Conversion Efficiency of 45.0% in InGaP/InGaAs/Ge Triple-Junction Solar Cells for Laser Power Beaming
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Laser Incidence Angle Dependence
3.2. Photoelectric Conversion Efficiency
4. Discussion
4.1. Photoelectric Conversion Efficiency
4.2. Current-Matching
4.3. High-Temperature Operation
4.4. Uniform and Non-Uniform Irradiation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, M.; Miyamoto, T. 1 W High Performance LED-Array Based Optical Wireless Power Transmission System for IoT Terminals. Photonics 2022, 9, 576. [Google Scholar] [CrossRef]
- Qaraqe, M.; Usman, M.; Serbes, A.; Ansari, I.S.; Alouini, M.S. Power Hotspots in Space: Powering CubeSats via Inter Satellite Optical Wireless Power Transfer. IEEE Internet Things Mag. 2022, 5, 180–185. [Google Scholar] [CrossRef]
- Baraskar, A.; Yoshimura, Y.; Nagasaki, S.; Hanada, T. Space solar power satellite for the Moon and Mars mission. J. Space Saf. Eng. 2022, 9, 96–105. [Google Scholar] [CrossRef]
- Landis, G.A. Laser Power Beaming for Lunar Polar Exploration. In Proceedings of the 2020 AIAA Propulsion & Energy Forum and Exposition, Online, 24–26 August 2020. Paper AIAA-2020–3538. [Google Scholar] [CrossRef]
- Green, M.A.; Zhao, J.; Wang, A.; Wenham, S.R. 45% efficient silicon photovoltaic cell under monochromatic light. IEEE Electron Device Lett. 1992, 13, 317–318. [Google Scholar] [CrossRef]
- Helmers, H.; Lopez, E.; Höhn, O.; Lackner, D.; Schön, J.; Schauerte, M.; Schachtner, M.; Dimroth, F.; Bett, A.W. 68.9% efficient GaAs-based photonic power conversion enabled by photon recycling and optical resonance. Phys. Status Solidi RRL Rapid Res. Lett. 2021, 15, 2100113. [Google Scholar] [CrossRef]
- Beattie, M.N.; Helmers, H.; Forcade, G.P.; Valdivia, C.E.; Höhn, O.; Hinzer, K. InP-and GaAs-based photonic power converters under O-band laser illumination: Performance analysis and comparison. IEEE J. Photovolt. 2022, 13, 113–121. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D.; Werthen, J.G.; Liu, J.; Wu, T.C.; Hundsberger, C.; Schwarzfischer, M.; Steinle, G.; Gaertner, C.; Piemonte, C.; et al. Power and Spectral Range Characteristics for Optical Power Converters. Energies 2021, 14, 4395. [Google Scholar] [CrossRef]
- Helmers, H.; Schauerte, M.; Höhn, O.; Beattie, M.N.; Wilson, D.P.; Hinzer, K.; Lackner, D. C-band Photonic Power Converters based on InGaAs Absorber in Substrate and Thin-film & Single- and Multi Junction Configurations. In Proceedings of the 5th Optical Wireless and Fiber Power Transmission Conference, OWPT2-02, Yokohama, Japan, 18–21 April 2023. [Google Scholar]
- Helmers, H.; Höhn, O.; Lackner, D.; Schygulla, P.; Klitzke, M.; Schön, J.; Pellegrino, C.; Oliva, E.; Schachtner, M.; Beutel, P.; et al. Advancing solar energy conversion efficiency to 47.6% and exploring the spectral versatility of III-V pho tonic power converters. Phys. Simul. Photonic Eng. Photovolt. Devices XIII SPIE 2024, 12881, 6–15. [Google Scholar] [CrossRef]
- Pellegrino, C.; Helmers, H.; Ohlmann, J.; Höhn, O.; Lackner, D. High-Efficiency 1064 nm Metamorphic Photonic Power Converters for Spacecraft Wireless Power Transfer. In Proceedings of the 13th European Space Power Conference, Elche, Spain, 2–6 October 2023. [Google Scholar] [CrossRef]
- Steinsiek, F.; Weber, K.H.; Foth, W.P.; Foth, H.J.; Schafer, C. Wireless power transmission experiment using an airship as relay system and a moveable rover as ground target for later planetary exploration missions. In Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk, The Netherlands, 2–4 November 2004; pp. 1–10. [Google Scholar]
- Kurooka, K.; Honda, T.; Komazawa, Y.; Warigaya, R.; Uchida, S. A 46.7% efficient GaInP photonic power converter under high-power 638 nm laser uniform irradiation of 1.5 W cm−2. Appl. Phys. Express 2022, 15, 062003. [Google Scholar] [CrossRef]
- Wong, Y.L.; Shibui, S.; Koga, M.; Hayashi, S.; Uchida, S. Optical Wireless Power Transmission Using a GaInP Power Converter Cell under High-Power 635 nm Laser Irradiation of 53.5 W/cm2. Energies 2022, 15, 3690. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D. Vertical Multi-Junction Laser Power Converters with 61% Efficiency at 30 W Output Power and with Tolerance to Beam Non-Uniformity, Partial Illumination, and Beam Displacement. Photonics 2023, 10, 940. [Google Scholar] [CrossRef]
- Wang, A.C.; Sun, Y.R.; Yu, S.Z.; Yin, J.J.; Zhang, W.; Wang, J.S.; Fu, Q.X.; Han, Y.H.; Qin, J.; Dong, J.R. Characteristics of 1520 nm InGaAs multijunction laser power converters. Appl. Phys. Lett. 2022, 119, 243902. [Google Scholar] [CrossRef]
- Helmers, H.; Hohn, O.; Tibbits, T.; Schauerte, M.; Noman Amin, H.M.; Lackner, D. Unlocking 1550 nm Laser Power Conversion by InGaAs Single- and Multi-Junction PV Cells. In Proceedings of the IEEE 49th Photovoltaics Specialists Conference, Philadelphia, PA, USA, 5–10 June 2022. [Google Scholar]
- Prete, P.; Lovergine, N. Dilute nitride III-V nanowires for high-efficiency intermediate-band photovoltaic cells: Materials requirements, self-assembly methods and properties. Prog. Cryst. Growth Charact. Mater. 2020, 66, 100510. [Google Scholar] [CrossRef]
- Prete, P.; Wolf, D.; Marzo, F.; Lovergine, N. Nanoscale spectroscopic imaging of GaAs-AlGaAs quantum well tube nanowires: Correlating luminescence with nanowire size and inner multishell structure. Nanophotonics 2019, 8, 1567–1577. [Google Scholar] [CrossRef]
- Yang, I.; Zhang, X.; Zheng, C.; Gao, Q.; Li, Z.; Li, L.; Lockrey, M.N.; Nguyen, H.; Caroff, P.; Etheridge, J.; et al. Radial Growth Evolution of InGaAs/InP Multi-Quantum-Well Nanowires Grown by Selective-Area Metal Organic Vapor-Phase Epitaxy. ACS Nano 2018, 12, 10374–10382. [Google Scholar] [CrossRef]
- LaPierre, R.R. Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell. J. Appl. Phys. 2011, 110, 014310. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X. Solar cell efficiency tables (version 62). Prog. Photovolt. Res. Appl. 2023, 31, 651–663. [Google Scholar] [CrossRef]
- Schygulla, P.; Müller, R.; Höhn, O.; Schachtner, M.; Chojniak, D.; Cordaro, A.; Dimroth, F. Wafer-Bonded Two-Terminal III-V//SI Triple-Junction Solar Cell with Power Conversion Efficiency of 36.1% at AM1. 5G. Prog. Photovolt. Res. Appl. 2024. [Google Scholar] [CrossRef]
- Dimroth, F.; Guter, W.; Schöne, J.; Welser, E.; Steiner, M.; Oliva, E.; Bett, A.W. Metamorphic GaInP/GaInAs/Ge triple-junction solar cells with ≫ 41% efficiency. In Proceedings of the 2009 34th IEEE Photovoltaic Specialists Conference (PVSC), Philadelphia, PA, USA, 7–12 June 2009; pp. 001038–001042. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Takamoto, T.; Araki, K.; Kojima, N. Recent results for concentrator photovoltaics in Japan. Jpn. J. Appl. Phys. 2016, 55, 04EA05. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Masuda, T.; Araki, K.; Ota, Y.; Nishioka, K. Impact and recent approaches of high-efficiency solar cell modules for PV-powered vehicles. Jpn. J. Appl. Phys. 2022, 61, SC0802. [Google Scholar] [CrossRef]
- Koga, M.; Shibui, S.; Omori, S.; Takahashi, R.; Matsuoka, N.; Uchida, S. Incident laser angle dependence on the conversion efficiency of 3-juncton solar cells for optical wireless power transmission. In Proceedings of the International Photovoltaic Science and Engineering Conference, TuP-22-20, Nagoya, Japan, 13–17 November 2022. [Google Scholar]
- Koga, M.; Matsuoka, N.; Shibui, S.; Uchida, S. Investigation of high efficiency laser wireless power transmission using InGaP/InGaAs/Ge 3-junction solar cells. In Proceedings of the 4th Optical Wireless and Fiber Power Transmission Conference, OWPT8-03, Online, 18–20 April 2022. [Google Scholar]
- Asaba, K.; Miyamoto, T. Relaxation of Beam Irradiation Accuracy of Cooperative Optical Wireless Power Transmission in Terms of Fly Eye Module with Beam Confinement Mechanism. Photonics 2022, 9, 995. [Google Scholar] [CrossRef]
- Katsuta, Y.; Miyamoto, T. Design, simulation and characterization of fly-eye lens system for optical wireless power transmission. Jpn. J. Appl. Phys. 2019, 58, SJJE02. [Google Scholar] [CrossRef]
- Tai, Y.; Miyamoto, T. Experimental Characterization of High Tolerance to Beam Irradiation Conditions of Light Beam Power Receiving Module for Optical Wireless Power Transmission Equipped with a Fly-Eye Lens System. Energies 2022, 15, 7388. [Google Scholar] [CrossRef]
- Asaba, K.; Moriyama, K.; Miyamoto, T. Preliminary Characterization of Robust Detection Method of Solar Cell Array for Optical Wireless Power Transmission with Differential Absorption Image Sensing. Photonics 2022, 9, 861. [Google Scholar] [CrossRef]
Ref. | Wavelength (nm) | Cell | Incident Power | Distance (m) | ηpv (%) |
---|---|---|---|---|---|
[5] | 1020 | Si | 1 W/cm2 | - | 45.1 |
[6] | 858 | GaAs | 11.4 W/cm2 | - | 68.9 |
[7] | 1310 | InGaAsP | 5.9 W/cm2 | - | 52.8 |
[8] | 1550 | InGaAs | - | - | 36 |
[9] | 1550 | InGaAs/reflector | - | - | 53.7 |
[10] | 980 | m*-InGaAs | 42.9 W/cm2 | - | 55.2 |
[11] | 1064 | m*-InGaAs | 14.2 W/cm2 | - | 54.7 |
[12] | 532 | InGaP | 0.27 W/cm2 | 80 | 40 |
[13] | 638 | InGaP | 1.5 W/cm2 | 0.3 | 46.7 |
[14] | 635 | InGaP | 53.5 W/cm2 | 10 | 37.2 |
[15] | 811 | 12J-GaAs | ~40 W | - | 61 |
[15] | 1466 | 10J-InGaAs | 69 W/cm2 | - | 51.1 |
[16] | 1520 | 8J-InGaAs | 53.9 W/cm2 | - | 36.9 |
[17] | 1522 | 10J-InGaAs | - | - | 45.6 |
635 nm | 850 nm | 1550 nm | |
---|---|---|---|
2D | |||
3D |
635 nm (60 mW) | 850 nm (60 mW) | 1550 nm (60 mW) | |
---|---|---|---|
w/o fly-eye lenses | |||
with fly-eye lenses |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koga, M.; Shibui, S.; Matsuoka, N.; Sudo, T.; Uchida, S. Conversion Efficiency of 45.0% in InGaP/InGaAs/Ge Triple-Junction Solar Cells for Laser Power Beaming. Energies 2024, 17, 3299. https://doi.org/10.3390/en17133299
Koga M, Shibui S, Matsuoka N, Sudo T, Uchida S. Conversion Efficiency of 45.0% in InGaP/InGaAs/Ge Triple-Junction Solar Cells for Laser Power Beaming. Energies. 2024; 17(13):3299. https://doi.org/10.3390/en17133299
Chicago/Turabian StyleKoga, Masahiro, Shunsuke Shibui, Nozomi Matsuoka, Tomoya Sudo, and Shiro Uchida. 2024. "Conversion Efficiency of 45.0% in InGaP/InGaAs/Ge Triple-Junction Solar Cells for Laser Power Beaming" Energies 17, no. 13: 3299. https://doi.org/10.3390/en17133299
APA StyleKoga, M., Shibui, S., Matsuoka, N., Sudo, T., & Uchida, S. (2024). Conversion Efficiency of 45.0% in InGaP/InGaAs/Ge Triple-Junction Solar Cells for Laser Power Beaming. Energies, 17(13), 3299. https://doi.org/10.3390/en17133299