Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,627)

Search Parameters:
Keywords = The European Union

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1625 KiB  
Article
Institutional, Resource-Based, Stakeholder and Legitimacy Drivers of Green Manufacturing Adoption in Industrial Enterprises
by Lukáš Juráček, Lukáš Jurík and Helena Makyšová
Adm. Sci. 2025, 15(8), 311; https://doi.org/10.3390/admsci15080311 (registering DOI) - 7 Aug 2025
Abstract
The present paper investigates the adoption of green manufacturing approaches among industrial enterprises in Slovakia, emphasizing the interplay between institutional pressures and enterprise-level resources. Based on a survey of 88 enterprises from energy- and material-intensive sectors, the study evaluates how regional context and [...] Read more.
The present paper investigates the adoption of green manufacturing approaches among industrial enterprises in Slovakia, emphasizing the interplay between institutional pressures and enterprise-level resources. Based on a survey of 88 enterprises from energy- and material-intensive sectors, the study evaluates how regional context and enterprise size influence the adoption of green practices. Using logistic regression and the chi-squared test, the findings reveal minimal regional variation, suggesting strong isomorphic effects of harmonised European Union environmental regulations. In contrast, enterprise size significantly correlates with the adoption of complex green practices, confirming the relevance of the resource-based view. These results highlight the dominance of internal capabilities over regional factors in green transition pathways within small post-transition economies. The study contributes to cross-national theorising by showing how resource asymmetries, rather than institutional diversity, shape environmental behaviour in uniform regulatory environments. Specifically, the paper examines how institutional pressures, enterprise-level resources, stakeholders, and legitimacy influence the adoption of green manufacturing practices in Slovak industrial enterprises. The study draws on institutional theory, the resource-based view, stakeholder theory, and legitimacy theory to explore the relationship between enterprise size, regional location, and the adoption levels of green manufacturing. Full article
Show Figures

Figure 1

22 pages, 681 KiB  
Article
Unlocking the Nexus: Personal Remittances and Economic Drivers Shaping Housing Prices Across EU Borders
by Maja Nikšić Radić, Siniša Bogdan and Marina Barkiđija Sotošek
World 2025, 6(3), 112; https://doi.org/10.3390/world6030112 (registering DOI) - 7 Aug 2025
Abstract
This study examines the impact of personal remittances on housing prices in European Union (EU) countries, while also accounting for a broader set of macroeconomic, demographic, and structural variables. Using annual data for 27 EU countries from 2007 to 2022, we employ a [...] Read more.
This study examines the impact of personal remittances on housing prices in European Union (EU) countries, while also accounting for a broader set of macroeconomic, demographic, and structural variables. Using annual data for 27 EU countries from 2007 to 2022, we employ a comprehensive panel econometric approach, including cross-sectional dependence tests, second-generation unit root tests, pooled mean group–autoregressive distributed lag (PMG-ARDL) estimation, and panel causality tests, to capture both short- and long-term dynamics. Our findings confirm that remittances significantly and positively influence long-term housing price levels, underscoring their relevance as a demand-side driver. Other key variables such as net migration, GDP, travel credit to GDP, economic freedom, and real effective exchange rates also contribute to housing price movements, while supply-side indicators, including production in construction and building permits, exert moderating effects. Moreover, real interest rates are shown to have a significant long-term negative effect on property prices. The analysis reveals key causal links from remittances, FDI, and net migration to housing prices, highlighting their structural and predictive roles. Bidirectional causality between economic freedom, housing output, and prices indicates reinforcing feedback effects. These findings position remittances as both a development tool and a key indicator of real estate dynamics. The study highlights complex interactions between international financial flows, demographic pressures, and domestic economic conditions and the need for policymakers to consider remittances and migrant investments in real estate strategies. These findings offer important implications for policymakers seeking to balance housing affordability, investment, and economic resilience in the EU context and key insights into the complexity of economic factors and real estate prices. Importantly, the analysis identifies several causal relationships, notably from remittances, FDI, and net migration toward housing prices, underscoring their predictive and structural importance. Bidirectional causality between economic freedom and house prices, as well as between housing output and pricing, reflects feedback mechanisms that further reinforce market dynamics. These results position remittances not only as a developmental instrument but also as a key signal for real estate market performance in recipient economies. Full article
Show Figures

Figure A1

17 pages, 8581 KiB  
Article
Assessment of Large-Eddy Simulations to Simulate a High-Speed Low-Pressure Turbine Cascade
by Florent Duchaine and Xavier Delon
Int. J. Turbomach. Propuls. Power 2025, 10(3), 21; https://doi.org/10.3390/ijtpp10030021 (registering DOI) - 7 Aug 2025
Abstract
The development of compact high-speed low-pressure turbines with high efficiencies requires the characterization of the secondary flow structures and the interaction of cavity purge and leakage flows with the mainstream. During the SPLEEN project funded by the European Union’s Horizon 2020, the von [...] Read more.
The development of compact high-speed low-pressure turbines with high efficiencies requires the characterization of the secondary flow structures and the interaction of cavity purge and leakage flows with the mainstream. During the SPLEEN project funded by the European Union’s Horizon 2020, the von Karman Institute and Safran Aircraft Engines performed detailed measurements of low-pressure turbines in engine-realistic conditions (i.e., low Reynolds and high exit Mach numbers considering background turbulence, wakes, row interactions, and leakages). The SPLEEN project is thus a fundamental contribution to the progress of high-speed low-pressure turbines by delivering unique experimental databases, essential to characterize the time-resolved 3D turbine flow, and new critical knowledge to mature the design of 3D technological effects. Being able to simulate the flow and associated losses in such a configuration is both challenging and of paramount importance to help the understanding of the flow physics complementing experimental measurements. This paper focuses on the high-fidelity numerical simulation of one of the SPLEEN configuration consisting of a linear blade cascade. The objective is to provide a validated numerical setup in terms of computational domain, boundary conditions, mesh resolution and numerical scheme to reproduce the experimental results. By mean of wall-resolved large-eddy simulations, the design point characterized by an exit Mach number of 0.9 and an exit Reynolds number of 70,000 with a turbulence level of 2.4% is investigated for the baseline configuration without purge and without wake generator. The results show that the considered computational domain and the associated inlet total pressure profile play a critical role on the development of secondary flows. The isentropic Mach number distribution around the blade is shown to be robust to the mesh and numerical scheme. The development of the wake and secondary flow fields are drastically influenced by the mesh resolution and numerical scheme, impacting the resulting losses. Full article
27 pages, 5688 KiB  
Review
Tree Biomass Estimation in Agroforestry for Carbon Farming: A Comparative Analysis of Timing, Costs, and Methods
by Niccolò Conti, Gianni Della Rocca, Federico Franciamore, Elena Marra, Francesco Nigro, Emanuele Nigrone, Ramadhan Ramadhan, Pierluigi Paris, Gema Tárraga-Martínez, José Belenguer-Ballester, Lorenzo Scatena, Eleonora Lombardi and Cesare Garosi
Forests 2025, 16(8), 1287; https://doi.org/10.3390/f16081287 - 7 Aug 2025
Abstract
Agroforestry systems (AFSs) enhance long-term carbon sequestration through tree biomass accumulation. As the European Union’s Carbon Farming Certification (CRCF) Regulation now recognizes AFSs in carbon farming (CF) schemes, accurate tree biomass estimation becomes essential for certification. This review examines field-destructive and remote sensing [...] Read more.
Agroforestry systems (AFSs) enhance long-term carbon sequestration through tree biomass accumulation. As the European Union’s Carbon Farming Certification (CRCF) Regulation now recognizes AFSs in carbon farming (CF) schemes, accurate tree biomass estimation becomes essential for certification. This review examines field-destructive and remote sensing methods for estimating tree aboveground biomass (AGB) in AFSs, with a specific focus on their advantages, limitations, timing, and associated costs. Destructive methods, although accurate and necessary for developing and validating allometric equations, are time-consuming, costly, and labour-intensive. Conversely, satellite- and drone-based remote sensing offer scalable and non-invasive alternatives, increasingly supported by advances in machine learning and high-resolution imagery. Using data from the INNO4CFIs project, which conducted parallel destructive and remote measurements in an AFS in Tuscany (Italy), this study provides a novel quantitative comparison of the resources each method requires. The findings highlight that while destructive measurements remain indispensable for model calibration and new species assessment, their feasibility is limited by practical constraints. Meanwhile, remote sensing approaches, despite some accuracy challenges in heterogeneous AFSs, offer a promising path forward for cost-effective, repeatable biomass monitoring but in turn require reliable field data. The integration of both approaches might represent a valid strategy to optimize precision and resource efficiency in carbon farming applications. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

42 pages, 8886 KiB  
Article
Standard Classes for Urban Topographic Mapping with ALS: Classification Scheme and a First Implementation
by Agata Walicka and Norbert Pfeifer
Remote Sens. 2025, 17(15), 2731; https://doi.org/10.3390/rs17152731 - 7 Aug 2025
Abstract
Research regarding airborne laser scanning (ALS) point cloud semantic segmentation typically revolves around supervised machine learning, which requires time-consuming generation of training data. Therefore, the models are usually trained using one of the benchmarking datasets that cover a small area. Recently, many European [...] Read more.
Research regarding airborne laser scanning (ALS) point cloud semantic segmentation typically revolves around supervised machine learning, which requires time-consuming generation of training data. Therefore, the models are usually trained using one of the benchmarking datasets that cover a small area. Recently, many European countries published classified ALS data, which can be potentially used for training models. However, a review of the classification schemes of these datasets revealed that these schemes vary substantially, therefore limiting their applicability. Thus, our goal was three-fold. First, to develop a common classification scheme that can be applied for the semantic segmentation of various ALS datasets. Second, to unify the classification scheme of existing ALS datasets. Third, to employ them for the training of a classifier that will be able to classify data from different sources and will not require additional training. We propose a classification scheme of four classes: ground and water, vegetation, buildings and bridges, and ‘other’. The developed classifier is trained jointly using ALS data from Austria, Switzerland, and Poland. A test on unseen datasets demonstrates that the achieved intersection over union accuracy varies between 90.0–97.3% for ground and water, 68.0–95.9% for vegetation, 77.6–94.8% for buildings and bridges, and 13.5–52.7% for ‘other’. As a result, we conclude that the developed method generalizes well to previously unseen data. Full article
Show Figures

Figure 1

45 pages, 2014 KiB  
Article
Innovative Business Models Towards Sustainable Energy Development: Assessing Benefits, Risks, and Optimal Approaches of Blockchain Exploitation in the Energy Transition
by Aikaterini Papapostolou, Ioanna Andreoulaki, Filippos Anagnostopoulos, Sokratis Divolis, Harris Niavis, Sokratis Vavilis and Vangelis Marinakis
Energies 2025, 18(15), 4191; https://doi.org/10.3390/en18154191 - 7 Aug 2025
Abstract
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy [...] Read more.
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy production, and demand flexibility is of vital importance. Blockchain has the potential to change energy services towards this direction. To optimally exploit blockchain, innovative business models need to be designed, identifying the opportunities emerging from unmet needs, while also considering potential risks so as to take action to overcome them. In this context, the scope of this paper is to examine the opportunities and the risks that emerge from the adoption of blockchain in four innovative business models, while also identifying mitigation strategies to support and accelerate the energy transition, thus proposing optimal approaches of exploitation of blockchain in energy services. The business models concern Energy Performance Contracting with P4P guarantees, improved self-consumption in energy cooperatives, energy efficiency and flexibility services for natural gas boilers, and smart energy management for EV chargers and HVAC appliances. Firstly, the value proposition of the business models is analysed and results in a comprehensive SWOT analysis. Based on the findings of the analysis and consultations with relevant market actors, in combination with the examination of the relevant literature, risks are identified and evaluated through a qualitative assessment approach. Subsequently, specific mitigation strategies are proposed to address the detected risks. This research demonstrates that blockchain integration into these business models can significantly improve energy efficiency, reduce operational costs, enhance security, and support a more decentralised energy system, providing actionable insights for stakeholders to implement blockchain solutions effectively. Furthermore, according to the results, technological and legal risks are the most significant, followed by political, economic, and social risks, while environmental risks of blockchain integration are not as important. Strategies to address risks relevant to blockchain exploitation include ensuring policy alignment, emphasising economic feasibility, facilitating social inclusion, prioritising security and interoperability, consulting with legal experts, and using consensus algorithms with low energy consumption. The findings offer clear guidance for energy service providers, policymakers, and technology developers, assisting in the design, deployment, and risk mitigation of blockchain-enabled business models to accelerate sustainable energy development. Full article
Show Figures

Figure 1

15 pages, 3574 KiB  
Article
Optimizing Sunflower Husk Pellet Combustion for B2B Bioenergy Commercialization
by Penka Zlateva, Nevena Mileva, Mariana Murzova, Kalin Krumov and Angel Terziev
Energies 2025, 18(15), 4189; https://doi.org/10.3390/en18154189 - 7 Aug 2025
Abstract
This study analyses the potential of using sunflower husks as an energy source by producing bio-pellets and evaluating their combustion process in residential settings. As one of the leading sunflower producers in the European Union, Bulgaria generates significant agricultural residues with high, yet [...] Read more.
This study analyses the potential of using sunflower husks as an energy source by producing bio-pellets and evaluating their combustion process in residential settings. As one of the leading sunflower producers in the European Union, Bulgaria generates significant agricultural residues with high, yet underutilized, energy potential. This study employs a combination of experimental data and numerical modelling aided by ANSYS 2024 R1 to analyse the combustion of sunflower husk pellets in a hot water boiler. The importance of balanced air distribution for achieving optimal combustion, reduced emissions, and enhanced thermal efficiency is emphasized by the results of a comparison of two air supply regimes. It was found that a secondary air-dominated air supply regime results in a more uniform temperature field and a higher degree of oxidation of combustible components. These findings not only confirm the technical feasibility of sunflower husk pellets but also highlight their commercial potential as a sustainable, low-cost energy solution for agricultural enterprises and rural heating providers. The research indicates that there are business-to-business (B2B) market opportunities for biomass producers, boiler manufacturers, and energy distributors who wish to align themselves with EU green energy policies and the growing demand for solutions that support the circular economy. Full article
Show Figures

Figure 1

24 pages, 1286 KiB  
Article
Sustainable Development as a Transformative Axis of the European Union’s Trade Policy
by Christian Arias and José Varela-Aldás
Sustainability 2025, 17(15), 7151; https://doi.org/10.3390/su17157151 - 7 Aug 2025
Abstract
This study analyzes the strategic and institutional frameworks that precede the formulation of trade agreements, with a focus on the European Union’s external action and its link to the Sustainable Development Goals. Based on a documentary research design, this study examines official documents [...] Read more.
This study analyzes the strategic and institutional frameworks that precede the formulation of trade agreements, with a focus on the European Union’s external action and its link to the Sustainable Development Goals. Based on a documentary research design, this study examines official documents from the EU and the United Nations, as well as the academic literature indexed in Scopus and Web of Science. The methodological process involved four phases: systematic search, selection and classification, inductive content coding, and interpretative analysis. Through this process, this study identifies discursive patterns, normative tensions, and policy orientations that reveal the EU’s evolving approach to sustainable trade governance. The findings highlight the existence of a growing institutional alignment between trade policy and sustainable development frameworks, yet also expose persistent gaps in coherence and implementation. This article contributes to the academic debate by offering a critical and structured analytical lens to understand how trade agreements are politically and institutionally prefigured before their negotiation phase. Full article
Show Figures

Figure 1

15 pages, 1920 KiB  
Article
Optimization of the Froth Flotation Process for the Enrichment of Cu and Co Concentrate from Low-Grade Copper Sulfide Ore
by Michal Marcin, Martin Sisol, Martina Laubertová, Jakub Kurty and Ema Gánovská
Materials 2025, 18(15), 3704; https://doi.org/10.3390/ma18153704 - 6 Aug 2025
Abstract
The increasing demand for critical raw materials such as copper and cobalt highlights the need for efficient beneficiation of low-grade ores. This study investigates a copper–cobalt sulfide ore (0.99% Cu, 0.028% Co) using froth flotation to produce high-grade concentrates. Various types of surfactants [...] Read more.
The increasing demand for critical raw materials such as copper and cobalt highlights the need for efficient beneficiation of low-grade ores. This study investigates a copper–cobalt sulfide ore (0.99% Cu, 0.028% Co) using froth flotation to produce high-grade concentrates. Various types of surfactants are applied in different ways, each serving an essential function such as acting as collectors, frothers, froth stabilizers, depressants, activators, pH modifiers, and more. A series of flotation tests employing different collectors (SIPX, PBX, AERO, DF 507B) and process conditions was conducted to optimize recovery and selectivity. Methyl isobutyl carbinol (MIBC) was consistently used as the foaming agent, and 700 g/L was used as the slurry density at 25 °C. Dosages of 30 and 100 g/t1 were used in all tests. Notably, adjusting the pH to ~4 using HCl significantly improved cobalt concentrate separation. The optimized flotation conditions yielded concentrates with over 15% Cu and metal recoveries exceeding 80%. Mineralogical characterization confirmed the selective enrichment of target metals in the concentrate. The results demonstrate the potential of this beneficiation approach to contribute to the European Union’s supply of critical raw materials. Full article
(This article belongs to the Special Issue Advances in Process Metallurgy and Metal Recycling)
Show Figures

Figure 1

493 KiB  
Proceeding Paper
Natural Hazards and Spatial Data Infrastructures (SDIs) for Disaster Risk Reduction
by Michail-Christos Tsoutsos and Vassilios Vescoukis
Eng. Proc. 2025, 87(1), 101; https://doi.org/10.3390/engproc2025087101 - 5 Aug 2025
Abstract
When there is an absence of disaster prevention measures, natural hazards can lead to disasters. An essential part of disaster risk management is the geospatial modeling of devastating hazards, where data sharing is of paramount importance in the context of early-warning systems. This [...] Read more.
When there is an absence of disaster prevention measures, natural hazards can lead to disasters. An essential part of disaster risk management is the geospatial modeling of devastating hazards, where data sharing is of paramount importance in the context of early-warning systems. This research points out the usefulness of Spatial Data Infrastructures (SDIs) for disaster risk reduction through a literature review, focusing on the necessity of data unification and disposal. Initially, the principles of SDIs are presented, given the fact that this framework contributes significantly to the fulfilment of specific targets and priorities of the Sendai Framework for Disaster Risk Reduction 2015–2030. Thereafter, the challenges of SDIs are investigated in order to underline the main drawbacks stakeholders in emergency management have to come up against, namely the semantic misalignment that impedes efficient data retrieval, malfunctions in the interoperability of datasets and web services, the non-availability of the data in spite of their existence, and a lack of quality data, while also highlighting the obstacles of real case studies on national NSDIs. Thus, diachronic observations on disasters will not be made, despite these comprising a meaningful dataset in disaster mitigation. Consequently, the harmonization of national SDIs with international schemes, such as the Group on Earth Observations (GEO) and European Union’s space program Copernicus, and the usefulness of Artificial Intelligence (AI) and Machine Learning (ML) for disaster mitigation through the prediction of natural hazards are demonstrated. In this paper, for the purpose of disaster preparedness, real-world implementation barriers that preclude SDIs to be completed or deter their functionality are presented, culminating in the proposed future research directions and topics for the SDIs that need further investigation. SDIs constitute an ongoing collaborative effort intending to offer valuable operational tools for decision-making under the threat of a devastating event. Despite the operational potential of SDIs, the complexity of data standardization and coordination remains a core challenge. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

18 pages, 2672 KiB  
Article
Development Process of TGDI SI Engine Combustion Simulation Model Using Ethanol–Gasoline Blends as Fuel
by Bence Zsoldos, András L. Nagy and Máté Zöldy
Appl. Sci. 2025, 15(15), 8677; https://doi.org/10.3390/app15158677 - 5 Aug 2025
Abstract
The Fit for 55 package introduced by the European Union aims to achieve a 55% reduction in greenhouse gas emissions by 2030. In parallel, increasingly stringent exhaust gas regulations have intensified research into alternative fuels. Ethanol presents a promising option due to its [...] Read more.
The Fit for 55 package introduced by the European Union aims to achieve a 55% reduction in greenhouse gas emissions by 2030. In parallel, increasingly stringent exhaust gas regulations have intensified research into alternative fuels. Ethanol presents a promising option due to its compatibility with gasoline, higher octane rating, and lower exhaust emissions compared to conventional gasoline. Additionally, ethanol can be derived from agricultural waste, further enhancing its sustainability. This study examines the impact of two ethanol–gasoline blends (E10, E20) on emissions and performance in a turbocharged gasoline direct injection (TGDI) spark-ignition (SI) engine. The investigation is conducted using three-dimensional computational fluid dynamics (3D CFD) simulations to minimize development time and costs. This paper details the model development process and presents the initial results. The boundary conditions for the simulations are derived from one-dimensional (1D) simulations, which have been validated against experimental data. Subsequently, the simulated performance and emissions results are compared with experimental measurements. The E10 simulations correlated well with experimental measurements, with the largest deviation in cylinder pressure being an RMSE of 1.42. In terms of emissions, HC was underpredicted, while CO was overpredicted compared to the experimental data. For E20, the IMEP was slightly higher at some operating points; however, the deviations were negligible. Regarding emissions, HC and CO emissions were higher with E20, whereas NOx and CO2 emissions were lower. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

23 pages, 1124 KiB  
Review
Advances in Graphite Recycling from Spent Lithium-Ion Batteries: Towards Sustainable Resource Utilization
by Maria Joriza Cañete Bondoc, Joel Hao Jorolan, Hyung-Sub Eom, Go-Gi Lee and Richard Diaz Alorro
Minerals 2025, 15(8), 832; https://doi.org/10.3390/min15080832 - 5 Aug 2025
Abstract
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, [...] Read more.
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, particularly in the lithium-ion battery (LIB) industries. With the projected increase in global graphite demand, driven by the shift to clean energy and the use of EVs, as well as the geographically concentrated production and reserves of natural graphite, interest in graphite recycling has increased, with a specific focus on using spent LIBs and other waste carbon material. Although most established and developing LIB recycling technologies are focused on cathode materials, some have started recycling graphite, with promising results. Based on the different secondary sources and recycling paths reported, hydrometallurgy-based treatment is usually employed, especially for the purification of graphite; greener alternatives are being explored, replacing HF both in lab-scale research and in industry. This offers a viable solution to resource dependency and mitigates the environmental impact associated with graphite production. These developments signal a trend toward sustainable and circular pathways for graphite recycling. Full article
(This article belongs to the Special Issue Graphite Minerals and Graphene, 2nd Edition)
Show Figures

Graphical abstract

24 pages, 1464 KiB  
Review
An Overview of the Italian Roadmap for the Implementation of Circular Economy in the Energy Transition of Buildings
by Marilena De Simone and Daniele Campagna
Buildings 2025, 15(15), 2755; https://doi.org/10.3390/buildings15152755 - 5 Aug 2025
Abstract
An important task for the European Union is to transpose agreements and international standards in regulation and directives that are binding on member states. The resultant European action plans and directives identify priority areas in the building and energy sectors where circular economy [...] Read more.
An important task for the European Union is to transpose agreements and international standards in regulation and directives that are binding on member states. The resultant European action plans and directives identify priority areas in the building and energy sectors where circular economy principles can be applied. Italy records a general circular materials rate of 20.8%, surpassing the mean European value. But low recycling rates are still registered in the construction sector. This paper aims to assess the position of Italy with respect to the European regulatory framework on circularity in the energy transition of buildings. Firstly, the government’s initiatives and technical standards are introduced and commented upon. Secondly, the study illustrates the current Italian platforms, networks, and public and private initiatives highlighting opportunities and obstacles that the energy sector has to overcome in the area of circularity. It emerges that Italian policies still use voluntary tools that are not sufficiently in line with an effective circular economy model. Moreover, data collection plays a crucial role in accelerating the implementation of future actions. Italy should consider the foundation of a National Observatory for the Circular Economy to elaborate European directives, harmonize regional policies, and promote the implementation of effective practices. Full article
(This article belongs to the Special Issue Research on Sustainable Energy Performance of Green Buildings)
Show Figures

Figure 1

21 pages, 1353 KiB  
Article
Hydrogen Cost and Carbon Analysis in Hollow Glass Manufacturing
by Dario Atzori, Claudia Bassano, Edoardo Rossi, Simone Tiozzo, Sandra Corasaniti and Angelo Spena
Energies 2025, 18(15), 4105; https://doi.org/10.3390/en18154105 - 2 Aug 2025
Viewed by 198
Abstract
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated [...] Read more.
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated real-world case studies are available in the literature that consider the on-site implementation of an electrolyzer for autonomous hydrogen production capable of meeting the needs of a glass manufacturing plant within current technological constraints. This study examines a representative hollow glass plant and develops various decarbonization scenarios through detailed process simulations in Aspen Plus. The models provide consistent mass and energy balances, enabling the quantification of energy demand and key cost drivers associated with H2 integration. These results form the basis for a scenario-specific techno-economic assessment, including both on-grid and off-grid configurations. Subsequently, the analysis estimates the levelized costs of hydrogen (LCOH) for each scenario and compares them to current and projected benchmarks. The study also highlights ongoing research projects and technological advancements in the transition from natural gas to H2 in the glass sector. Finally, potential barriers to large-scale implementation are discussed, along with policy and infrastructure recommendations to foster industrial adoption. These findings suggest that hybrid configurations represent the most promising path toward industrial H2 adoption in glass manufacturing. Full article
(This article belongs to the Special Issue Techno-Economic Evaluation of Hydrogen Energy)
Show Figures

Figure 1

21 pages, 4415 KiB  
Article
Friction and Regenerative Braking Shares Under Various Laboratory and On-Road Driving Conditions of a Plug-In Hybrid Passenger Car
by Dimitrios Komnos, Alessandro Tansini, Germana Trentadue, Georgios Fontaras, Theodoros Grigoratos and Barouch Giechaskiel
Energies 2025, 18(15), 4104; https://doi.org/10.3390/en18154104 - 2 Aug 2025
Viewed by 273
Abstract
Although particulate matter (PM) pollution from vehicles’ exhaust has decreased significantly over the years, the contribution from non-exhaust sources (brakes, tyres) has remained at the same levels. In the European Union (EU), Euro 7 regulation introduced PM limits for vehicles’ brake systems. Regenerative [...] Read more.
Although particulate matter (PM) pollution from vehicles’ exhaust has decreased significantly over the years, the contribution from non-exhaust sources (brakes, tyres) has remained at the same levels. In the European Union (EU), Euro 7 regulation introduced PM limits for vehicles’ brake systems. Regenerative braking, i.e., recuperation of the deceleration kinetic and potential energy to the vehicle battery, is one of the strategies to reduce the brake emission levels and improve vehicle efficiency. According to the regulation, the shares of friction and regenerative braking can be determined with actual testing of the vehicle on a chassis dynamometer. In this study we tested the regenerative capabilities of a plug-in hybrid vehicle, both in the laboratory and on the road, under different protocols (including both smooth and aggressive braking) and covering a wide range of driving conditions (urban, rural, motorway) over 10,000 km of driving. Good agreement was obtained between laboratory and on-road tests, with the use of the friction brakes being on average 7% and 5.3%, respectively. However, at the same time it was demonstrated that the friction braking share can vary over a wide range (up to around 30%), depending on the driver’s behaviour. Full article
Show Figures

Figure 1

Back to TopTop