi.org/10.3390/en17133299 - 5 Jul 2024
Cited by 4 | Viewed by 1804
Abstract
Optical wireless power transmission systems are attracting attention as a new power transmission technology because they can supply power wirelessly over long distances. In this study, we investigated InGaP/InGaAs/Ge triple-junction solar cells simultaneously irradiated with three laser beams with wavelengths of 635 nm, [...] Read more.
Optical wireless power transmission systems are attracting attention as a new power transmission technology because they can supply power wirelessly over long distances. In this study, we investigated InGaP/InGaAs/Ge triple-junction solar cells simultaneously irradiated with three laser beams with wavelengths of 635 nm, 850 nm, and 1550 nm to improve photoelectric conversion efficiency. As a result, a photoelectric conversion efficiency of 45.0% was obtained under three laser irradiations with a total incident laser power of 1.77 W/cm2. The results showed the possibility of a high-efficiency optical wireless power transmission system by simultaneously irradiating laser beams with different wavelengths onto multi-junction solar cells, which could be installed in automobiles as a new system that complements solar power generation for daylighting. Full article
(This article belongs to the Special Issue Emerging Technologies for Multijunction Solar Cells)
Show Figures

Figure 1

13 pages, 5169 KiB  
Article
Quantifying Microstructure Features for High-Performance Solid Oxide Cells
by Cristina Mariana Ruse, Lily Ann Hume, Yudong Wang, Thomas C. Pesacreta and Xiao-Dong Zhou
Materials 2024, 17(11), 2622; https://doi.org/10.3390/ma17112622 - 29 May 2024
Cited by 2 | Viewed by 1180
Abstract
The drive for sustainable energy solutions has spurred interest in solid oxide fuel cells (SOFCs). This study investigates the impact of sintering temperature on SOFC anode microstructures using advanced 3D focused ion beam–scanning electron microscopy (FIB-SEM). The anode’s ceramic–metal composition significantly influences electrochemical [...] Read more.
The drive for sustainable energy solutions has spurred interest in solid oxide fuel cells (SOFCs). This study investigates the impact of sintering temperature on SOFC anode microstructures using advanced 3D focused ion beam–scanning electron microscopy (FIB-SEM). The anode’s ceramic–metal composition significantly influences electrochemical performance, making optimization crucial. Comparing cells sintered at different temperatures reveals that a lower sintering temperature enhances yttria-stabilized zirconia (YSZ) and nickel distribution, volume, and particle size, along with the triple-phase boundary (TPB) interface. Three-dimensional reconstructions illustrate that the cell sintered at a lower temperature exhibits a well-defined pore network, leading to increased TPB density. Hydrogen flow simulations demonstrate comparable permeability for both cells. Electrochemical characterization confirms the superior performance of the cell sintered at the lower temperature, displaying higher power density and lower total cell resistance. This FIB-SEM methodology provides precise insights into the microstructure–performance relationship, eliminating the need for hypothetical structures and enhancing our understanding of SOFC behavior under different fabrication conditions. Full article
Show Figures

Figure 1

16 pages, 4790 KiB  
Article
Design and Analysis of a Narrow Linewidth Laser Based on a Triple Euler Gradient Resonant Ring
by Yikai Wang, Boxia Yan, Mi Zhou, Chenxi Sun, Yan Qi, Yanwei Wang, Yuanyuan Fan and Qian Wang
Photonics 2024, 11(5), 412; https://doi.org/10.3390/photonics11050412 - 29 Apr 2024
Viewed by 1943
Abstract
We designed a narrow-linewidth external-cavity hybrid laser leveraging a silicon-on-insulator triple Euler gradient resonant ring. The laser’s outer cavity incorporates a compact, high-Q resonant ring with low loss. The straight waveguide part of the resonant ring adopts a width of 1.6 μm to [...] Read more.
We designed a narrow-linewidth external-cavity hybrid laser leveraging a silicon-on-insulator triple Euler gradient resonant ring. The laser’s outer cavity incorporates a compact, high-Q resonant ring with low loss. The straight waveguide part of the resonant ring adopts a width of 1.6 μm to ensure low loss transmission. The curved section is designed as an Euler gradient curved waveguide, which is beneficial for low loss and stable single-mode transmission. The design features an effective bending radius of only 26.35 μm, which significantly improves the compactness of the resonant ring and, in turn, reduces the overall footprint of the outer cavity chip. To bolster the laser power and cater to the varying shapes of semiconductor optical amplifier (SOA) spots, we designed a multi-tip edge coupler. Theoretical analysis indicates that this edge coupler can achieve an optical coupling efficiency of 85%. It also reveals that the edge coupler provides 3 dB vertical and horizontal alignment tolerances of 0.76 μm and 2.4 μm, respectively, for a spot with a beam waist radius of 1.98 μm × 0.99 μm. The outer cavity, designed with an Euler gradient micro-ring, can achieve a side-mode suppression ratio (SMSR) of 30 dB within a tuning range of 100 nm, with a round-trip loss of the entire cavity at 1.12 dB, and an expected theoretical laser linewidth of 300 Hz. Full article
(This article belongs to the Special Issue Narrow Linewidth Laser Sources and Their Applications)
Show Figures

Figure 1

21 pages, 5758 KiB  
Article
CMOS Wireless Hybrid Transceiver Powered by Integrated Photodiodes for Ultra-Low-Power IoT Applications
by Sasan Nikseresht, Daniel Fernández, Jordi Cosp-Vilella, Irina Selin-Lorenzo and Jordi Madrenas
Electronics 2024, 13(1), 28; https://doi.org/10.3390/electronics13010028 - 20 Dec 2023
Cited by 2 | Viewed by 1823
Abstract
In this article, a communication platform for a self-powered integrated light energy harvester based on a wireless hybrid transceiver is proposed. It consists of an optical receiver and a reconfigurable radio frequency (RF) transmitter. The hybrid optical/RF communication approach improves load balancing, energy [...] Read more.
In this article, a communication platform for a self-powered integrated light energy harvester based on a wireless hybrid transceiver is proposed. It consists of an optical receiver and a reconfigurable radio frequency (RF) transmitter. The hybrid optical/RF communication approach improves load balancing, energy efficiency, security, and interference reduction. A light beam for communication in the downlink, coupled with a 1 MHz radio frequency signal for the uplink, offers a small area and ultra-low-power consumption design for Smart Dust/IoT applications. The optical receiver employs a new charge-pump-based technique for the automatic acquisition of a reference voltage, enabling compensation for comparator offset errors and variations in DC-level illumination. On the uplink side, the reconfigurable transmitter supports OOK/FSK/BPSK data modulation. Electronic components and the energy harvester, including integrated photodiodes, have been designed, fabricated, and experimentally tested in a 0.18 µm triple-well CMOS technology in a 1.5 × 1.3 mm2 chip area. Experiments show the correct system behavior for general and pseudo-random stream input data, with a minimum pulse width of 50 µs and a data transmission rate of 20 kb/s for the optical receiver and 1 MHz carrier frequency. The maximum measured power of the signal received from the transmitter is approximately −18.65 dBm when using a light-harvested power supply. Full article
Show Figures

Figure 1

21 pages, 4152 KiB  
Article
Full-Range Static Method of Calibration for Laser Tracker
by Chang’an Hu, Fei Lv, Liang Xue, Jiangang Li, Xiaoyin Zhong and Yue Xu
Electronics 2023, 12(22), 4709; https://doi.org/10.3390/electronics12224709 - 20 Nov 2023
Cited by 2 | Viewed by 1615
Abstract
This paper focuses on the challenge of the inability to accurately calibrate the static measurement of a laser tracker across the full scale. To address this issue, this paper proposes to add a hollow corner cube prism on a 50 m high-precision composite [...] Read more.
This paper focuses on the challenge of the inability to accurately calibrate the static measurement of a laser tracker across the full scale. To address this issue, this paper proposes to add a hollow corner cube prism on a 50 m high-precision composite guide rail to achieve a double-range measurement of the laser tracker. Data analysis indicated that, in the 77 m identical-directional double-range measurement experiment, the maximum indication error of a single-beam laser interferometer was −29.5 μm, and that of a triple-beam laser interferometer was 14.6 μm, and the measurement indication error was obviously small when the Abbe error was eliminated. The single-point repeatability of the tracker was 0.9 μm. In the 50 m identical-directional verification experiment, the results of the direct measurement outperformed those of the double-range measurement, and the indication errors under standard conditions were −4.0 μm and −8.9 μm, respectively. Overall, the method used in the experiment satisfies the requirements of the laser tracker. In terms of the identical-directional measurement, the measurement uncertainty of the tracker indication error is U ≈ 1.0 μm + 0.2L (k = 2) L = (0~77 m). The proposed method also provides insights for length measurements using other high-precision measuring instruments. Full article
(This article belongs to the Special Issue Optoelectronic Materials, Heterostructures and Devices)
Show Figures

Figure 1

18 pages, 7718 KiB  
Article
Tilt-to-Length Coupling Analysis of an Off-Axis Optical Bench Design for NGGM
by Kailan Wu, Jingui Wu, Bo Peng, Jianjun Jia, Honggang Luo, Yun Wang, Yongchao Zheng, Yichao Yang, Xuling Lin and Yun-Kau Lau
Remote Sens. 2023, 15(15), 3915; https://doi.org/10.3390/rs15153915 - 7 Aug 2023
Cited by 3 | Viewed by 1846
Abstract
A new off-axis optical design alternative to that of the GRACE Follow-on mission for future NGGM missions is considered. In place of the triple-mirror assembly of the GRACE Follow-on mission, a laser retro-reflector is instead generated by means of lens systems. The receiving [...] Read more.
A new off-axis optical design alternative to that of the GRACE Follow-on mission for future NGGM missions is considered. In place of the triple-mirror assembly of the GRACE Follow-on mission, a laser retro-reflector is instead generated by means of lens systems. The receiving (RX) beam and transmitting (TX) beam are enforced to be anti-parallel by a control loop with differential wavefront sensing (DWS) signals as readout, and a fast-steering mirror is employed to actuate the pointing of the local beam. The tilt-to-length (TTL) coupling noise of the new off-axis optical bench layout is carefully studied in the present work. Local TTL originated from piston noise as well as assembly and alignment errors of optical components are studied. Effort is also made to have an in depth understanding of global TTL due to relative attitude jitter between spacecraft. The margin of TTL noise in the position noise budget for laser ranging is examined. With an open loop control of the offset between the reference point of the optical bench and the centre of mass of a satellite, the TTL noise of the new off-axis optical bench design may be suppressed efficiently. Full article
(This article belongs to the Special Issue Next-Generation Gravity Mission)
Show Figures

Figure 1

17 pages, 5885 KiB  
Article
Experimental Analysis to Evaluate the Impact of Styrene-Butadiene-Styrene and Crumb Rubber on the Rutting and Moisture Resistance of Asphalt Mixtures
by Arian Omer Mahmood and Raad Awad Kattan
Sustainability 2023, 15(13), 10387; https://doi.org/10.3390/su151310387 - 30 Jun 2023
Cited by 4 | Viewed by 1709
Abstract
The most severe distresses in asphalt pavement are rutting, fatigue, and low-temperature cracking; therefore, to solve these problems, it is essential to modify asphalt binders in asphalt concrete mixtures. In this study, a comparison between using styrene-butadiene-styrene (SBS) and crumb rubber (CR) as [...] Read more.
The most severe distresses in asphalt pavement are rutting, fatigue, and low-temperature cracking; therefore, to solve these problems, it is essential to modify asphalt binders in asphalt concrete mixtures. In this study, a comparison between using styrene-butadiene-styrene (SBS) and crumb rubber (CR) as modifiers for asphalt binders to overcome distress issues was conducted. Base and SBS or CR-modified binders were subjected to all conventional and Superpave binder tests. Engineering tests such as the Hamburg wheel tracker and indirect tensile strength ratio were also run to evaluate the engineering properties. The used SBS percentages were 1, 2, 3, 4, and 5%, while CR percentages were 3, 6, 9, 12, and 15% by total weight. The results showed lower penetration, higher softening point, viscosity, and elastic recovery for both additives. In addition, dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests showed increasing values of both high and low temperatures of modified asphalt performance grade (PG) with increasing SBS or CR percent. The tensile strength ratio and Hamburg wheel tracker results showed the best engineering properties at 3% SBS or 9% CR, the optimum percent. A triple percentage of CR is needed to get the same effect of SBS for the asphalt mixture. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

9 pages, 4706 KiB  
Article
Phase-Optimized Multi-Step Phase Acoustic Metasurfaces for Arbitrary Multifocal Beamforming
by Jianxin Zhao, Xiongwei Wei, Chunlong Fei, Yi Li, Zhaoxi Li, Lifei Lou, Yi Quan and Yintang Yang
Micromachines 2023, 14(6), 1176; https://doi.org/10.3390/mi14061176 - 31 May 2023
Viewed by 2908
Abstract
Focused ultrasound featuring non-destructive and high sensitivity has attracted widespread attention in biomedical and industrial evaluation. However, most traditional focusing techniques focus on the design and improvement of single-point focusing, neglecting the need to carry more dimensions of multifocal beams. Here we propose [...] Read more.
Focused ultrasound featuring non-destructive and high sensitivity has attracted widespread attention in biomedical and industrial evaluation. However, most traditional focusing techniques focus on the design and improvement of single-point focusing, neglecting the need to carry more dimensions of multifocal beams. Here we propose an automatic multifocal beamforming method, which is implemented using a four-step phase metasurface. The metasurface composed of four-step phases improves the transmission efficiency of acoustic waves as a matching layer and enhances the focusing efficiency at the target focal position. The change in the number of focused beams does not affect the full width at half maximum (FWHM), revealing the flexibility of the arbitrary multifocal beamforming method. Phase-optimized hybrid lenses reduce the sidelobe amplitude, and excellent agreement is observed between the simulation and experiments for triple-focusing beamforming metasurface lenses. The particle trapping experiment further validates the profile of the triple-focusing beam. The proposed hybrid lens can achieve flexible focusing in three dimensions (3D) and arbitrary multipoint, which may have potential prospects for biomedical imaging, acoustic tweezers, and brain neural modulation. Full article
Show Figures

Figure 1

16 pages, 562 KiB  
Article
Dynamics of Twisted Electron Impact Ionization of CH4 and NH3 Molecule
by Nikita Dhankhar, Neha and Rakesh Choubisa
Atoms 2023, 11(5), 82; https://doi.org/10.3390/atoms11050082 - 10 May 2023
Cited by 4 | Viewed by 1885
Abstract
Electron vortex beams (EVBs, also known as twisted electron beams) possess an intrinsic orbital angular momentum (OAM) with respect to their propagation direction. This intrinsic OAM represents a new degree of freedom that provides new insights into investigating the dynamics of electron impact [...] Read more.
Electron vortex beams (EVBs, also known as twisted electron beams) possess an intrinsic orbital angular momentum (OAM) with respect to their propagation direction. This intrinsic OAM represents a new degree of freedom that provides new insights into investigating the dynamics of electron impact ionization. In this communication, we present, in the first Born approximation (FBA), the angular profiles of the triple differential cross section (TDCS) for the (e, 2e) process on CH4 and NH3 molecular targets in the coplanar asymmetric geometry. We compare the TDCS of the EVB for different values of OAM number m with that of the plane wave. For a more realistic scenario, we investigate the average TDCS for macroscopic targets to explore the influence of the opening angle θp of the twisted electron beam on the TDCS. In addition, we also present the TDCS for the coherent superposition of two EVBs. The results demonstrate that the twisted (e, 2e) process retrieves the p-type character of the molecular orbitals, which is absent in the plane wave TDCS for the given kinematics. The results for the coherent superposition of two Bessel beams show the sensitivity of TDCS toward the OAM number m. Full article
(This article belongs to the Special Issue Recent Advances in Atomic and Molecular Spectroscopy)
Show Figures

Figure 1

18 pages, 2330 KiB  
Article
Projectile Coherence Effects in Twisted Electron Ionization of Helium
by A. L. Harris
Atoms 2023, 11(5), 79; https://doi.org/10.3390/atoms11050079 - 3 May 2023
Cited by 4 | Viewed by 2274
Abstract
Over the last decade, it has become clear that for heavy ion projectiles, the projectile’s transverse coherence length must be considered in theoretical models. While traditional scattering theory often assumes that the projectile has an infinite coherence length, many studies have demonstrated that [...] Read more.
Over the last decade, it has become clear that for heavy ion projectiles, the projectile’s transverse coherence length must be considered in theoretical models. While traditional scattering theory often assumes that the projectile has an infinite coherence length, many studies have demonstrated that the effect of projectile coherence cannot be ignored, even when the projectile-target interaction is within the perturbative regime. This has led to a surge in studies that examine the effects of the projectile’s coherence length. Heavy-ion collisions are particularly well-suited to this because the projectile’s momentum can be large, leading to a small deBroglie wavelength. In contrast, electron projectiles that have larger deBroglie wavelengths and coherence effects can usually be safely ignored. However, the recent demonstration of sculpted electron wave packets opens the door to studying projectile coherence effects in electron-impact collisions. We report here theoretical triple differential cross-sections (TDCSs) for the electron-impact ionization of helium using Bessel and Laguerre-Gauss projectiles. We show that the projectile’s transverse coherence length affects the shape and magnitude of the TDCSs and that the atomic target’s position within the projectile beam plays a significant role in the probability of ionization. We also demonstrate that projectiles with large coherence lengths result in cross-sections that more closely resemble their fully coherent counterparts. Full article
Show Figures

Figure 1

Back to TopTop