Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Topo I poisons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 3307 KiB  
Article
MSN8C: A Promising Candidate for Antitumor Applications as a Novel Catalytic Inhibitor of Topoisomerase II
by Jie-Bin Ou, Wei-Hao Huang, Xing-Zi Liu, Guo-Yao Dai, Lu Wang, Zhi-Shu Huang and Shi-Liang Huang
Molecules 2023, 28(14), 5598; https://doi.org/10.3390/molecules28145598 - 24 Jul 2023
Viewed by 1624
Abstract
MSN8C, an analog of mansonone E, has been identified as a novel catalytic inhibitor of human DNA topoisomerase II that induces tumor regression and differs from VP-16(etoposide). Treatment with MSN8C showed significant antiproliferative activity against eleven human tumor cell lines in vitro. It [...] Read more.
MSN8C, an analog of mansonone E, has been identified as a novel catalytic inhibitor of human DNA topoisomerase II that induces tumor regression and differs from VP-16(etoposide). Treatment with MSN8C showed significant antiproliferative activity against eleven human tumor cell lines in vitro. It was particularly effective against the HL-60/MX2 cell line, which is resistant to Topo II poisons. The resistance factor (RF) of MSN8C for Topo II in HL-60/MX2 versus HL-60 was 1.7, much lower than that of traditional Topo II poisons. Furthermore, in light of its potent antitumor efficacy and low toxicity, as demonstrated in the A549 tumor xenograft model, MSN8C has been identified as a promising candidate for antitumor applications. Full article
(This article belongs to the Special Issue Novel Antitumor Drug: Discovery and Synthesis)
Show Figures

Figure 1

1 pages, 177 KiB  
Abstract
First-in-Class, Thiosemicarbazide-Based, Dual Inhibitors of Human DNA Topoisomerase IIα and Indoleamine-2,3-Dioxygenase 1 (IDO-1) with Strong Anticancer Properties
by Barbara Kaproń and Tomasz Plech
Med. Sci. Forum 2022, 14(1), 15; https://doi.org/10.3390/ECMC2022-13268 - 1 Nov 2022
Viewed by 827
Abstract
According to a WHO report from 2020, cancer constitutes one of the leading causes of death worldwide. The number of cancer deaths is estimated to be approximately 10 million per year. These epidemiological data confirm that cancer is an increasingly global healthcare problem [...] Read more.
According to a WHO report from 2020, cancer constitutes one of the leading causes of death worldwide. The number of cancer deaths is estimated to be approximately 10 million per year. These epidemiological data confirm that cancer is an increasingly global healthcare problem that needs urgent action. From a biological point of view, the basic feature of cancer is the uncontrolled growth and spread of abnormal cells from the place of origin to another part of the body. Inhibition of uncontrolled proliferation is one of the main goals of anticancer therapy. During our preliminary studies, we identified a group of thiosemicarbazide-based human DNA topoisomerase II inhibitors that decreased the viability of cancer cells and inhibited intracellular biosynthesis of their DNA much stronger than etoposide, i.e., clinically relevant topoisomerase II inhibitor. What is also important isthat the investigated compounds were recognized as topoisomerase II poisons because of their ability to stabilize the DNA-topoII cleavable complex. The investigated thiosemicarbazide derivatives were examined as potential anticancer agents against a panel of ten cancer cell lines. Moreover, we have discovered and described the first-in-class dual inhibitors of human DNA topoisomerase II/indoleamine-2,3-dioxygenase 1 (IDO1) that can lead to the future use of thiosemicarbazide derivatives as relevant components of anticancer immunotherapy. Full article
(This article belongs to the Proceedings of The 8th International Electronic Conference on Medicinal Chemistry)
13 pages, 3590 KiB  
Article
Identification of Novel 4′-O-Demethyl-epipodophyllotoxin Derivatives as Antitumor Agents Targeting Topoisomerase II
by Wenli Xi, Hua Sun, Kenneth F. Bastow, Zhiyan Xiao and Kuo-Hsiung Lee
Molecules 2022, 27(15), 5029; https://doi.org/10.3390/molecules27155029 - 7 Aug 2022
Cited by 4 | Viewed by 2381
Abstract
C4 variation of 4′-O-demethyl-epipodophyllotoxin (DMEP) is an effective approach to optimize the antitumor spectra of this compound class. Accordingly, two series of novel DMEP derivatives were synthesized, and as expected, the antitumor spectra of these derivatives varied with different C4 substituents. [...] Read more.
C4 variation of 4′-O-demethyl-epipodophyllotoxin (DMEP) is an effective approach to optimize the antitumor spectra of this compound class. Accordingly, two series of novel DMEP derivatives were synthesized, and as expected, the antitumor spectra of these derivatives varied with different C4 substituents. Notably, most compounds showed significant inhibition against the etoposide (2)-resistant KBvin cells. Four of the compounds (11, 18, 27 and 28) induced protein-linked DNA break (PLDB) levels higher than those of GL-331 (6) and 2, and are assumed to be topoisomerase II (topo II) poisons more potent than 6 and 2. Compound 28, a potent topo II poison highly effective against KBvin cells, was further evaluated with a panel of tumor cells and was most active against HepG2. This compound also exhibited apparent in vivo antitumor efficacy in hepatoma 22 (H22) mouse model. The results indicated that C4 derivation of DMEP is a feasible approach to identify potent topo II inhibitors with optimized antitumor profiles. Full article
Show Figures

Figure 1

12 pages, 1542 KiB  
Article
Antitumor Effect of Glandora rosmarinifolia (Boraginaceae) Essential Oil through Inhibition of the Activity of the Topo II Enzyme in Acute Myeloid Leukemia
by Manuela Labbozzetta, Paola Poma, Chiara Occhipinti, Maurizio Sajeva and Monica Notarbartolo
Molecules 2022, 27(13), 4203; https://doi.org/10.3390/molecules27134203 - 29 Jun 2022
Cited by 5 | Viewed by 2340
Abstract
It was previously shown that the antitumor and cytotoxic activity of the essential oil (EO) extracted from the aerial parts of Glandora rosmarinifolia appears to involve a pro-oxidant mechanism in hepatocellular carcinoma (HCC) and in triple-negative breast cancer (TNBC) cell lines. Its most [...] Read more.
It was previously shown that the antitumor and cytotoxic activity of the essential oil (EO) extracted from the aerial parts of Glandora rosmarinifolia appears to involve a pro-oxidant mechanism in hepatocellular carcinoma (HCC) and in triple-negative breast cancer (TNBC) cell lines. Its most abundant compound is a hydroxy-methyl-naphthoquinone isomer. Important pharmacological activities, such as antitumor, antibacterial, antifungal, antiviral and antiparasitic activities, are attributed to naphthoquinones, probably due to their pro-oxidant or electrophilic potential; for some naphthoquinones, a mechanism of action of topoisomerase inhibition has been reported, in which they appear to act both as catalytic inhibitors and as topoisomerase II poisons. Our aim was to evaluate the cytotoxic activity of the essential oil on an acute myeloid leukemia cell line HL-60 and on its multidrug-resistant (MDR) variant HL-60R and verify its ability to interfere with topoisomerase II activity. MTS assay showed that G. rosmarinifolia EO induced a decrease in tumor cell viability equivalent in the two cell lines; this antitumor effect could depend on the pro-oxidant activity of EO in both cell lines. Furthermore, G. rosmarinifolia EO reduced the activity of Topo II in the nuclear extracts of HL-60 and HL-60R cells, as inferred from the inability to convert the kinetoplast DNA into the decatenated form and then not inducing linear kDNA. Confirming this result, flow cytometric analysis proved that EO induced a G0-G1 phase arrest, with cell reduction in the S-phase. In addition, the combination of EO with etoposide showed a good potentiation effect in terms of cytotoxicity in both cell lines. Our results highlight the antitumor activity of EO in the HL-60 cell line and its MDR variant with a peculiar mechanism as a Topo II modulator. Unlike etoposide, EO does not cause stabilization of a covalent Topo II-DNA intermediate but acts as a catalytic inhibitor. These data make G. rosmarinifolia EO a potential anticancer drug candidate due to its cytotoxic action, which is not affected by multidrug resistance. Full article
(This article belongs to the Special Issue Chemical Composition and Bioactivities of Essential Oils)
Show Figures

Figure 1

21 pages, 3458 KiB  
Article
The Mode of SN38 Derivatives Interacting with Nicked DNA Mimics Biological Targeting of Topo I Poisons
by Wojciech Bocian, Beata Naumczuk, Magdalena Urbanowicz, Jerzy Sitkowski, Anna Bierczyńska-Krzysik, Elżbieta Bednarek, Katarzyna Wiktorska, Małgorzata Milczarek and Lech Kozerski
Int. J. Mol. Sci. 2021, 22(14), 7471; https://doi.org/10.3390/ijms22147471 - 12 Jul 2021
Cited by 6 | Viewed by 3017
Abstract
The compounds 7-ethyl-9-(N-methylamino)methyl-10-hydroxycamptothecin (2) and 7-ethyl-9-(N-morpholino)methyl-10-hydroxycamptothecin (3) are potential topoisomerase I poisons. Moreover, they were shown to have favorable anti-neoplastic effects on several tumor cell lines. Due to these properties, the compounds are being considered [...] Read more.
The compounds 7-ethyl-9-(N-methylamino)methyl-10-hydroxycamptothecin (2) and 7-ethyl-9-(N-morpholino)methyl-10-hydroxycamptothecin (3) are potential topoisomerase I poisons. Moreover, they were shown to have favorable anti-neoplastic effects on several tumor cell lines. Due to these properties, the compounds are being considered for advancement to the preclinical development stage. To gain better insights into the molecular mechanism with the biological target, here, we conducted an investigation into their interactions with model nicked DNA (1) using different techniques. In this work, we observed the complexity of the mechanism of action of the compounds 2 and 3, in addition to their decomposition products: compound 4 and SN38. Using DOSY experiments, evidence of the formation of strongly bonded molecular complexes of SN38 derivatives with DNA duplexes was provided. The molecular modeling based on cross-peaks from the NOESY spectrum also allowed us to assign the geometry of a molecular complex of DNA with compound 2. Confirmation of the alkylation reaction of both compounds was obtained using MALDI–MS. Additionally, in the case of 3, alkylation was confirmed in the recording of cross-peaks in the 1H/13C HSQC spectrum of 13C-enriched compound 3. In this work, we showed that the studied compounds—parent compounds 2 and 3, and their potential metabolite 4 and SN38—interact inside the nick of 1, either forming the molecular complex or alkylating the DNA nitrogen bases. In order to confirm the influence of the studied compounds on the topoisomerase I relaxation activity of supercoiled DNA, the test was performed based upon the measurement of the fluorescence of DNA stain which can differentiate between supercoiled and relaxed DNA. The presented results confirmed that studied SN38 derivatives effectively block DNA relaxation mediated by Topo I, which means that they stop the machinery of Topo I activity. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Graphical abstract

10 pages, 856 KiB  
Proceeding Paper
DNA-Binding Properties of Cytotoxic Naphtindolizinedione-Carboxamides Acting as Type II Topoisomerase Inhibitors. A Combined In Silico and Experimental Study
by Andrea Defant, Paolo Gatti, Alessandro Poli, Marta Serena, Alice Sosic, Barbara Gatto and Ines Mancini
Chem. Proc. 2021, 3(1), 96; https://doi.org/10.3390/ecsoc-24-08103 - 13 Nov 2020
Cited by 1 | Viewed by 1737
Abstract
Some clinically-used anticancer drugs are DNA intercalators acting as topoisomerase (Topo) IIα poisons in tumor cells highly expressing the enzyme. Synthetic naphtindolizinedione-carboxamides, previously designed as potential antitumor agents and showing relevant cytotoxic activities in vitro, have been now evaluated for their DNA-binding and [...] Read more.
Some clinically-used anticancer drugs are DNA intercalators acting as topoisomerase (Topo) IIα poisons in tumor cells highly expressing the enzyme. Synthetic naphtindolizinedione-carboxamides, previously designed as potential antitumor agents and showing relevant cytotoxic activities in vitro, have been now evaluated for their DNA-binding and inhibition of human Topo IIα, in comparison with the drug mitoxantrone. Docking calculation of each synthetic molecule as ligand with the CGCGAATTCGCG oligonucleotide model showed a stable intercalation in the DNA cut inside the enzyme. Moreover, molecular dynamics simulation indicated the stability of each DNA complex by evaluating the H-bonds involved as a function of time. These results are correlated to spectroscopic (binding constants and melting temperature by UV–VIS analysis, circular dichroism) and biological data (cytotoxicity and inhibition of human Topo IIα decatenation assay). Full article
Show Figures

Figure 1

11 pages, 2327 KiB  
Article
The Aza-Analogous Benzo[c]phenanthridine P8-D6 Acts as a Dual Topoisomerase I and II Poison, thus Exhibiting Potent Genotoxic Properties
by Georg Aichinger, Falk-Bach Lichtenberger, Tamara N. Steinhauer, Inken Flörkemeier, Giorgia Del Favero, Bernd Clement and Doris Marko
Molecules 2020, 25(7), 1524; https://doi.org/10.3390/molecules25071524 - 27 Mar 2020
Cited by 15 | Viewed by 3625
Abstract
The benzo[c]phenanthridine P8-D6 was recently found to suppress the catalytic activity of both human topoisomerase (Topo) I and II. Concomitantly, potent cytotoxic activity was observed in different human tumor cell lines, raising questions about the underlying mechanisms in vitro. In the [...] Read more.
The benzo[c]phenanthridine P8-D6 was recently found to suppress the catalytic activity of both human topoisomerase (Topo) I and II. Concomitantly, potent cytotoxic activity was observed in different human tumor cell lines, raising questions about the underlying mechanisms in vitro. In the present study, we addressed the question of whether P8-D6 acts as a so-called Topo poison, stabilizing the covalent Topo–DNA intermediate, thus inducing fatal DNA strand breaks in proliferating cells. In HT-29 colon carcinoma cells, fluorescence imaging revealed P8-D6 to be taken up by the cells and to accumulate in the perinuclear region. Confocal microscopy demonstrated that the compound is partially located inside the nuclei, thus reaching the potential target. In the “in vivo complex of enzyme” (ICE) bioassay, treatment of HT-29 cells with P8-D6 for 1 h significantly enhanced the proportion of Topo I and II covalently linked to the DNA in concentrations ≥1 µM, indicating effective dual Topo poisoning. Potentially resulting DNA damage was analyzed by single-cell gel electrophoresis (“comet assay”). Already at 1 h of incubation, significant genotoxic effects were observed in the comet assay in concentrations as low as 1 nM. Taken together, the present study demonstrates the high Topo-poisoning and genotoxic potential of P8-D6 in human tumor cells. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

24 pages, 1554 KiB  
Review
Ubiquitous Nature of Fluoroquinolones: The Oscillation between Antibacterial and Anticancer Activities
by Temilolu Idowu and Frank Schweizer
Antibiotics 2017, 6(4), 26; https://doi.org/10.3390/antibiotics6040026 - 7 Nov 2017
Cited by 85 | Viewed by 14759
Abstract
Fluoroquinolones are synthetic antibacterial agents that stabilize the ternary complex of prokaryotic topoisomerase II enzymes (gyrase and Topo IV), leading to extensive DNA fragmentation and bacteria death. Despite the similar structural folds within the critical regions of prokaryotic and eukaryotic topoisomerases, clinically relevant [...] Read more.
Fluoroquinolones are synthetic antibacterial agents that stabilize the ternary complex of prokaryotic topoisomerase II enzymes (gyrase and Topo IV), leading to extensive DNA fragmentation and bacteria death. Despite the similar structural folds within the critical regions of prokaryotic and eukaryotic topoisomerases, clinically relevant fluoroquinolones display a remarkable selectivity for prokaryotic topoisomerase II, with excellent safety records in humans. Typical agents that target human topoisomerases (such as etoposide, doxorubicin and mitoxantrone) are associated with significant toxicities and secondary malignancies, whereas clinically relevant fluoroquinolones are not known to exhibit such propensities. Although many fluoroquinolones have been shown to display topoisomerase-independent antiproliferative effects against various human cancer cells, those that are significantly active against eukaryotic topoisomerase show the same DNA damaging properties as other topoisomerase poisons. Empirical models also show that fluoroquinolones mediate some unique immunomodulatory activities of suppressing pro-inflammatory cytokines and super-inducing interleukin-2. This article reviews the extended roles of fluoroquinolones and their prospects as lead for the unmet needs of “small and safe” multimodal-targeting drug scaffolds. Full article
(This article belongs to the Special Issue Top 35 of Antibiotics Travel Awards 2017)
Show Figures

Graphical abstract

12 pages, 904 KiB  
Article
Neoamphimedine Circumvents Metnase-Enhanced DNA Topoisomerase IIα Activity Through ATP-Competitive Inhibition
by Jessica Ponder, Byong Hoon Yoo, Adedoyin D. Abraham, Qun Li, Amanda K. Ashley, Courtney L. Amerin, Qiong Zhou, Brian G. Reid, Philip Reigan, Robert Hromas, Jac A. Nickoloff and Daniel V. LaBarbera
Mar. Drugs 2011, 9(11), 2397-2408; https://doi.org/10.3390/md9112397 - 18 Nov 2011
Cited by 20 | Viewed by 8804
Abstract
Type IIα DNA topoisomerase (TopoIIα) is among the most important clinical drug targets for the treatment of cancer. Recently, the DNA repair protein Metnase was shown to enhance TopoIIα activity and increase resistance to TopoIIα poisons. Using in vitro DNA decatenation assays we [...] Read more.
Type IIα DNA topoisomerase (TopoIIα) is among the most important clinical drug targets for the treatment of cancer. Recently, the DNA repair protein Metnase was shown to enhance TopoIIα activity and increase resistance to TopoIIα poisons. Using in vitro DNA decatenation assays we show that neoamphimedine potently inhibits TopoIIα-dependent DNA decatenation in the presence of Metnase. Cell proliferation assays demonstrate that neoamphimedine can inhibit Metnase-enhanced cell growth with an IC50 of 0.5 µM. Additionally, we find that the apparent Km of TopoIIα for ATP increases linearly with higher concentrations of neoamphimedine, indicating ATP-competitive inhibition, which is substantiated by molecular modeling. These findings support the continued development of neoamphimedine as an anticancer agent, particularly in solid tumors that over-express Metnase. Full article
(This article belongs to the Special Issue Bioactive Compound from Marine Sponges)
Show Figures

Graphical abstract

Back to TopTop