Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = TAS2R46 bitter receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3858 KiB  
Article
Bitter Taste Receptor TAS2R43 Co-Regulates Mechanisms of Gastric Acid Secretion and Zinc Homeostasis
by H. Noreen Orth, Philip Pirkwieser, Julia Benthin, Melanie Koehler, Sonja Sterneder, Etkin Parlar, Erika Schaudy, Jory Lietard, Timm Michel, Valerie Boger, Andreas Dunkel, Mark M. Somoza and Veronika Somoza
Int. J. Mol. Sci. 2025, 26(13), 6017; https://doi.org/10.3390/ijms26136017 - 23 Jun 2025
Viewed by 614
Abstract
The essential micronutrient zinc is known to inhibit gastric acid secretion (GAS), where its homeostasis is strictly regulated. We hypothesized that the gastric bitter taste receptors, TAS2Rs, regulate the following: (i) zinc-modulated proton secretory activity (PSA) as a key mechanism of GAS and [...] Read more.
The essential micronutrient zinc is known to inhibit gastric acid secretion (GAS), where its homeostasis is strictly regulated. We hypothesized that the gastric bitter taste receptors, TAS2Rs, regulate the following: (i) zinc-modulated proton secretory activity (PSA) as a key mechanism of GAS and (ii) zinc homeostasis in immortalized parietal cells. To confirm this hypothesis, human gastric tumor cells (HGT-1) were exposed to 100–1000 µM of zinc salts for 30 min in order to quantitate their TAS2R-dependent PSA and intracellular zinc concentration using a fluorescence-based pH sensor and ICP-MS, respectively. Thereby, we identified TAS2R43 as a key player in parietal cell PSA and zinc homeostasis, with both conclusions being verified by a CRISPR-Cas9 knockout approach. Moreover, by regulating the zinc importer protein ZIP14, TAS2R43 proved to perform a protective role against excessive zinc accumulation in immortalized parietal cells. Full article
(This article belongs to the Special Issue Transport of Nutrients and Ions Relevant to Human Pathophysiology)
Show Figures

Figure 1

16 pages, 1003 KiB  
Review
Biological Actions of Bile Acids via Cell Surface Receptors
by Yoshimitsu Kiriyama, Hiroshi Tokumaru, Hisayo Sadamoto and Hiromi Nochi
Int. J. Mol. Sci. 2025, 26(11), 5004; https://doi.org/10.3390/ijms26115004 - 22 May 2025
Viewed by 803
Abstract
Bile acids (BAs) are synthesized in the liver from cholesterol and are subsequently conjugated with glycine and taurine. In the intestine, bile acids undergo various modifications, such as deconjugation, dehydrogenation, oxidation, and epimerization by the gut microbiota. These bile acids are absorbed in [...] Read more.
Bile acids (BAs) are synthesized in the liver from cholesterol and are subsequently conjugated with glycine and taurine. In the intestine, bile acids undergo various modifications, such as deconjugation, dehydrogenation, oxidation, and epimerization by the gut microbiota. These bile acids are absorbed in the intestine and transported to the liver as well as the systemic circulation. BAs can activate many types of receptors, including nuclear receptors and cell surface receptors. By activating these receptors, BAs can exert various effects on the metabolic, immune, and nervous systems. Recently, the detailed structure of TGR5, the major plasma membrane receptor for BAs, was elucidated, revealing a putative second BA binding site along with the orthosteric binding site. Furthermore, BAs act as ligands for bitter taste receptors and the Leukemia inhibitory factor receptor. In addition, the Mas-related, G-protein-coupled receptor X4 interacts with receptor activity-modifying proteins. Thus, a variety of cell surface receptors are associated with BAs, and BAs are thought to have very complex activities. This review focuses on recent advances regarding cell surface receptors for bile acids and the biological actions they mediate. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 5945 KiB  
Article
Bitter Taste Receptors 38 and 46 Regulate Intestinal Peristalsis
by Lara Camillo, Federica Pollastro, Maria Talmon and Luigia Grazia Fresu
Int. J. Mol. Sci. 2025, 26(5), 2092; https://doi.org/10.3390/ijms26052092 - 27 Feb 2025
Viewed by 1001
Abstract
Bitter taste receptors (TAS2Rs) are expressed in extraoral tissues, exerting several functions and generating a whole-body chemosensory and protective system. TAS2Rs expression has been observed in the gastrointestinal tract, although their role is poorly understood. This study aims to investigate the role of [...] Read more.
Bitter taste receptors (TAS2Rs) are expressed in extraoral tissues, exerting several functions and generating a whole-body chemosensory and protective system. TAS2Rs expression has been observed in the gastrointestinal tract, although their role is poorly understood. This study aims to investigate the role of TAS2R38 and 46 in human intestinal smooth muscle cells (HISMCs) after activation with the specific bitter ligands phenylthiocarbamide and absinthin, respectively. We found that TAS2R38 and 46 activation by phenylthiocarbamide (PTC) and absinthin, respectively, induces a rapid membrane depolarization and increase of cytosolic calcium levels due to internal storage in the IP3 pathway, resulting in an accelerated cell contraction. Overall, this study unravels, for the first time, the contractile impact of these TAS2R subtypes on intestinal smooth muscle cells, suggesting their involvement in gut peristalsis and recommending these receptors as possible targets for new therapies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

12 pages, 2001 KiB  
Article
TAS2R Receptor Response Helps Design New Antimicrobial Molecules for the 21st Century
by Sammy Sambu
ChemEngineering 2024, 8(5), 96; https://doi.org/10.3390/chemengineering8050096 - 26 Sep 2024
Viewed by 1310
Abstract
Artificial intelligence (AI) requires the provision of learnable data to successfully deliver requisite prediction power. In this article, it is demonstrable that standard physico-chemical parameters, while useful, are insufficient for the development of powerful antimicrobial prediction algorithms. Initial models that focussed solely on [...] Read more.
Artificial intelligence (AI) requires the provision of learnable data to successfully deliver requisite prediction power. In this article, it is demonstrable that standard physico-chemical parameters, while useful, are insufficient for the development of powerful antimicrobial prediction algorithms. Initial models that focussed solely on the values extractable from the knowledge on electrotopological, structural and constitutional descriptors did not meet the acceptance criteria for classifying antimicrobial activity. In contrast, efforts to conceptually define the diametric opposite of an antimicrobial compound helped to advance the predicted category as a learnable trait. Remarkably, the inclusion of ligand–receptor interactions using the ability of the molecules to stimulate transmembrane TAS2Rs receptor helped to increase the ability to distinguish the antimicrobial molecules from the inactive ones, confirming the hypothesis of a predictor–predicted synergy behind bitterness psychophysics and antimicrobial activity. Therefore, in a single bio–endogenic psychophysical vector representation, this manuscript helps demonstrate the contribution to parametrization and the identification of relevant chemical manifolds for molecular design and (re-)engineering. This novel approach to the development of AI models accelerated molecular design and facilitated the selection of newer, more powerful antimicrobial agents. This is especially valuable in an age where antimicrobial resistance could be ruinous to modern health systems. Full article
Show Figures

Figure 1

12 pages, 474 KiB  
Article
Exploring the Role of the TAS2R16 Protein and Its Single Nucleotide Variants in Pituitary Adenoma Development
by Enrika Pileckaite, Alvita Vilkeviciute, Greta Gedvilaite-Vaicechauskiene, Loresa Kriauciuniene and Rasa Liutkeviciene
Biomedicines 2024, 12(9), 2022; https://doi.org/10.3390/biomedicines12092022 - 4 Sep 2024
Cited by 1 | Viewed by 1057
Abstract
Background: Pituitary adenoma (PA) is a common benign tumor that develops in the pituitary gland, causing hormonal imbalances and potential health issues. The TAS2R16 gene codes for a taste receptor and is involved in bitter taste perception, but there is currently no known [...] Read more.
Background: Pituitary adenoma (PA) is a common benign tumor that develops in the pituitary gland, causing hormonal imbalances and potential health issues. The TAS2R16 gene codes for a taste receptor and is involved in bitter taste perception, but there is currently no known direct link between this gene and pituitary adenoma. Methods: This study included 221 healthy controls and 131 patients with pituitary adenoma (PA) from the Lithuanian population. DNA was isolated from peripheral venous blood using the salt precipitation method. Genotyping was performed via RT-PCR. Statistical analysis was conducted with IBM SPSS Statistics 29.0 software, incorporating the Bonferroni correction for multiple comparisons. Results: This study found that the TAS2R16 rs978739 C allele is less common in the non-invasive PA group compared to the control group (p = 0.045). The TAS2R16 rs860170 CT genotype reduces the likelihood of developing non-invasive PA by 1.9-fold under the codominant (p = 0.024) and overdominant (p = 0.030) models. The odds of developing non-invasive PA are reduced by 2-fold under the dominant (p = 0.021) model for TAS2R16 rs860170 CT + CC genotypes and by 2-fold under the additive (p = 0.018) model for each TAS2R16 rs860170 C allele. The PA group had higher serum levels of TAS2R16 than the control group (p < 0.001). The present study found that patients with the TAS2R16 rs978739 TT or CT genotype had higher serum TAS2R16 levels and protein concentrations than healthy individuals (p = 0.025 and p = 0.019, respectively), and those with the AA or AG genotype of TAS2R16 rs1357949 had higher protein concentrations (p = 0.005 and p = 0.007, respectively). Conclusions: The TAS2R16 rs978739 C allele was less common in the non-invasive PA group compared to the control group, while the TAS2R16 rs860170 CT genotype was linked to a reduced likelihood of developing non-invasive PA. Additionally, the PA group showed higher serum levels of TAS2R16, and increased serum protein concentrations were observed in PA patients with specific TAS2R16 variants. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

14 pages, 1681 KiB  
Article
Prediction of Flavor Potential of Ocimum basilicum L. Side-Stream Phytoconstituents, Using Liquid Chromatography–Tandem Mass Spectrometry Analysis and In Silico Techniques
by Eftichia Kritsi, Thalia Tsiaka, Anna Boroboka, Garyfallia Koletsou, Spyridon Theofilatos, Artemis Maggenaki, Paris Christodoulou, Georgia Ladika, Konstantinos Tsiantas, Georgios Sotiroudis and Vassilia J. Sinanoglou
Separations 2024, 11(9), 261; https://doi.org/10.3390/separations11090261 - 3 Sep 2024
Cited by 1 | Viewed by 1621
Abstract
Although post-distillation side-streams of basil (Ocimum basilicum L.) pose significant economic and environmental challenges, they also bring forth new opportunities in the flavor industry. Thus, the objective of the current study was to assess the phenolic profile of basil side-stream extracts to [...] Read more.
Although post-distillation side-streams of basil (Ocimum basilicum L.) pose significant economic and environmental challenges, they also bring forth new opportunities in the flavor industry. Thus, the objective of the current study was to assess the phenolic profile of basil side-stream extracts to identify key compounds and to evaluate their taste properties, using liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis, flavor prediction tools and molecular docking. In particular, 52 phytoconstituents, mainly phenolic acids, salvianolic acids, flavonoids and fatty acids derivatives, were elucidated in the side-streams of two different basil varieties (Minimum and Genovese) harvested and distilled in early and late autumn, highlighting the effect of pre-harvest factors on basil’s phenolic fingerprint. Furthermore, the results of tests undertaken using taste prediction tools showed that most of the identified compounds were very likely to taste bitter, while six of them (caffeoylferuloyltartaric acid, isoquercetin, lithospermic acid A, sagerinic acid, salvianolic acids C and F) presented a high bitterant capacity (70–90%). Moreover, according to molecular docking studies, these compounds exhibited a stronger binding affinity to the hTAS2R46 bitter receptor compared to its known agonist, strychnine. This outcome and consequently their bitterness were mainly attributed to interactions with Glu265, Thr180 and/or Trp88 through the formation of direct hydrogen bonds. Therefore, the present results provide insights into the taste profiles of basil side-streams, leading to more sustainable and innovative uses of aromatic herbs residues. Full article
Show Figures

Figure 1

9 pages, 250 KiB  
Communication
TAS2R38 Genotype Does Not Affect SARS-CoV-2 Infection in Primary Ciliary Dyskinesia
by Gioia Piatti, Giorgia Girotto, Maria Pina Concas, Leonardo Braga, Umberto Ambrosetti and Mirko Aldè
Int. J. Mol. Sci. 2024, 25(16), 8635; https://doi.org/10.3390/ijms25168635 - 8 Aug 2024
Cited by 1 | Viewed by 1316
Abstract
Several chronic respiratory diseases could be risk factors for acquiring SARS-CoV-2 infection: among them, Primary Ciliary Dyskinesia (PCD) is a rare (about 1:10.000) inherited ciliopathy (MIM 242650) characterized by recurrent upper and lower respiratory tract infections due to a dysfunction of the respiratory [...] Read more.
Several chronic respiratory diseases could be risk factors for acquiring SARS-CoV-2 infection: among them, Primary Ciliary Dyskinesia (PCD) is a rare (about 1:10.000) inherited ciliopathy (MIM 242650) characterized by recurrent upper and lower respiratory tract infections due to a dysfunction of the respiratory cilia. In this study, we aimed to investigate whether PCD subjects are more susceptible to infection by SARS-CoV-2 and whether some polymorphisms of the TAS2R38 bitter taste receptor correlate with an increased prevalence of SARS-CoV-2 infection and severity of symptoms. Patients answered several questions about possible SARS-CoV-2 infection, experienced symptoms, and vaccinations; in the case of infection, they also filled out a SNOT-22 questionnaire and ARTIQ. Forty PCD adult patients (mean age, 36.6 ± 16.7 years; 23 females, 17 males) participated in this study, out of which 30% had tested positive for COVID-19 during the last four years; most of them reported a mildly symptomatic disease. We found no differences in age or sex, but a statistically significant difference (p = 0.03) was observed in body mass index (BMI), which was higher in the COVID-acquired group (23.2 ± 3.3 vs. 20.1 ± 4.1 kg/m2). Genotyping for TAS2R38 polymorphisms showed a prevalence of 28.6% PAV/PAV, 48.6% PAV/AVI, and 22.8% AVI/AVI individuals in our cohort. In contrast to our hypothesis, we did not observe a protective role of the PAV allele towards SARS-CoV-2 infection. Conclusions: Our findings suggest that subjects with PCD may not be at increased risk of severe outcomes from COVID-19 and the TAS2R38 bitter taste receptor genotype does not affect SARS-CoV-2 infection. Full article
19 pages, 7813 KiB  
Article
Bitter Phytochemicals Acutely Lower Blood Glucose Levels by Inhibition of Glucose Absorption in the Gut
by Kimberly Marie Palatini Jackson, Reham Mhawish and Slavko Komarnytsky
Endocrines 2024, 5(3), 304-322; https://doi.org/10.3390/endocrines5030022 - 25 Jul 2024
Cited by 1 | Viewed by 3520
Abstract
For early hominids, frequent encounters with plant foods necessitated the ability to discern bitter poisons and adjust the activity of the gastrointestinal system in anticipation of carbohydrate-rich meals. Plants bitters were also used historically to manage a variety of metabolic and digestive disorders [...] Read more.
For early hominids, frequent encounters with plant foods necessitated the ability to discern bitter poisons and adjust the activity of the gastrointestinal system in anticipation of carbohydrate-rich meals. Plants bitters were also used historically to manage a variety of metabolic and digestive disorders despite an immense structural diversity of bitter phytochemicals without a common molecular target. Our study confirms these observations in a standardized C57BL/6J prediabetic mouse model using 24 model compounds by demonstrating acute lower peak blood glucose values and improved glucose tolerance following intragastric, but not intraperitoneal, treatment. The administration of the synthetic bitter compound denatonium benzoate yielded similar results that were attenuated by co-application of the allosteric inhibitor of the bitter TAS2R receptors. We also show that these effects occur dose-dependently; associate with reduced glucose uptake, increased intracellular [Ca2+] fluxes, and enhanced GLP-1 expression; and are attenuated by the TAS2R inhibitor in the neuroendocrine STC-1 intestinal cells. These findings support the view that inhibition of glucose transport from the intestinal lumen to the blood by TAS2R bitter receptor signaling in the gut may represent a common mechanism in the acute response to oral ingestion of bitter phytochemicals. Full article
(This article belongs to the Special Issue Feature Papers in Endocrines: 2024)
Show Figures

Figure 1

17 pages, 4592 KiB  
Article
Single-Nucleotide Polymorphisms of TAS2R46 Affect the Receptor Downstream Calcium Regulation in Histamine-Challenged Cells
by Giulia Lecchi, Chiara Mocchetti, Davide Tunesi, Arianna Berto, Hari Baskar Balasubramanian, Sima Biswas, Angshuman Bagchi, Federica Pollastro, Luigia Grazia Fresu and Maria Talmon
Cells 2024, 13(14), 1204; https://doi.org/10.3390/cells13141204 - 16 Jul 2024
Viewed by 1848
Abstract
Bitter taste receptors (TAS2Rs) expressed in extraoral tissues represent a whole-body sensory system, whose role and mechanisms could be of interest for the identification of new therapeutic targets. It is known that TAS2R46s in pre-contracted airway smooth muscle cells increase mitochondrial calcium uptake, [...] Read more.
Bitter taste receptors (TAS2Rs) expressed in extraoral tissues represent a whole-body sensory system, whose role and mechanisms could be of interest for the identification of new therapeutic targets. It is known that TAS2R46s in pre-contracted airway smooth muscle cells increase mitochondrial calcium uptake, leading to bronchodilation, and that several SNPs have been identified in its gene sequence. There are very few reports on the structure–function analysis of TAS2Rs. Thus, we delved into the subject by using mutagenesis and in silico studies. We generated a cellular model that expresses native TAS2R46 to evaluate the influence of the four most common SNPs on calcium fluxes following the activation of the receptor by its specific ligand absinthin. Then, docking studies were conducted to correlate the calcium flux results to the structural mutation. The analysed SNPs differently modulate the TAS2R46 signal cascade according to the altered protein domain. In particular, the SNP in the sixth transmembrane domain of the receptors did not modulate calcium homeostasis, while the SNPs in the sequence coding for the fourth transmembrane domain completely abolished the mitochondrial calcium uptake. In conclusion, these results indicate the fourth transmembrane domain of TAS2R46 is critical for the intrinsic receptor activity. Full article
Show Figures

Graphical abstract

2 pages, 134 KiB  
Abstract
Mozambioside Degrades during Coffee Roasting into Newly Identified Pyrolysis Compounds with Lower Activation Thresholds for Bitter Receptors
by Coline Bichlmaier, Antonella Di Pizio, Maik Behrens and Roman Lang
Proceedings 2024, 109(1), 22; https://doi.org/10.3390/ICC2024-18034 - 6 Jul 2024
Cited by 2 | Viewed by 645
Abstract
As a global commodity with profound economic and social impact, coffee’s uniqueness is rooted in its distinctive flavor profile, characterized by roasty odors and a bitter taste. Mozambioside, a diterpene glucoside predominantly found in Arabica coffee, has emerged as a potent activator of [...] Read more.
As a global commodity with profound economic and social impact, coffee’s uniqueness is rooted in its distinctive flavor profile, characterized by roasty odors and a bitter taste. Mozambioside, a diterpene glucoside predominantly found in Arabica coffee, has emerged as a potent activator of human bitter receptors TAS2R43 and TAS2R46, exhibiting a bitterness threshold ten times lower than caffeine. The roasting process degrades mozambioside into new compounds. The roasting products were purified from model pyrolysis using liquid chromatographic techniques and their structures were elucidated and characterized by time-of-flight mass spectrometry (MS) and nuclear magnetic resonance spectroscopy. Mozambioside and its roasting products were quantified by targeted UHPLC-MS/MS in coffee powders and brews. Bitter receptor activation was investigated in HEK 293T-Gα16gust44 cells in terms of activation threshold and dose-response. Receptor activation thresholds of the major roasting products 11-O-β-D-glucosyl-(S)-16-desoxy-17-oxocafestol-2-on, 11-O-β-D-glucosyl-15,16-dehydrocafestol-2-on, 11-O-β-D-glucosyl-(R)-16-desoxy-17-oxocafestol-2-on, and bengalensol were lower than those of mozambioside. Molecular Modelling clarified the protein–molecule interaction. The compounds were formed during coffee roasting, reaching their maximum concentration in the final roasting grade. Quantitative analyses revealed that the degradation products were quantitatively extracted from the powder into the brew. During roasting, mozambioside undergoes degradation, giving rise to new compounds with a lower activation threshold for bitter receptors, putatively contributing to the bitterness of Arabica coffee brews. Advanced analytical techniques provide insights into the intricate chemistry underlying coffee’s unique flavor profile. Full article
(This article belongs to the Proceedings of ICC 2024)
17 pages, 3259 KiB  
Article
Bitter Taste Receptor 46 (hTAS2R46) Protects Monocytes/Macrophages from Oxidative Stress
by Maria Talmon, Lara Camillo, Ilaria Vietti, Federica Pollastro and Luigia Grazia Fresu
Int. J. Mol. Sci. 2024, 25(13), 7325; https://doi.org/10.3390/ijms25137325 - 3 Jul 2024
Cited by 3 | Viewed by 1885
Abstract
Bitter taste receptors (TAS2Rs) are not only responsible for taste perception in the oral cavity, but are spread throughout the body, generating a widespread chemosensory system. In humans, 25 subtypes have been identified and are differentially expressed in tissues and organs, including in [...] Read more.
Bitter taste receptors (TAS2Rs) are not only responsible for taste perception in the oral cavity, but are spread throughout the body, generating a widespread chemosensory system. In humans, 25 subtypes have been identified and are differentially expressed in tissues and organs, including in the immune system. In fact, several TAS2R subtypes have been detected in neutrophils, lymphocytes, B and T cells, NK cells, and monocytes/macrophages, in which they regulate various protective functions of the innate immune system. Given its recognized anti-inflammatory and antioxidant activity, and the generally protective role of bitter taste receptors, in this work, we studied TAS2R46’s potential in the protection of human monocyte/macrophage DNA from stress-induced damage. Through both direct and indirect assays and a single-cell gel electrophoresis assay, we demonstrated that absinthin, a specific TAS2R46 agonist, counteracts the release of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and reduces DNA damage in both cell types. Even though the release of ROS from monocytes/macrophages is fundamental for contrast pathogen agents, supraphysiological ROS production impairs their function, finally leading to cell death. Our results highlight TAS2R46 as a novel player involved in the protection of monocytes and macrophages from oxidative stress damage, while simultaneously supporting their antimicrobial activity. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

10 pages, 223 KiB  
Article
The Influence of Taste Genes on Body Fat and Alcohol Consumption
by Mohammad K. Shushari, Tianlan Wei, Pradtana Tapanee, Diane Tidwell and Terezie Tolar-Peterson
Nutrients 2024, 16(11), 1756; https://doi.org/10.3390/nu16111756 - 4 Jun 2024
Cited by 1 | Viewed by 1698
Abstract
Dietary intake and alcohol consumption might be influenced by genetic variations in taste receptor genes. The objectives of this study were to examine the relationship between polymorphisms in the bitter taste receptor genes TAS2R13 (rs1015443) and TAS2R38 (rs1726866, rs10246939, and rs713598) as well [...] Read more.
Dietary intake and alcohol consumption might be influenced by genetic variations in taste receptor genes. The objectives of this study were to examine the relationship between polymorphisms in the bitter taste receptor genes TAS2R13 (rs1015443) and TAS2R38 (rs1726866, rs10246939, and rs713598) as well as alcohol consumption and body fat percentage in college students. Four hundred and two students with a mean age of 20.2 years participated in this study. An NIH Diet History Questionnaire (DHQ II) was used to collect data on their dietary intake, while an AUDIT survey was used to determine their level of alcohol consumption. Bitter taste receptor gene polymorphisms were assessed by TaqMan allelic discrimination assays. Despite significant associations between TAS2R13 (rs1015443) and certain aspects of alcohol consumption, including the frequency of alcohol intake, no significant associations were found between TAS2R13 (rs1015443) and alcohol consumption after accounting for confounding variables in the regression model. Neither association was found regarding percent of body fat. In contrast, ethnicity and gender significantly influenced percent of body fat (p < 0.001), while no significant association was observed between TAS2R13 (rs1015443) and percent of body fat. Likewise, TAS2R38 (rs1726866, rs10246939, and rs713598) demonstrated no significant association with alcohol consumption and percent of body fat. These results were controlled for confounding factors, such as ethnicity and gender. Body fat percentage and alcohol consumption may be influenced by ethnicity, gender, and age rather than SNPs of TAS2R13 and TAS2R38 genes. Assessing taste genes’ interactions with diet and body composition might be useful in identifying human disease risk. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Graphical abstract

14 pages, 1520 KiB  
Article
Differential Activation of TAS2R4 May Recover Ability to Taste Propylthiouracil for Some TAS2R38 AVI Homozygotes
by Alissa A. Nolden, Maik Behrens, John E. McGeary, Wolfgang Meyerhof and John E. Hayes
Nutrients 2024, 16(9), 1357; https://doi.org/10.3390/nu16091357 - 30 Apr 2024
Cited by 5 | Viewed by 2537
Abstract
Bitterness from phenylthiocarbamide and 6-n-propylthiouracil (PROP) varies with polymorphisms in the TAS2R38 gene. Three SNPs form two common (AVI, PAV) and four rare haplotypes (AAI, AAV, PVI, and PAI). AVI homozygotes exhibit higher detection thresholds and lower suprathreshold bitterness for PROP compared to [...] Read more.
Bitterness from phenylthiocarbamide and 6-n-propylthiouracil (PROP) varies with polymorphisms in the TAS2R38 gene. Three SNPs form two common (AVI, PAV) and four rare haplotypes (AAI, AAV, PVI, and PAI). AVI homozygotes exhibit higher detection thresholds and lower suprathreshold bitterness for PROP compared to PAV homozygotes and heterozygotes, and these differences may influence alcohol and vegetable intake. Within a diplotype, substantial variation in suprathreshold bitterness persists, and some AVI homozygotes report moderate bitterness at high concentrations. A second receptor encoded by a gene containing a functional polymorphism may explain this. Early work has suggested that PROP might activate TAS2R4 in vitro, but later work did not replicate this. Here, we identify three TAS2R4 SNPs that result in three diplotypes—SLN/SLN, FVS/SLN, and FVS/FVS—which make up 25.1%, 44.9%, and 23.9% of our sample. These TAS2R4 haplotypes show minimal linkage disequilibrium with TAS2R38, so we examined the suprathreshold bitterness as a function of both. The participants (n = 243) rated five PROP concentrations in duplicate, interleaved with other stimuli. As expected, the TAS2R38 haplotypes explained ~29% (p < 0.0001) of the variation in the bitterness ratings, with substantial variation within the haplotypes (AVI/AVI, PAV/AVI, and PAV/PAV). Notably, the TAS2R4 diplotypes (independent of the TAS2R38 haplotypes) explained ~7–8% of the variation in the bitterness ratings (p = 0.0001). Given this, we revisited if PROP could activate heterologously expressed TAS2R4 in HEK293T cells, and calcium imaging indicated 3 mM PROP is a weak TAS2R4 agonist. In sum, our data are consistent with the second receptor hypothesis and may explain the recovery of the PROP tasting phenotype in some AVI homozygotes; further, this finding may potentially help explain the conflicting results on the TAS2R38 diplotype and food intake. Full article
Show Figures

Figure 1

2 pages, 145 KiB  
Abstract
The Genetics of Sweet Taste: Perception, Feeding Behaviours, and Health
by Harry Stevens, Francesco Piluso, Paolo Gasparini, Yiannis Mavrommatis, Leta Pilic, Catherine Anna-Marie Graham and Maria Pina Concas
Proceedings 2023, 91(1), 342; https://doi.org/10.3390/proceedings2023091342 - 19 Feb 2024
Cited by 2 | Viewed by 1598
Abstract
Background: Sweet taste is partly modified by genetics. The rs35874116 single-nucleotide polymorphism (SNP) in taste receptor type 1 member 2 (TAS1R2) reduces the availability of a G protein-coupled receptor (GPCR), which binds to ‘sweet’ molecules. This might alter sweet taste perception, diet choices, [...] Read more.
Background: Sweet taste is partly modified by genetics. The rs35874116 single-nucleotide polymorphism (SNP) in taste receptor type 1 member 2 (TAS1R2) reduces the availability of a G protein-coupled receptor (GPCR), which binds to ‘sweet’ molecules. This might alter sweet taste perception, diet choices, and health outcomes. However, these findings, and other genes and pathways involved in sweet taste are yet to be identified. Therefore, a candidate gene study on TAS1R2 and a genome-wide association study (GWAS) exploring these outcomes were performed. Methods: TAS1R2 rs35874116, sweet perception, liking, diet, and health were investigated in two age- and sex-matched European cohorts (UK, n = 50/Italy, n = 235). Linear models were used to explore associations. The GWAS was performed with 2555 Italian participants. Associations with sweet food liking, food adventurousness (FA), reward dependence (RD), and health were explored. Results: The wildtype of TAS1R2 was associated with increased sweet taste and food liking (p = 0.049, β = 0.62, p = 0.038, β = 0.45), increased fibre consumption (p = 0.006, β = 7.95), and decreased HDL cholesterol (p = 0.025, β = −3.56). The GWAS identified rs58931966 in the regulator of G-protein signalling 9 (RGS9) gene. The minor allele was associated with decreased sweet food liking (p = 7.05 × 10 – 9, β = 0.3), a higher BMI (p = 0.007, β = 0.391), serum glucose (p = 0.013, β = 1.211), lower FA (p = 0.049, β = −0.065), and RD (p = 0.011, β = −3.840). Discussion: The TAS1R2 results show that taste receptor variations are associated with preference, diet, and health-related outcomes. TAS1R2 not reaching significance in the GWAS shows that sweet food liking is modified by pathways besides taste reception. RSG9 is expressed in the striatum, which is involved in the mesolimbic reward pathway, which is activated by sweet taste. RGS9 rs58931966 may moderate dopaminergic signalling in response to sweet foods via the negative regulation of G-protein signalling. This might explain why the minor allele was associated with reduced RD. The lower FA might decrease preference for bitter-tasting vegetables, which could explain the higher BMI and serum glucose. The FA and RD results provide evidence that food choice depends on psychological/biological interplay. These results show that sweet taste is modified by multiple pathways and genes, and variations can modify taste, diet, and health outcomes. Full article
(This article belongs to the Proceedings of The 14th European Nutrition Conference FENS 2023)
12 pages, 613 KiB  
Article
The Bittersweet Symphony of COVID-19: Associations between TAS1Rs and TAS2R38 Genetic Variations and COVID-19 Symptoms
by Aurora Santin, Beatrice Spedicati, Alessandro Pecori, Giuseppe Giovanni Nardone, Maria Pina Concas, Gioia Piatti, Anna Menini, Giancarlo Tirelli, Paolo Boscolo-Rizzo and Giorgia Girotto
Life 2024, 14(2), 219; https://doi.org/10.3390/life14020219 - 3 Feb 2024
Cited by 4 | Viewed by 2257
Abstract
The innate immune system is crucial in fighting SARS-CoV-2 infection, which is responsible for coronavirus disease 2019 (COVID-19). Therefore, deepening our understanding of the underlying immune response mechanisms is fundamental for the development of novel therapeutic strategies. The role of extra-oral bitter (TAS2Rs) [...] Read more.
The innate immune system is crucial in fighting SARS-CoV-2 infection, which is responsible for coronavirus disease 2019 (COVID-19). Therefore, deepening our understanding of the underlying immune response mechanisms is fundamental for the development of novel therapeutic strategies. The role of extra-oral bitter (TAS2Rs) and sweet (TAS1Rs) taste receptors in immune response regulation has yet to be fully understood. However, a few studies have investigated the association between taste receptor genes and COVID-19 symptom severity, with controversial results. Therefore, this study aims to deepen the relationship between COVID-19 symptom presence/severity and TAS1R and TAS2R38 (TAS2Rs member) genetic variations in a cohort of 196 COVID-19 patients. Statistical analyses detected significant associations between rs307355 of the TAS1R3 gene and the following COVID-19-related symptoms: chest pain and shortness of breath. Specifically, homozygous C/C patients are exposed to an increased risk of manifesting severe forms of chest pain (OR 8.11, 95% CI 2.26–51.99) and shortness of breath (OR 4.83, 95% CI 1.71–17.32) in comparison with T/C carriers. Finally, no significant associations between the TAS2R38 haplotype and the presence/severity of COVID-19 symptoms were detected. This study, taking advantage of a clinically and genetically characterised cohort of COVID-19 patients, revealed TAS1R3 gene involvement in determining COVID-19 symptom severity independently of TAS2R38 activity, thus providing novel insights into the role of TAS1Rs in regulating the immune response to viral infections. Full article
(This article belongs to the Special Issue Olfactory and Gustatory Dysfunctions)
Show Figures

Figure 1

Back to TopTop