Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Titicaca basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1225 KiB  
Article
Archaeobotanical Insights into Kañawa (Chenopodium pallidicaule Aellen) Domestication: A Rustic Seed Crop of the Andean Altiplano
by Maria C. Bruno
Agronomy 2023, 13(8), 2085; https://doi.org/10.3390/agronomy13082085 - 8 Aug 2023
Cited by 2 | Viewed by 3928
Abstract
Kañawa/Cañihua (Chenopodium pallidicaule Aellen) is the lesser-known cousin of the domesticated Andean pseudocereal quinoa (Chenopodium quinoa Willd.). In 1970, Daniel Gade hypothesized that Andean farmers may have domesticated volunteer wild kañawa plants that occupied quinoa or potato fields after [...] Read more.
Kañawa/Cañihua (Chenopodium pallidicaule Aellen) is the lesser-known cousin of the domesticated Andean pseudocereal quinoa (Chenopodium quinoa Willd.). In 1970, Daniel Gade hypothesized that Andean farmers may have domesticated volunteer wild kañawa plants that occupied quinoa or potato fields after observing that they could survive harsh climatic events such as drought or frost. To revisit this question of kañawa domestication, this paper provides an overview of the current botanical, genetic, and archaeological knowledge of kañawa domestication. It then provides patterns in the presence of wild and domesticated kañawa seeds from archaeological sites in the southern Lake Titicaca Basin of Bolivia, spanning the Formative and Tiwanaku periods from approximately 1500 BCE to 1100 CE. This archaeobotanical evidence supports Gade’s hypothesis that kañawa was a later domesticate, not appearing until after 250 CE. Regional paleoclimatic evidence of frequent climatic fluctuations lends support to the argument that kañawa contributed to a diversified food supply, which could provide a buffer against climate risks. Full article
Show Figures

Figure 1

14 pages, 1602 KiB  
Article
Microbial and Qualitative Traits of Quinoa and Amaranth Seeds from Experimental Fields in Southern Italy
by Anna Reale, Maria Cristina Messia, Cataldo Pulvento, Antonella Lavini, Stefania Nazzaro and Tiziana Di Renzo
Foods 2023, 12(9), 1866; https://doi.org/10.3390/foods12091866 - 30 Apr 2023
Cited by 4 | Viewed by 2853
Abstract
Quinoa and amaranth are of special interest since they are increasingly used for the development of new bakery products with enhanced nutritional value. The aim of the study was to evaluate the agronomic, microbiological, and nutritional characteristics of quinoa and amaranth seeds grown [...] Read more.
Quinoa and amaranth are of special interest since they are increasingly used for the development of new bakery products with enhanced nutritional value. The aim of the study was to evaluate the agronomic, microbiological, and nutritional characteristics of quinoa and amaranth seeds grown in Southern Italy. For this reason, quinoa Titicaca and three amaranth accessions (5, 12, and 14) were cultivated in different experimental fields in the Campania Region and analyzed for the cultivation aspects, chemical composition, and microbiological quality of the seeds. All seeds showed a good adaptability to cultivation in the experimental areas of the Mediterranean basin. Quinoa seeds were characterized by their higher protein, fat, and ash content than the amaranth seeds, which were characterized by their higher value in dietary fiber. All seeds, regardless of the geographical area of production, were contaminated with yeasts, moulds, and spore-forming bacteria, mainly Bacillus cereus, B. licheniformis, B. safensis and B. subtilis, as identified by 16S rRNA sequencing analysis. So, the detection of Bacillus spp. must be strongly monitored, as quinoa and amaranth seeds could be used in bread production, where they can cause ropiness, resulting in great economic losses for the industries. Full article
(This article belongs to the Special Issue Advances in the Quality and Marketability Improvement of Cereals)
Show Figures

Graphical abstract

8 pages, 6742 KiB  
Proceeding Paper
Evaluation of GPM IMERG Performance Over the Lake Titicaca Basin at Different Time Scales
by Luis Alberto Quispe, Eduardo Paxi and Efrain Lujano
Environ. Sci. Proc. 2023, 25(1), 65; https://doi.org/10.3390/ECWS-7-14324 - 3 Apr 2023
Cited by 2 | Viewed by 2696
Abstract
Accurate precipitation measurements are very important as an input for water resources management and various hydrometeorological applications. The Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (GPM) (IMERG) satellite precipitation product (SPP) has been widely used to complement rain gauge measurements. However, it must [...] Read more.
Accurate precipitation measurements are very important as an input for water resources management and various hydrometeorological applications. The Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (GPM) (IMERG) satellite precipitation product (SPP) has been widely used to complement rain gauge measurements. However, it must be evaluated before use and also its application is still lacking in the lake Titicaca basin (LTB). In this research, the evaluation of the performance of GPM IMERG on the LTB at different time scales (daily, monthly and annual) was carried out. The evaluation was performed using rain gauge observations for the period 2003–2016 and three IMERGs, namely early (IMERG-E), late (IMERG-L), and final (IMERG-F). Accordingly, three performance metrics were used that evaluated the accuracy (correlation coefficient, CC), error (root mean square error, RMSE), and bias (percent bias, PBIAS) of the satellite estimates. In general, the monthly IMERG SPP correlated best with the rain gauge measurements. In all the evaluations performed (daily, monthly, and annual), the IMERG-F was in better agreement with the rain gauge measurements at the LTB, with small differences with IMERG-E and IMERG-L. The IMERG SPPs show potential for use in various hydrometeorological applications in the LTB. Full article
(This article belongs to the Proceedings of The 7th International Electronic Conference on Water Sciences)
Show Figures

Figure 1

19 pages, 12517 KiB  
Article
The Diurnal Cycle of Precipitation over Lake Titicaca Basin Based on CMORPH
by Eleazar Chuchón Angulo and Augusto Jose Pereira Filho
Atmosphere 2022, 13(4), 601; https://doi.org/10.3390/atmos13040601 - 8 Apr 2022
Cited by 1 | Viewed by 2376
Abstract
This paper examines the diurnal cycle of precipitation (DCP) over Lake Titicaca basin (LTb) during the summertime months based on the high spatial–temporal resolution (8 × 8 km2 and hourly) estimates of the Climate Prediction Center Morphing technique (CMORPH). This analysis was [...] Read more.
This paper examines the diurnal cycle of precipitation (DCP) over Lake Titicaca basin (LTb) during the summertime months based on the high spatial–temporal resolution (8 × 8 km2 and hourly) estimates of the Climate Prediction Center Morphing technique (CMORPH). This analysis was carried out using observations from rain gauges (RgSENAMHI) as a reference for the period 2002 to 2013. The accuracy of the CMORPH product was tested with graphical comparisons and several statistical metrics, such as correlation coefficient, bias, and root mean square error. Spatial maps of these metrics and of the diurnal cycle were developed to assess the spatial dependency in the CMORPH accuracy over the LTb. On average, 43% of the total RgSENAMHI variation was explained by the CMORPH. The correlation between the CMORPH and RgSENAMHI amounts was positive over the southeastern and northern LTb and negative in the central and southern LTb. An underestimation bias was observed over most of the LTb areas, and an overestimation bias was observed at some stations (e.g., Lagunillas, Isla Suana, and Desaguadero stations). The total bias decreased when approaching the lake attaining its minimum value over the mountains consistent with previous studies. Overall, the CMORPH was able to capture the spatial patterns of rainfall over the LTb. Over the surrounding lake area, the plateau, and high mountain areas, precipitation peaks were in the late afternoon, while over low areas, such as the valleys and Lake Titicaca, it peaked around midnight to early morning. This result suggests that the DCP is closely related to the local circulation resulting from a response due to solar radiation and the complex orography. On the other hand, the high resolution CMORPH technique can depict finer regional details, such as the less coherent phase pattern over a few regions. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

19 pages, 8253 KiB  
Article
Land Cover Change and Water Quality: How Remote Sensing Can Help Understand Driver–Impact Relations in the Lake Titicaca Basin
by Analy Baltodano, Afnan Agramont, Ils Reusen and Ann van Griensven
Water 2022, 14(7), 1021; https://doi.org/10.3390/w14071021 - 23 Mar 2022
Cited by 19 | Viewed by 6431
Abstract
The increase of human interventions and developments are modifying the land use/land cover (LULC) of the global landscape, thus severely affecting the water quality of rivers and lakes. Appropriate management and effective policy developments are required to deal with the problems of surface [...] Read more.
The increase of human interventions and developments are modifying the land use/land cover (LULC) of the global landscape, thus severely affecting the water quality of rivers and lakes. Appropriate management and effective policy developments are required to deal with the problems of surface water contamination around the globe. However, spatiotemporal variations of water quality and its complex relation with land cover (LC) changes, challenge adequate water resources management. In this study, we explored the use of remote sensing to relate LC change in the Katari River Basin (KRB) located in the Bolivian Andes and water quality on the shores of Lake Titicaca, in order to support water management. An unsupervised classification of Landsat 7 satellite images and trajectory analysis was applied to understand the modifications of LC through time. In addition, water-quality indicators at the outlet of the basin were retrieved from remote-sensing images and its temporal behavior was analyzed. The results show that the expansion of urban areas is the predominant environmental driver in the KRB, which has great impact on the water quality of Lake Titicaca. We conclude that there is a strong link between the rapid growth of urban and industrial areas with the detriment of river and lake water quality. This case study shows how remote sensing can help understand driver–impact relations. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

24 pages, 5783 KiB  
Article
Comparative Analysis of Climate Change Impacts on Meteorological, Hydrological, and Agricultural Droughts in the Lake Titicaca Basin
by Ricardo Zubieta, Jorge Molina-Carpio, Wilber Laqui, Juan Sulca and Mercy Ilbay
Water 2021, 13(2), 175; https://doi.org/10.3390/w13020175 - 13 Jan 2021
Cited by 34 | Viewed by 9755
Abstract
The impact of climate change on droughts in the Lake Titicaca, Desaguadero River, and Lake Poopo basins (TDPS system) within the Altiplano region was evaluated by comparing projected 2034–2064 and observed 1984–2014 hydroclimate time series. The study used bias-corrected monthly climate projections from [...] Read more.
The impact of climate change on droughts in the Lake Titicaca, Desaguadero River, and Lake Poopo basins (TDPS system) within the Altiplano region was evaluated by comparing projected 2034–2064 and observed 1984–2014 hydroclimate time series. The study used bias-corrected monthly climate projections from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), under the Representative Concentration Pathway 8.5 (RCP8.5) emission scenarios. Meteorological, agricultural, and hydrological droughts were analyzed from the standardized precipitation, standardized soil moisture, and standardized runoff indices, respectively, the latter two estimated from a hydrological model. Under scenarios of mean temperature increases up to 3 °C and spatially diverse precipitation changes, our results indicate that meteorological, agricultural, and hydrological droughts will become more intense, frequent, and prolonged in most of the TDPS. A significant increase in the frequency of short-term agricultural and hydrological droughts (duration of 1–2 months) is also projected. The expected decline in annual rainfall and the larger evapotranspiration increase in the southern TDPS combine to yield larger projected rises in the frequency and intensity of agricultural and hydrological droughts in this region. Full article
(This article belongs to the Special Issue Hydro-Meteorological Hazards under Climate Change)
Show Figures

Figure 1

17 pages, 5445 KiB  
Article
Transdisciplinary Learning Communities to Involve Vulnerable Social Groups in Solving Complex Water-Related Problems in Bolivia
by Afnan Agramont, Marc Craps, Melina Balderrama and Marijke Huysmans
Water 2019, 11(2), 385; https://doi.org/10.3390/w11020385 - 22 Feb 2019
Cited by 22 | Viewed by 6333
Abstract
Bolivia has influenced the international water arenas as a pioneer of the Human Water Rights Declaration before the United Nations General Council. However, despite a positive but rather ideological evolution, the country is still facing several water challenges in practice. Water governance is [...] Read more.
Bolivia has influenced the international water arenas as a pioneer of the Human Water Rights Declaration before the United Nations General Council. However, despite a positive but rather ideological evolution, the country is still facing several water challenges in practice. Water governance is extremely complex due to intricate social structures, important spatial and temporal differences in the availability of water resources, ecological fragility, and weak institutions. A Transdisciplinary Learning Community approach has been adopted by the Universidad Católica Boliviana to take into account the complexity of the water problems caused by social, hydrological, and ecological system imbalances. In this approach, researchers and non-academic actors work closely together to integrate different ways of conceiving, using, valuing, and deciding on water issues. The approach aims at co-creating resilient solutions by recovering and restoring not only the ecological system, but also the social system in which all actors are aware of their role and responsibility. We explain the challenges and concerns raised by this approach in a case study of the Katari River Basin (KRB), which is impacted by a high degree of contamination that is mainly caused while crossing El Alto city, leading to dramatic consequences for the Lake Titicaca ecosystem and its surrounding communities. Full article
Show Figures

Figure 1

18 pages, 2909 KiB  
Article
Algal Bloom Exacerbates Hydrogen Sulfide and Methylmercury Contamination in the Emblematic High-Altitude Lake Titicaca
by Darío Achá, Stephane Guédron, David Amouroux, David Point, Xavier Lazzaro, Pablo Edgar Fernandez and Géraldine Sarret
Geosciences 2018, 8(12), 438; https://doi.org/10.3390/geosciences8120438 - 26 Nov 2018
Cited by 40 | Viewed by 7641
Abstract
Algal blooms occurrence is increasing around the globe. However, algal blooms are uncommon in dominantly oligotrophic high-altitude lakes. Lake Titicaca, the largest freshwater lake in South America, located at 3809 m above the sea level, experienced its first recorded algal bloom covering a [...] Read more.
Algal blooms occurrence is increasing around the globe. However, algal blooms are uncommon in dominantly oligotrophic high-altitude lakes. Lake Titicaca, the largest freshwater lake in South America, located at 3809 m above the sea level, experienced its first recorded algal bloom covering a large fraction of its southern shallow basin in March–April 2015. The dominant algae involved in the bloom was Carteria sp. Water geochemistry changed during the bloom with a simultaneous alkalinization in heterotrophic parts of the lake and acidification in eutrophic shallow areas. A decrease in oxygen saturation (from 105 to 51%), and a dramatic increase in hydrogen sulfide (H2S) concentrations (from <0.02 to up to 155 µg∙L−1) resulted in the massive death of pelagic organisms. Such changes were brought by the exacerbated activity of sulfate-reducing bacteria (SRB) in this sulfate-rich lake. Although levels in total mercury remained stable during the event, MMHg % rose, highlighting higher conservation of produced MMHg in the water. Such an increase on MMHg % has the potential to produce exponential changes on MMHg concentrations at the end food web due to the biomagnification process. Our physicochemical and climatological data suggest that unusually intense rain events released large amounts of nutrients from the watershed and triggered the bloom. The observed bloom offers a hint for possible scenarios for the lake if pollution and climate change continue to follow the same trend. Such a scenario may have significant impacts on the most valuable fish source in the Andean region and the largest freshwater Lake in South America. Furthermore, the event illustrates a possible fate of high altitude environments subjected to eutrophication. Full article
(This article belongs to the Special Issue Mercury Biogeochemical Cycle in A Changing World)
Show Figures

Figure 1

14 pages, 1390 KiB  
Review
Role of Hydrological Studies for the Development of the TDPS System
by Claudia Canedo, Ramiro Pillco Zolá and Ronny Berndtsson
Water 2016, 8(4), 144; https://doi.org/10.3390/w8040144 - 12 Apr 2016
Cited by 19 | Viewed by 10815
Abstract
The South American Altiplano in the Andes is, aside from Tibet, the most extensive high plateau on Earth. This semiarid area represents important water resources storages, including the Lakes Titicaca and Poopó located in the northern and central Altiplano, respectively. The two lake [...] Read more.
The South American Altiplano in the Andes is, aside from Tibet, the most extensive high plateau on Earth. This semiarid area represents important water resources storages, including the Lakes Titicaca and Poopó located in the northern and central Altiplano, respectively. The two lake basins and the southern saltpans constitute a large watershed, called the Lake Titicaca, Desaguadero River, Lake Poopó, and Coipasa Salt Flat System (TDPS hydrologic system). The Altiplano climate, topography, and location determine the TDPS hydrologic functioning. Scarce data and high spatial variability represent challenges to correctly simulate the TDPS water budget. Consequently, there is an important need to improve the understanding of the water resources in current and future climate over the area. The paper provides a comprehensive state-of-the-art regarding current knowledge of the TDPS hydro-socioeconomic system and summarizes the data needs to improve the current hydrological understanding. Full article
Show Figures

Graphical abstract

Back to TopTop