Differential Activation of TAS2R4 May Recover Ability to Taste Propylthiouracil for Some TAS2R38 AVI Homozygotes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Participants
2.3. Ethics Statement
2.4. Food Preference, Anthropometrics, and Tongue Microscopy
2.5. Psychophysical Scaling of Oral and Non-Oral Stimuli
2.6. Participant Genotyping
2.7. In Vitro Functional Calcium Imaging Analyses
2.8. Statistical Analysis
3. Results
3.1. TAS2R4 and TAS2R38 Haplotypes
3.2. TAS2R4 Diplotype Explains Variation in PROP Bitterness
3.3. TAS2R38 Explains Variation in PROP Bitterness
3.4. Combined Effects of TAS2R38 and TAS2R4 Diplotypes on Variation in PROP Bitterness
3.5. TAS2R4 Responds to High Concentrations of PROP In Vitro
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drewnowski, A.; Gomez-Carneros, C. Bitter taste, phytonutrients, and the consumer: A review. Am. J. Clin. Nutr. 2000, 72, 1424–1435. [Google Scholar] [CrossRef]
- Lindemann, B. Taste reception. Physiol. Rev. 1996, 76, 719–766. [Google Scholar] [CrossRef] [PubMed]
- Wooding, S. Signatures of natural selection in a primate bitter taste receptor. J. Mol. Evol. 2011, 73, 257–265. [Google Scholar] [CrossRef]
- Glendinning, J.I. Is the bitter rejection response always adaptive? Physiol. Behav. 1994, 56, 1217–1227. [Google Scholar] [CrossRef]
- Nissim, I.; Dagan-Wiener, A.; Niv, M.Y. The taste of toxicity: A quantitative analysis of bitter and toxic molecules. IUBMB Life 2017, 69, 938–946. [Google Scholar] [CrossRef] [PubMed]
- Meyerhof, W.; Batram, C.; Kuhn, C.; Brockhoff, A.; Chudoba, E.; Bufe, B.; Appendino, G.; Behrens, M. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses 2010, 35, 157–170. [Google Scholar] [CrossRef]
- Lang, T.; Di Pizio, A.; Risso, D.; Drayna, D.; Behrens, M. Activation Profile of TAS2R2, the 26th Human Bitter Taste Receptor. Mol. Nutr. Food Res. 2023, 67, e2200775. [Google Scholar] [CrossRef] [PubMed]
- Glendinning, J.I. What Does the Taste System Tell Us about the Nutritional Composition and Toxicity of Foods? In The Pharmacology of Taste; Palmer, R.K., Servant, G., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 321–351. [Google Scholar]
- Hayes, J.E. Influence of sensation and liking on eating and drinking. In Handbook of Eating and Drinking: Interdisciplinary Perspectives; Springer: Berlin/Heidelberg, Germany, 2020; pp. 131–155. [Google Scholar] [CrossRef]
- Kamerud, J.K.; Delwiche, J.F. Individual Differences in Perceived Bitterness Predict Liking of Sweeteners. Chem. Senses 2007, 32, 803–810. [Google Scholar] [CrossRef]
- Hayes, J.E.; Wallace, M.R.; Knopik, V.S.; Herbstman, D.M.; Bartoshuk, L.M.; Duffy, V.B. Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adults. Chem. Senses 2011, 36, 311–319. [Google Scholar] [CrossRef]
- Kim, U.; Wooding, S.; Ricci, D.; Jorde, L.B.; Drayna, D. Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum. Mutat. 2005, 26, 199–204. [Google Scholar] [CrossRef]
- Roudnitzky, N.; Bufe, B.; Thalmann, S.; Kuhn, C.; Gunn, H.C.; Xing, C.; Crider, B.P.; Behrens, M.; Meyerhof, W.; Wooding, S.P. Genomic, genetic and functional dissection of bitter taste responses to artificial sweeteners. Hum. Mol. Genet. 2011, 20, 3437–3449. [Google Scholar] [CrossRef] [PubMed]
- Dotson, C.D.; Zhang, L.; Xu, H.; Shin, Y.K.; Vigues, S.; Ott, S.H.; Elson, A.E.T.; Choi, H.J.; Shaw, H.; Egan, J.M. Bitter taste receptors influence glucose homeostasis. PLoS ONE 2008, 3, e3974. [Google Scholar] [CrossRef] [PubMed]
- Bufe, B.; Breslin, P.A.; Kuhn, C.; Reed, D.R.; Tharp, C.D.; Slack, J.P.; Kim, U.K.; Drayna, D.; Meyerhof, W. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr. Biol. 2005, 15, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Pronin, A.N.; Xu, H.; Tang, H.; Zhang, L.; Li, Q.; Li, X. Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin. Curr. Biol. 2007, 17, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- Soranzo, N.; Bufe, B.; Sabeti, P.C.; Wilson, J.F.; Weale, M.E.; Marguerie, R.; Meyerhof, W.; Goldstein, D.B. Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Curr. Biol. 2005, 15, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Dotson, C.D.; Wallace, M.R.; Bartoshuk, L.M.; Logan, H.L. Variation in the Gene TAS2R13 is Associated with Differences in Alcohol Consumption in Patients with Head and Neck Cancer. Chem. Senses 2012, 37, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Duffy, V.B.; Davidson, A.C.; Kidd, J.R.; Kidd, K.K.; Speed, W.C.; Pakstis, A.J.; Reed, D.R.; Snyder, D.J.; Bartoshuk, L.M. Bitter Receptor Gene (TAS2R38), 6-n-Propylthiouracil (PROP) Bitterness and Alcohol Intake. Alcohol. Clin. Exp. Res. 2004, 28, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Duffy, V.B.; Hayes, J.E.; Davidson, A.C.; Kidd, J.R.; Kidd, K.K.; Bartoshuk, L.M. Vegetable intake in college-aged adults is explained by oral sensory phenotypes and TAS2R38 genotype. Chemosens. Percept. 2010, 3, 137–148. [Google Scholar] [CrossRef]
- Allen, A.L.; McGeary, J.E.; Knopik, V.S.; Hayes, J.E. Bitterness of the Non-nutritive Sweetener Acesulfame Potassium Varies With Polymorphisms in TAS2R9 and TAS2R31. Chem. Senses 2013, 38, 379–389. [Google Scholar] [CrossRef]
- Kim, U.; Jorgenson, E.; Coon, H.; Leppert, M.; Risch, N.; Drayna, D. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Sci. STKE 2003, 299, 1221. [Google Scholar] [CrossRef]
- Hinrichs, A.L.; Wang, J.C.; Bufe, B.; Kwon, J.M.; Budde, J.; Allen, R.; Bertelsen, S.; Evans, W.; Dick, D.; Rice, J. Functional Variant in a Bitter-Taste Receptor (hTAS2R16) Influences Risk of Alcohol Dependence. Am. J. Hum. Genet. 2006, 78, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Reed, D.R.; Zhu, G.; Breslin, P.A.S.; Duke, F.F.; Henders, A.K.; Campbell, M.J.; Montgomery, G.W.; Medland, S.E.; Martin, N.G.; Wright, M.J. The perception of quinine taste intensity is associated with common genetic variants in a bitter receptor cluster on chromosome 12. Hum. Mol. Genet. 2010, 19, 4278–4285. [Google Scholar] [CrossRef]
- Wang, J.C.; Hinrichs, A.L.; Bertelsen, S.; Stock, H.; Budde, J.P.; Dick, D.M.; Bucholz, K.K.; Rice, J.; Saccone, N.; Edenberg, H.J. Functional Variants in TAS2R38 and TAS2R16 Influence Alcohol Consumption in High-Risk Families of African-American Origin. Alcohol. Clin. Exp. Res. 2007, 31, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Mennella, J.A.; Pepino, M.Y.; Reed, D.R. Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics 2005, 115, e216–e222. [Google Scholar] [CrossRef] [PubMed]
- Pawellek, I.; Grote, V.; Rzehak, P.; Xhonneux, A.; Verduci, E.; Stolarczyk, A.; Closa-Monasterolo, R.; Reischl, E.; Koletzko, B.; European Childhood Obesity Trial Study Group. Association of TAS2R38 variants with sweet food intake in children aged 1–6 years. Appetite 2016, 107, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Bobowski, N.; Reed, D.R.; Mennella, J.A. Variation in the TAS2R31 bitter taste receptor gene relates to liking for the nonnutritive sweetener Acesulfame-K among children and adults. Sci. Rep. 2016, 6, 39135. [Google Scholar] [CrossRef] [PubMed]
- Barajas-Ramirez, J.A.; Quintana-Castro, R.; Oliart-Ros, R.M.; Angulo-Guerrero, O. Bitter taste perception and TAS2R38 genotype: Effects on taste sensitivity, food consumption and anthropometry in Mexican adults. Flavour. Fragr. J. 2016, 31, 310–318. [Google Scholar] [CrossRef]
- Hayes, J.E.; Nolden, A.A. Biologically driven differences in sensation: Implications for the wine industry. In Proceedings of the 16th Australian Wine Industry Technical Conference, Adelaide, Australia, 24–28 July 2016. [Google Scholar]
- Beckett, E.L.; Duesing, K.; Boyd, L.; Yates, Z.; Veysey, M.; Lucock, M. A potential sex dimorphism in the relationship between bitter taste and alcohol consumption. Food Funct. 2017, 8, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Perna, S.; Riva, A.; Nicosanti, G.; Carrai, M.; Barale, R.; Vigo, B.; Allegrini, P.; Rondanelli, M. Association of the bitter taste receptor gene TAS2R38 (polymorphism RS713598) with sensory responsiveness, food preferences, biochemical parameters and body-composition markers. A cross-sectional study in Italy. Int. J. Food Sci. Nutr. 2018, 69, 245–252. [Google Scholar] [CrossRef]
- Meng, T.; Nielsen, D.E. An Investigation of TAS2R38 Haplotypes, Dietary Intake, and Risk Factors for Chronic Disease in the Canadian Longitudinal Study on Aging. J. Nutr. 2023, 153, 3270–3279. [Google Scholar] [CrossRef]
- Smith, J.L.; Estus, S.; Lennie, T.A.; Moser, D.K.; Chung, M.L.; Mudd-Martin, G. TAS2R38 PAV Haplotype Predicts Vegetable Consumption in Community-Dwelling Caucasian Adults at Risk for Cardiovascular Disease. Biol. Res. Nurs. 2020, 22, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Sandell, M.; Hoppu, U.; Mikkila, V.; Mononen, N.; Kahonen, M.; Mannisto, S.; Ronnemaa, T.; Viikari, J.; Lehtimaki, T.; Raitakari, O.T. Genetic variation in the hTAS2R38 taste receptor and food consumption among Finnish adults. Genes Nutr. 2014, 9, 433. [Google Scholar] [CrossRef] [PubMed]
- Sandell, M.A.; Breslin, P.A. Variability in a taste-receptor gene determines whether we taste toxins in food. Curr. Biol. 2006, 16, R792–R794. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Kennedy, O.B.; Methven, L. Exploring the effects of genotypical and phenotypical variations in bitter taste sensitivity on perception, liking and intake of brassica vegetables in the UK. Food Qual. Prefer. 2016; in press. [Google Scholar] [CrossRef]
- Timpson, N.J.; Christensen, M.; Lawlor, D.A.; Gaunt, T.R.; Day, I.N.; Smith, G.D. TAS2R38 (phenylthiocarbamide) haplotypes, coronary heart disease traits, and eating behavior in the British Women’s Heart and Health Study. Am. J. Clin. Nutr. 2005, 81, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Calancie, L.; Keyserling, T.C.; Taillie, L.S.; Robasky, K.; Patterson, C.; Ammerman, A.S.; Schisler, J.C. TAS2R38 Predisposition to Bitter Taste Associated with Differential Changes in Vegetable Intake in Response to a Community-Based Dietary Intervention. G3 Genes Genomes Genet. 2018, 8, 2107–2119. [Google Scholar] [CrossRef] [PubMed]
- Mikolajczyk-Stecyna, J.; Malinowska, A.M.; Chmurzynska, A. TAS2R38 and CA6 genetic polymorphisms, frequency of bitter food intake, and blood biomarkers among elderly woman. Appetite 2017, 116, 57–64. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.A.; Feeney, E.L.; Scannell, A.G.; Markey, A.; Gibney, E.R. Bitter taste perception and dietary intake patterns in Irish children. J. Nutr. Nutr. 2013, 6, 43–58. [Google Scholar] [CrossRef]
- Hejazi, J.; Amiri, R.; Nozarian, S.; Tavasolian, R.; Rahimlou, M. Genetic determinants of food preferences: A systematic review of observational studies. BMC Nutr. 2024, 10, 24. [Google Scholar] [CrossRef]
- Diószegi, J.; Llanaj, E.; Ádány, R. Genetic Background of Taste Perception, Taste Preferences, and Its Nutritional Implications: A Systematic Review. Front. Genet. 2019, 10, 1272. [Google Scholar] [CrossRef]
- Fox, A. Six in ten ‘tasteblind’to bitter chemical. Sci. News Lett. 1931, 9, 249. [Google Scholar]
- Fox, A.L. The relationship between chemical constitution and taste. Proc. Natl. Acad. Sci. USA 1932, 18, 115. [Google Scholar] [CrossRef]
- Fischer, R.; Griffin, F.; England, S.; Garn, S.M. Taste thresholds and food dislikes. Nature 1961, 191, 1328. [Google Scholar] [CrossRef]
- Fischer, R.; Griffin, F.; Kaplan, A.R. Taste Thresholds, Cigarette Smoking, and Food Dislikes. Med. Exp. Int. J. Exp. Med. 1963, 210, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Glanville, E.V.; Kaplan, A.R. Food Preference and Sensitivity of Taste for Bitter Compounds. Nature 1965, 205, 851–853. [Google Scholar] [CrossRef]
- Wooding, S. Phenylthiocarbamide: A 75-year adventure in genetics and natural selection. Genetics 2006, 172, 2015–2023. [Google Scholar] [CrossRef] [PubMed]
- Blakeslee, A.F. Genetics of sensory thresholds: Taste for phenyl thio carbamide. Proc. Natl. Acad. Sci. USA 1932, 18, 120–130. [Google Scholar] [CrossRef]
- Newcomb, R.; Xia, M.; Reed, D. Heritable differences in chemosensory ability among humans. Flavour 2012, 1, 9. [Google Scholar] [CrossRef]
- Guo, S.W.; Reed, D.R. The genetics of phenylthiocarbamide perception. Ann. Hum. Biol. 2001, 28, 111–142. [Google Scholar]
- Hayes, J.E.; Bartoshuk, L.M.; Kidd, J.R.; Duffy, V.B. Supertasting and PROP Bitterness Depends on More Than the TAS2R38 Gene. Chem. Senses 2008, 33, 255–265. [Google Scholar] [CrossRef]
- Behrens, M.; Gunn, H.C.; Ramos, P.C.M.; Meyerhof, W.; Wooding, S.P. Genetic, Functional, and Phenotypic Diversity in TAS2R38-Mediated Bitter Taste Perception. Chem. Senses 2013, 38, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Wooding, S.; Gunn, H.; Ramos, P.; Thalmann, S.; Xing, C.; Meyerhof, W. Genetics and bitter taste responses to goitrin, a plant toxin found in vegetables. Chem. Senses 2010, 35, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.; Mori, K.; Iijima, S.; Sakon, M.; Matsuura, N.; Kobayashi, T.; Takanashi, M.; Yoshimura, T.; Mori, N.; Katayama, T. Association between Genetic Variation in the TAS2R38 Bitter Taste Receptor and Propylthiouracil Bitter Taste Thresholds among Adults Living in Japan Using the Modified 2AFC Procedure with the Quest Method. Nutrients 2023, 15, 2415. [Google Scholar] [CrossRef] [PubMed]
- Duffy, V.B.; Peterson, J.; Bartoshuk, L.M. Associations between taste genetics, oral sensations and alcohol intake. Physiol. Behav. 2004, 82, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Nolden, A.A.; Hayes, J.E.; Feeney, E.L. Variation in TAS2R receptor genes explains differential bitterness of two common antibiotics. Front. Genet. 2022, 13, 960154. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.; Bolhuis, D.P.; Cicerale, S.; Hayes, J.E.; Keast, R. The Relationships Between Common Measurements of Taste Function. Chemosens. Percept. 2015, 8, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.E.; Feeney, E.L.; Nolden, A.A.; McGeary, J.E. Quinine Bitterness and Grapefruit Liking Associate with Allelic Variants in TAS2R31. Chem. Senses 2015, 40, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, J.; Mueller, K.L.; Hoon, M.A.; Adler, E.; Feng, L.; Guo, W.; Zuker, C.S.; Ryba, N.J.P. T2Rs function as bitter taste receptors. Cell 2000, 100, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Meyerhof, W. Elucidation of mammalian bitter taste. In Reviews of Physiology, Biochemistry and Pharmacology; Springer: Berlin/Heidelberg, Germany, 2005; pp. 37–72. [Google Scholar]
- Soares, S.; Kohl, S.; Thalmann, S.; Mateus, N.; Meyerhof, W.; De Freitas, V. Different Phenolic Compounds Activate Distinct Human Bitter Taste Receptors. J. Agric. Food Chem. 2013, 61, 1525–1533. [Google Scholar] [CrossRef]
- Maehashi, K.; Matano, M.; Wang, H.; Vo, L.A.; Yamamoto, Y.; Huang, L. Bitter peptides activate hTAS2Rs, the human bitter receptors. Biochem. Biophys. Res. Commun. 2008, 365, 851–855. [Google Scholar] [CrossRef]
- Kohl, S.; Behrens, M.; Dunkel, A.; Hofmann, T.; Meyerhof, W. Amino Acids and Peptides Activate at Least Five Members of the Human Bitter Taste Receptor Family. J. Agric. Food Chem. 2013, 61, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Risso, D.; Morini, G.; Pagani, L.; Quagliariello, A.; Giuliani, C.; De Fanti, S.; Sazzini, M.; Luiselli, D.; Tofanelli, S. Genetic signature of differential sensitivity to stevioside in the Italian population. Genes Nutr. 2014, 9, 401. [Google Scholar] [CrossRef] [PubMed]
- Feeney, E.L.; Hayes, J.E. Regional differences in suprathreshold intensity for bitter and umami stimuli. Chemosens. Percept. 2014, 7, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.E.; Allen, A.L.; Bennett, S.M. Direct comparison of the generalized Visual Analog Scale (gVAS) and general Labeled Magnitude Scale (gLMS). Food Qual. Prefer. 2013, 28, 36–44. [Google Scholar] [CrossRef]
- Snyder, D.; Fast, K. Valid comparisons of suprathreshold sensations. J. Conscious. Stud. 2004, 11, 96–112. [Google Scholar]
- Hayes, J.E.; Duffy, V.B. Revisiting sugar-fat mixtures: Sweetness and creaminess vary with phenotypic markers of oral sensation. Chem. Senses 2007, 32, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Floriano, W.B.; Hall, S.; Vaidehi, N.; Kim, U.; Drayna, D.; Goddard, W.A., 3rd. Modeling the human PTC bitter-taste receptor interactions with bitter tastants. J. Mol. Model. 2006, 12, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Robino, A.; Concas, M.P.; Spinelli, S.; Pierguidi, L.; Tepper, B.J.; Gasparini, P.; Prescott, J.; Monteleone, E.; Toschi, T.G.; Torri, L.; et al. Combined influence of TAS2R38 genotype and PROP phenotype on the intensity of basic tastes, astringency and pungency in the Italian taste project. Food Qual. Prefer. 2022, 95, 104361. [Google Scholar] [CrossRef]
- Reed, D.; Mascioli, K.; Obenrader, S.; Bartoshuk, L.; Duffy, V. Human PROP Insensitivity is not accounted for by single nucleotide polymorphisms in the putative bitter receptors TAS2R3, TAS2R4, and TAS2R5. Chem. Senses 2002, 28, 75. [Google Scholar] [CrossRef]
- Lipchock, S.V.; Mennella, J.A.; Spielman, A.I.; Reed, D.R. Human bitter perception correlates with bitter receptor messenger RNA expression in taste cells. Am. J. Clin. Nutr. 2013, 98, 1136–1143. [Google Scholar] [CrossRef]
- Miller, I.J.; Reedy, F.E. Variations in Human Taste Bud Density and Taste Intensity Perception. Physiol. Behav. 1990, 47, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Bartoshuk, L.M.; Duffy, V.B.; Miller, I.J. PTC/PROP tasting: Anatomy, psychophysics, and sex effects. Physiol. Behav. 1994, 56, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
Diplotype | n (%) | Asian | African American | White/Caucasian | Male/Female |
---|---|---|---|---|---|
PAV/PAV | 48 (19.8%) | 14 | 3 | 24 | 24/24 |
PAV/AVI | 119 (49.0%) | 9 | 2 | 90 | 46/73 |
AVI/AVI | 51 (21.0%) | 9 | - | 37 | 17/34 |
Rare | 25 (10.3%) | 1 | 1 | 20 | 10/15 |
Total | 243 | 33 | 6 | 171 | 97/148 |
rs2233998 | rs2234001 | rs2234002 | Frequency (%) |
---|---|---|---|
S/F | L/V | N/S | 109 (44.9%) |
S/S | L/L | N/N | 61 (25.1%) |
F/S | V/V | S/S | 58 (23.9%) |
Score | n | Contributing Groups (n) |
---|---|---|
0 | 26 | AVI/AVI + FVS/FVS |
1 | 39 | AVI/AVI + FVS/SLN (16) PAV/AVI + FVS/FVS (23) |
2 | 79 | AVI/AVI + SLN/SLN (4) PAV/AVI + FVS/SLN (71) PAV/PAV + FVS/FVS (4) |
3 | 36 | PAV/AVI + SLN/SLN (22) PAV/PAV + FVS/SLN (14) |
4 | 27 | PAV/PAV + SLN/SLN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nolden, A.A.; Behrens, M.; McGeary, J.E.; Meyerhof, W.; Hayes, J.E. Differential Activation of TAS2R4 May Recover Ability to Taste Propylthiouracil for Some TAS2R38 AVI Homozygotes. Nutrients 2024, 16, 1357. https://doi.org/10.3390/nu16091357
Nolden AA, Behrens M, McGeary JE, Meyerhof W, Hayes JE. Differential Activation of TAS2R4 May Recover Ability to Taste Propylthiouracil for Some TAS2R38 AVI Homozygotes. Nutrients. 2024; 16(9):1357. https://doi.org/10.3390/nu16091357
Chicago/Turabian StyleNolden, Alissa A., Maik Behrens, John E. McGeary, Wolfgang Meyerhof, and John E. Hayes. 2024. "Differential Activation of TAS2R4 May Recover Ability to Taste Propylthiouracil for Some TAS2R38 AVI Homozygotes" Nutrients 16, no. 9: 1357. https://doi.org/10.3390/nu16091357
APA StyleNolden, A. A., Behrens, M., McGeary, J. E., Meyerhof, W., & Hayes, J. E. (2024). Differential Activation of TAS2R4 May Recover Ability to Taste Propylthiouracil for Some TAS2R38 AVI Homozygotes. Nutrients, 16(9), 1357. https://doi.org/10.3390/nu16091357