Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = TARDBP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3293 KB  
Article
CRISPR/Cas9-Mediated TARDBP Knockout Reduces Triacylglycerol Content and Key Milk Fat Metabolism Gene Expression in MAC-T Cells
by Yaran Zhang, Qinglan Zhang, Yaping Gao, Yao Xiao, Jinpeng Wang, Chunhong Yang, Zhihua Ju, Xiaochao Wei, Xiuge Wang, Qiang Jiang and Jinming Huang
Animals 2025, 15(17), 2607; https://doi.org/10.3390/ani15172607 - 5 Sep 2025
Cited by 1 | Viewed by 1041
Abstract
TARDBP mediates milk fat secretion in mice by binding to UG-rich sequences in the 3′ untranslated region (UTR) of BTN1A1 and XDH mRNA and enhancing their mRNA stability. However, its role in bovine milk lipid metabolism remains unclear. To investigate this, we generated [...] Read more.
TARDBP mediates milk fat secretion in mice by binding to UG-rich sequences in the 3′ untranslated region (UTR) of BTN1A1 and XDH mRNA and enhancing their mRNA stability. However, its role in bovine milk lipid metabolism remains unclear. To investigate this, we generated TARDBP knockout (KO) MAC-T cells using CRISPR/Cas9 technology, quantified triacylglycerol (TAG) levels in both cells and culture supernatant, and examined the impact of TARDBP on mRNA levels in MAC-T cells through transcriptome sequencing. We found that deletion of TARDBP reduced TAG content in both MAC-T cells and the supernatant, as well as decreased mRNA levels of CD36, FABP4, DGAT1, PPARG, and PPARGC1A. However, the expression of BTN1A1 and XDH was unaffected in bovine MAC-T cells. Sequence analysis further revealed TG-rich sequences within bovine PPARG and PPARGC1A but not in FABP4, DGAT1, CD36, or BTN1A1 and XDH. These findings suggest that TARDBP may regulate bovine lipid metabolism through a mechanism distinct from that described in mice. This study provides new insights into the molecular role of TARDBP in bovine milk fat metabolism and establishes a foundation for understanding its contribution to dairy cattle breeding and milk quality improvement. Full article
Show Figures

Figure 1

19 pages, 6401 KB  
Article
Identification of Transcriptomic Differences in Induced Pluripotent Stem Cells and Neural Progenitors from Amyotrophic Lateral Sclerosis Patients Carrying Different Mutations: A Pilot Study
by Chiara Sgromo, Martina Tosi, Cristina Olgasi, Fabiola De Marchi, Francesco Favero, Giorgia Venturin, Beatrice Piola, Alessia Cucci, Lucia Corrado, Letizia Mazzini, Sandra D’Alfonso and Antonia Follenzi
Cells 2025, 14(13), 958; https://doi.org/10.3390/cells14130958 - 23 Jun 2025
Viewed by 1343
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting motor neurons with a phenotypic and genetic heterogeneity and elusive molecular mechanisms. With the present pilot study, we investigated different genetic mutations (C9orf72, TARDBP, and KIF5A) associated with ALS [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting motor neurons with a phenotypic and genetic heterogeneity and elusive molecular mechanisms. With the present pilot study, we investigated different genetic mutations (C9orf72, TARDBP, and KIF5A) associated with ALS by generating induced pluripotent stem cells (iPSCs) from peripheral blood of ALS patients and healthy donors. iPSCs showed the typical morphology, expressed stem cell markers both at RNA (OCT4, SOX2, KLF4, and c-Myc) and protein (Oct4, Sox2, SSEA3, and Tra1-60) levels. Moreover, embryoid bodies expressing the three germ-layer markers and neurospheres expressing neural progenitor markers were generated. Importantly, the transcriptomic profiles of iPSCs and neurospheres were analyzed to highlight the differences between ALS patients and healthy controls. Interestingly, the differentially expressed genes (DEGs) shared across all ALS iPSCs are linked to extracellular matrix, highlighting its importance in ALS progression. In contrast, ALS neurospheres displayed widespread deficits in neuronal pathways, although these DEGs were varied among patients, reflecting the disease’s heterogeneity. Overall, we generated iPSC lines from ALS patients with diverse genetic backgrounds offering a tool for unravelling the intricate molecular landscape of ALS, paving the way for identifying key pathways implicated in pathogenesis and the disease’s phenotypic variability. Full article
(This article belongs to the Collection Molecular Insights into Neurodegenerative Diseases)
Show Figures

Figure 1

29 pages, 2689 KB  
Review
Cellular and Molecular Interactions in CNS Injury: The Role of Immune Cells and Inflammatory Responses in Damage and Repair
by Jai Chand Patel, Meenakshi Shukla and Manish Shukla
Cells 2025, 14(12), 918; https://doi.org/10.3390/cells14120918 - 18 Jun 2025
Cited by 11 | Viewed by 3308
Abstract
The central nervous system (CNS) is highly susceptible to damage due to its limited ability to regenerate. Injuries to the CNS, whether from trauma, ischemia, or neurodegenerative diseases, disrupt both cellular and vascular structures, leading to immediate (primary) and subsequent (secondary) damage. Primary [...] Read more.
The central nervous system (CNS) is highly susceptible to damage due to its limited ability to regenerate. Injuries to the CNS, whether from trauma, ischemia, or neurodegenerative diseases, disrupt both cellular and vascular structures, leading to immediate (primary) and subsequent (secondary) damage. Primary damage involves the physical disruption of cells and blood vessels, weakening the blood–brain barrier (BBB) and triggering excitotoxicity and calcium overload. Secondary damage develops over hours to days and is marked by ionic imbalance, mitochondrial dysfunction, oxidative stress, and chronic inflammation, which further aggravates tissue damage. Inflammation plays a dual role: acute inflammation helps in repair, while chronic inflammation accelerates neurodegeneration. Microglia and astrocytes play key roles in this inflammatory response, with M1-like microglia promoting pro-inflammatory responses and M2-like microglia supporting anti-inflammatory and repair processes. Neurodegenerative diseases are characterized by the accumulation of misfolded proteins such as Tau, amyloid-beta, TDP-43, and α-synuclein, which impair cellular function and lead to neuronal loss. Neurodegenerative diseases are characterized by the accumulation of misfolded proteins and influenced by genetic risk factors (e.g., APOE4, TARDBP). Despite the CNS’s limited regenerative abilities, processes like synaptogenesis, neurogenesis, axonal regeneration, and remyelination offer potential for recovery. Therapeutic approaches aim to target inflammatory pathways, enhance repair mechanisms, and develop neuroprotective treatments to counter excitotoxicity, oxidative stress, and apoptosis. Advances in stem cell therapy, gene therapy, and personalized medicine hold promise for improving outcomes. Future research should focus on combining strategies, utilizing advanced technologies, and conducting translational studies to bridge the gap between preclinical research and clinical application. By better understanding and leveraging the complex processes of CNS injury and repair, researchers hope to develop effective therapies to restore function and enhance the quality of life for individuals with CNS disorders. Full article
(This article belongs to the Collection Advances in Neurodegenerative Disease)
Show Figures

Figure 1

30 pages, 1043 KB  
Review
Perspectives in Amyotrophic Lateral Sclerosis: Biomarkers, Omics, and Gene Therapy Informing Disease and Treatment
by Nina Bono, Flaminia Fruzzetti, Giorgia Farinazzo, Gabriele Candiani and Stefania Marcuzzo
Int. J. Mol. Sci. 2025, 26(12), 5671; https://doi.org/10.3390/ijms26125671 - 13 Jun 2025
Cited by 5 | Viewed by 6396
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of upper and lower motor neurons, leading to muscle weakness, paralysis, and ultimately respiratory failure. Despite advances in understanding its genetic basis, particularly mutations in Chromosome 9 Open Reading [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of upper and lower motor neurons, leading to muscle weakness, paralysis, and ultimately respiratory failure. Despite advances in understanding its genetic basis, particularly mutations in Chromosome 9 Open Reading Frame 72 (C9orf72), superoxide dismutase 1 (SOD1), TAR DNA-binding protein (TARDBP), and Fused in Sarcoma (FUS) gene, current diagnostic methods result in delayed intervention, and available treatments offer only modest benefits. This review examines innovative approaches transforming ALS research and clinical management. We explore emerging biomarkers, including the fluid-based markers such as neurofilament light chain, exosomes, and microRNAs in biological fluids, alongside the non-fluid-based biomarkers, including neuroimaging and electrophysiological markers, for early diagnosis and patient stratification. The integration of multi-omics data reveals complex molecular mechanisms underlying ALS heterogeneity, potentially identifying novel therapeutic targets. We highlight current gene therapy strategies, including antisense oligonucleotides (ASOs), RNA interference (RNAi), and CRISPR/Cas9 gene editing systems, alongside advanced delivery methods for crossing the blood–brain barrier. By bridging molecular neuroscience with bioengineering, these technologies promise to revolutionize ALS diagnosis and treatment, advancing toward truly disease-modifying interventions for this previously intractable condition. Full article
(This article belongs to the Special Issue Amyotrophic Lateral Sclerosis (ALS): Pathogenesis and Treatments)
Show Figures

Figure 1

30 pages, 764 KB  
Review
Genetic Basis of Motor Neuron Diseases: Insights, Clinical Management, and Future Directions
by Apostolos Antonakoudis, Stella Aikaterini Kyriakoudi, Despoina Chatzi, Iasonas Dermitzakis, Sofia Gargani, Soultana Meditskou, Maria Eleni Manthou and Paschalis Theotokis
Int. J. Mol. Sci. 2025, 26(10), 4904; https://doi.org/10.3390/ijms26104904 - 20 May 2025
Cited by 1 | Viewed by 3512
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of neurodegenerative disorders characterized by the progressive loss of motor neurons, resulting in debilitating physical decline. Advances in genetics have revolutionized the understanding of MNDs, elucidating critical genes such as SOD1, TARDBP, FUS [...] Read more.
Motor neuron diseases (MNDs) are a heterogeneous group of neurodegenerative disorders characterized by the progressive loss of motor neurons, resulting in debilitating physical decline. Advances in genetics have revolutionized the understanding of MNDs, elucidating critical genes such as SOD1, TARDBP, FUS, and C9orf72, which are implicated in their pathogenesis. Despite these breakthroughs, significant gaps persist in understanding the interplay between genetic and environmental factors, the role of rare variants, and epigenetic contributions. This review synthesizes current knowledge on the genetic landscape of MNDs, highlights challenges in linking genotype to phenotype, and discusses the promise of precision medicine approaches. Emphasis is placed on emerging strategies, such as gene therapy and targeted molecular interventions, offering hope for personalized treatments. Addressing these challenges is imperative to harness the full potential of genomics for improving outcomes in MNDs. Full article
(This article belongs to the Special Issue Neurogenetic Disorders: Neurogenetics, Pathogenesis, and Gene Therapy)
Show Figures

Figure 1

21 pages, 1670 KB  
Review
Targets and Gene Therapy of ALS (Part 1)
by Olga Shiryaeva, Christina Tolochko, Tatiana Alekseeva and Vyacheslav Dyachuk
Int. J. Mol. Sci. 2025, 26(9), 4063; https://doi.org/10.3390/ijms26094063 - 25 Apr 2025
Cited by 2 | Viewed by 4888
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motor neurons, which causes muscle atrophy. Genetic forms of ALS are recorded only in 10% of cases. However, over the past decade, studies in genetics have substantially contributed to [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motor neurons, which causes muscle atrophy. Genetic forms of ALS are recorded only in 10% of cases. However, over the past decade, studies in genetics have substantially contributed to our understanding of the molecular mechanisms underlying ALS. The identification of key mutations such as SOD1, C9orf72, FUS, and TARDBP has led to the development of targeted therapy that is gradually being introduced into clinical trials, opening up a broad range of opportunities for correcting these mutations. In this review, we aimed to present an extensive overview of the currently known mechanisms of motor neuron degeneration associated with mutations in these genes and also the gene therapy methods for inhibiting the expression of their mutant proteins. Among these, antisense oligonucleotides, RNA interference (siRNA and miRNA), and gene-editing (CRISPR/Cas9) methods are of particular interest. Each has shown its efficacy in animal models when targeting mutant genes, whereas some of them have proven to be efficient in human clinical trials. Full article
Show Figures

Figure 1

36 pages, 3949 KB  
Review
Pathophysiology, Clinical Heterogeneity, and Therapeutic Advances in Amyotrophic Lateral Sclerosis: A Comprehensive Review of Molecular Mechanisms, Diagnostic Challenges, and Multidisciplinary Management Strategies
by María González-Sánchez, María Jesús Ramírez-Expósito and José Manuel Martínez-Martos
Life 2025, 15(4), 647; https://doi.org/10.3390/life15040647 - 14 Apr 2025
Cited by 13 | Viewed by 9714
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons, leading to muscle atrophy, paralysis, and respiratory failure. This comprehensive review synthesizes the current knowledge on ALS pathophysiology, clinical heterogeneity, diagnostic frameworks, and [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons, leading to muscle atrophy, paralysis, and respiratory failure. This comprehensive review synthesizes the current knowledge on ALS pathophysiology, clinical heterogeneity, diagnostic frameworks, and evolving therapeutic strategies. Mechanistically, ALS arises from complex interactions between genetic mutations (e.g., in C9orf72, SOD1, TARDBP (TDP-43), and FUS) and dysregulated cellular pathways, including impaired RNA metabolism, protein misfolding, nucleocytoplasmic transport defects, and prion-like propagation of toxic aggregates. Phenotypic heterogeneity, manifesting as bulbar-, spinal-, or respiratory-onset variants, complicates its early diagnosis, which thus necessitates the rigorous application of the revised El Escorial criteria and emerging biomarkers such as neurofilament light chain. Clinically, ALS intersects with frontotemporal dementia (FTD) in up to 50% of the cases, driven by shared TDP-43 pathology and C9orf72 hexanucleotide expansions. Epidemiological studies have revealed a lifetime risk of 1:350, with male predominance (1.5:1) and peak onset between 50 and 70 years. Disease progression varies widely, with a median survival of 2–4 years post-diagnosis, underscoring the urgency for early intervention. Approved therapies, including riluzole (glutamate modulation), edaravone (antioxidant), and tofersen (antisense oligonucleotide), offer modest survival benefits, while dextromethorphan/quinidine alleviates the pseudobulbar affect. Non-pharmacological treatment advances, such as non-invasive ventilation (NIV), prolong survival by 13 months and improve quality of life, particularly in bulb-involved patients. Multidisciplinary care—integrating physical therapy, respiratory support, nutritional management, and cognitive assessments—is critical to addressing motor and non-motor symptoms (e.g., dysphagia, spasticity, sleep disturbances). Emerging therapies show promise in preclinical models. However, challenges persist in translating genetic insights into universally effective treatments. Ethical considerations, including euthanasia and end-of-life decision-making, further highlight the need for patient-centered communication and palliative strategies. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

25 pages, 10658 KB  
Article
Dysfunctional Mitochondria Characterize Amyotrophic Lateral Sclerosis Patients’ Cells Carrying the p.G376D TARDBP Pathogenetic Substitution
by Giuseppe Petito, Victoria Stefania Del Fiore, Arianna Cuomo, Federica Cioffi, Gilda Cobellis, Antonia Lanni, Flora Guerra, Cecilia Bucci, Rosalba Senese and Roberta Romano
Antioxidants 2025, 14(4), 401; https://doi.org/10.3390/antiox14040401 - 28 Mar 2025
Cited by 1 | Viewed by 2583
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the degeneration of upper and lower motor neurons in the brain, brainstem and spinal cord. About 10% of familial ALS cases are linked to pathogenetic substitution in TARDBP, the gene encoding the [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the degeneration of upper and lower motor neurons in the brain, brainstem and spinal cord. About 10% of familial ALS cases are linked to pathogenetic substitution in TARDBP, the gene encoding the TDP-43 protein. A novel rare causative variant in TARDBP (p.G376D) was recently reported in ALS patients. It leads to TDP-43 cytoplasmic mislocalization, increased oxidative stress and reduced cell viability. However, functional studies on the effects of this molecular defect have not yet been carried out. Mitochondria are highly dynamic organelles, and their deregulation has emerged as a key factor in many diseases, among which is ALS. Therefore, this study aimed at determining the impact of this causative variant on mitochondria. In cellular models expressing TDP-43G376D and in fibroblasts derived from patients carrying this molecular defect, we observed alterations of mitochondrial functionality. We demonstrated increased localization of the mutated protein to mitochondria and a reduced abundance of subunits of complex I and complex II of the mitochondrial respiratory chain, associated with a decrease in mitochondrial membrane potential, in cellular respiration and in cytochrome C oxidase (COX) activity. Moreover, ALS cells showed increased mitochondrial fragmentation and reduced abundance of antioxidant enzymes causing increased oxidative stress. These results expand our knowledge about the molecular mechanisms underlying ALS pathogenesis associated with TDP-43 p.G376D and could help to identify new therapeutic strategies to counteract this disease. Full article
(This article belongs to the Special Issue Mitochondrial Oxidative Stress in Aging and Disease—2nd Edition)
Show Figures

Figure 1

21 pages, 10316 KB  
Article
Lysosomal Dysfunction in Amyotrophic Lateral Sclerosis: A Familial Case Linked to the p.G376D TARDBP Mutation
by Roberta Romano, Victoria Stefania Del Fiore, Giorgia Ruotolo, Martina Mazzoni, Jessica Rosati, Francesca Luisa Conforti and Cecilia Bucci
Int. J. Mol. Sci. 2025, 26(7), 2867; https://doi.org/10.3390/ijms26072867 - 21 Mar 2025
Cited by 2 | Viewed by 1674
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Consequent to the loss of these cells, neuromuscular functions decline, causing progressive weakness, muscle wasting, and paralysis, leading to death in 2 to 5 years. More than 90% of ALS cases [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Consequent to the loss of these cells, neuromuscular functions decline, causing progressive weakness, muscle wasting, and paralysis, leading to death in 2 to 5 years. More than 90% of ALS cases are sporadic, while the remaining 10% of cases are familial, due to mutations in 40 different genes. One of the most common genes to be mutated in ALS is TARDBP (transactive response DNA binding protein 43), which encodes TDP-43 (TAR DNA-binding protein 43). A mutation in exon 6 of TARDBP causes the aminoacidic substitution G376D in the C-terminal region of TDP-43, leading to its cytoplasmic mislocalization and aggregation. In fibroblasts derived from patients carrying this mutation, we found a strong increase in lysosome number, with overexpression and higher nuclear translocation of the transcription factor TFEB. In contrast, lysosomal functionality was deeply compromised. Interestingly, lysosomal activity was unaffected at an early stage of the disease, worsening in more advanced stages. Moreover, we observed the same pathological phenotype in iPSC (induced pluripotent stem cells)-derived patient motor neurons carrying the G376D mutation. Therefore, this mutation compromises the functionality of lysosomes, possibly contributing to neurodegeneration. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1960 KB  
Article
N-Terminal Fragments of TDP-43—In Vitro Analysis and Implication in the Pathophysiology of Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration
by Anna A. Chami, Léa Bedja-Iacona, Elodie Richard, Debora Lanznaster, Sylviane Marouillat, Charlotte Veyrat-Durebex, Christian R. Andres, Philippe Corcia, Hélène Blasco and Patrick Vourc’h
Genes 2024, 15(9), 1157; https://doi.org/10.3390/genes15091157 - 1 Sep 2024
Cited by 2 | Viewed by 2960
Abstract
Abnormal cytoplasmic aggregates containing the TDP-43 protein and its fragments are present in the central nervous system of the majority of patients with amyotrophic lateral sclerosis (ALS) and in patients with frontotemporal lobar degeneration (FTLD). Many studies have focused on the C-terminal cleavage [...] Read more.
Abnormal cytoplasmic aggregates containing the TDP-43 protein and its fragments are present in the central nervous system of the majority of patients with amyotrophic lateral sclerosis (ALS) and in patients with frontotemporal lobar degeneration (FTLD). Many studies have focused on the C-terminal cleavage products of TDP-43 (CTFs), but few have focused on the N-terminal products (NTFs), yet several works and their protein domain composition support the involvement of NTFs in pathophysiology. In the present study, we expressed six NTFs of TDP-43, normally generated in vivo by proteases or following the presence of pathogenic genetic truncating variants, in HEK-293T cells. The N-terminal domain (NTD) alone was not sufficient to produce aggregates. Fragments containing the NTD and all or part of the RRM1 domain produced nuclear aggregates without affecting cell viability. Only large fragments also containing the RRM2 domain, with or without the glycine-rich domain, produced cytoplasmic aggregates. Of these, only NTFs containing even a very short portion of the glycine-rich domain caused a reduction in cell viability. Our results provide insights into the involvement of different TDP-43 domains in the formation of nuclear or cytoplasmic aggregates and support the idea that work on the development of therapeutic molecules targeting TDP-43 must also take into account NTFs and, in particular, those containing even a small part of the glycine-rich domain. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2674 KB  
Article
Elucidating the Epigenetic and Protein Interaction Landscapes in Amyotrophic Lateral Sclerosis: An Integrated Bioinformatics Analysis
by Katerina Kadena and Panagiotis Vlamos
Sclerosis 2024, 2(3), 140-155; https://doi.org/10.3390/sclerosis2030010 - 30 Jun 2024
Cited by 2 | Viewed by 1849
Abstract
Background: Amyotrophic Lateral Sclerosis (ALS) is a debilitating neurodegenerative disorder characterized by the progressive degeneration of motor neurons, leading to muscle weakness and paralysis. Understanding the molecular basis of ALS is crucial for the development of effective therapies. Objective: This study aims to [...] Read more.
Background: Amyotrophic Lateral Sclerosis (ALS) is a debilitating neurodegenerative disorder characterized by the progressive degeneration of motor neurons, leading to muscle weakness and paralysis. Understanding the molecular basis of ALS is crucial for the development of effective therapies. Objective: This study aims to explore the genetic and epigenetic underpinnings of ALS, focusing on the interplay between gene mutations, protein interactions, and epigenetic factors. Methods: We conducted an extensive analysis of key ALS-associated genes including TARDBP, SOD1, ANG, VAPB, and CHMP2B. We used computational tools to assess the functional consequences of identified mutations on neuronal health and explored DNA methylation patterns in gene promoters to investigate epigenetic regulation. Results: Our findings reveal that mutations in ALS-associated genes disrupt critical processes such as amyloid fibril formation and autophagy. We also identified altered DNA methylation patterns, suggesting a mechanism for changes in gene expression linked to ALS. Molecular docking studies highlighted Humulene and Buddledin C as compounds with high binding affinities to the SOD1 enzyme, suggesting their potential to mitigate hallmark features of ALS pathology such as SOD1 aggregation and oxidative stress. Conclusions: Our comprehensive analysis underscores the complexity of ALS pathogenesis, combining genetic, epigenetic, and proteomic approaches. The insights gained not only enhance our understanding of ALS but also pave the way for novel therapeutic strategies, highlighting the importance of integrated approaches in tackling this challenging neurodegenerative disease. Full article
Show Figures

Figure 1

14 pages, 932 KB  
Article
Novel Pathogenic Variants Leading to Sporadic Amyotrophic Lateral Sclerosis in Greek Patients
by Ouliana Ivantsik, Anne John, Kyriaki Kydonopoulou, Konstantinos Mitropoulos, Spyridon Gerou, Bassam R. Ali and George P. Patrinos
Genes 2024, 15(3), 309; https://doi.org/10.3390/genes15030309 - 28 Feb 2024
Cited by 3 | Viewed by 3783
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive disease that affects motor neurons, leading to paralysis and death usually 3–5 years after the onset of symptoms. The investigation of both sporadic and familial ALS highlighted four main genes that contribute to the pathogenesis [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive disease that affects motor neurons, leading to paralysis and death usually 3–5 years after the onset of symptoms. The investigation of both sporadic and familial ALS highlighted four main genes that contribute to the pathogenesis of the disease: SOD1, FUS, TARDBP and C9orf72. This study aims to provide a comprehensive investigation of genetic variants found in SOD1, FUS and TARDBP genes in Greek sporadic ALS (sALS) cases. Our sequencing analysis of the coding regions of the abovementioned genes that include the majority of the variants that lead to ALS in 32 sALS patients and 3 healthy relatives revealed 6 variants in SOD1, 19 variants in FUS and 37 variants in TARDBP, of which the SOD1 p.D90A and the FUS c.*356G>A (rs886051940) variants have been previously associated with ALS, while two novel nonsense pathogenic variants were also identified, namely FUS p.R241* and TDP-43 p.Y214*. Our study contributes to the worldwide effort toward clarifying the genetic basis of sALS to better understand the disease’s molecular pathology. Full article
(This article belongs to the Special Issue Genetics of Multifactorial Diseases)
Show Figures

Figure 1

14 pages, 1745 KB  
Article
TDP-43 and Alzheimer’s Disease Pathology in the Brain of a Harbor Porpoise Exposed to the Cyanobacterial Toxin BMAA
by Susanna P. Garamszegi, Daniel J. Brzostowicki, Thomas M. Coyne, Regina T. Vontell and David A. Davis
Toxins 2024, 16(1), 42; https://doi.org/10.3390/toxins16010042 - 12 Jan 2024
Cited by 13 | Viewed by 4571
Abstract
Cetaceans are well-regarded as sentinels for toxin exposure. Emerging studies suggest that cetaceans can also develop neuropathological changes associated with neurodegenerative disease. The occurrence of neuropathology makes cetaceans an ideal species for examining the impact of marine toxins on the brain across the [...] Read more.
Cetaceans are well-regarded as sentinels for toxin exposure. Emerging studies suggest that cetaceans can also develop neuropathological changes associated with neurodegenerative disease. The occurrence of neuropathology makes cetaceans an ideal species for examining the impact of marine toxins on the brain across the lifespan. Here, we describe TAR DNA-binding protein 43 (TDP-43) proteinopathy and Alzheimer’s disease (AD) neuropathological changes in a beached harbor porpoise (Phocoena phocoena) that was exposed to a toxin produced by cyanobacteria called β-N-methylamino-L-alanine (BMAA). We found pathogenic TDP-43 cytoplasmic inclusions in neurons throughout the cerebral cortex, midbrain and brainstem. P62/sequestosome-1, responsible for the autophagy of misfolded proteins, was observed in the amygdala, hippocampus and frontal cortex. Genes implicated in AD and TDP-43 neuropathology such as APP and TARDBP were expressed in the brain. AD neuropathological changes such as amyloid-β plaques, neurofibrillary tangles, granulovacuolar degeneration and Hirano bodies were present in the hippocampus. These findings further support the development of progressive neurodegenerative disease in cetaceans and a potential causative link to cyanobacterial toxins. Climate change, nutrient pollution and industrial waste are increasing the frequency of harmful cyanobacterial blooms. Cyanotoxins like BMAA that are associated with neurodegenerative disease pose an increasing public health risk. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

12 pages, 752 KB  
Article
Variability in Clinical Phenotype in TARDBP Mutations: Amyotrophic Lateral Sclerosis Case Description and Literature Review
by Michele Lombardi, Lucia Corrado, Beatrice Piola, Cristoforo Comi, Roberto Cantello, Sandra D’Alfonso, Letizia Mazzini and Fabiola De Marchi
Genes 2023, 14(11), 2039; https://doi.org/10.3390/genes14112039 - 4 Nov 2023
Cited by 14 | Viewed by 3985
Abstract
Mutations in the 43 kDa transactive-response (TAR)-DNA-binding protein (TARDBP) are associated with 2–5% of familial Amyotrophic Lateral Sclerosis (ALS) cases. TAR DNA-Binding Protein 43 (TDP-43) is an RNA/DNA-binding protein involved in several cellular mechanisms (e.g., transcription, pre-mRNA processing, and splicing). Many [...] Read more.
Mutations in the 43 kDa transactive-response (TAR)-DNA-binding protein (TARDBP) are associated with 2–5% of familial Amyotrophic Lateral Sclerosis (ALS) cases. TAR DNA-Binding Protein 43 (TDP-43) is an RNA/DNA-binding protein involved in several cellular mechanisms (e.g., transcription, pre-mRNA processing, and splicing). Many ALS-linked TARDBP mutations have been described in the literature, but few phenotypic data on monogenic TARDBP-mutated ALS are available. In this paper, (1) we describe the clinical features of ALS patients carrying mutations in the TARDBP gene evaluated at the Tertiary ALS Center at Maggiore della Carità University Hospital, Novara, Italy, from 2010 to 2020 and (2) present the results of our review of the literature on this topic, analyzing data obtained for 267 patients and highlighting their main clinical and demographic features. Full article
(This article belongs to the Special Issue Research Strategies to Unveil the Genetic and Molecular Basis of ALS)
Show Figures

Figure 1

51 pages, 5766 KB  
Review
TDP-43 Epigenetic Facets and Their Neurodegenerative Implications
by Juliette Gimenez, Alida Spalloni, Sara Cappelli, Francesca Ciaiola, Valerio Orlando, Emanuele Buratti and Patrizia Longone
Int. J. Mol. Sci. 2023, 24(18), 13807; https://doi.org/10.3390/ijms241813807 - 7 Sep 2023
Cited by 9 | Viewed by 5836
Abstract
Since its initial involvement in numerous neurodegenerative pathologies in 2006, either as a principal actor or as a cofactor, new pathologies implicating transactive response (TAR) DNA-binding protein 43 (TDP-43) are regularly emerging also beyond the neuronal system. This reflects the fact that TDP-43 [...] Read more.
Since its initial involvement in numerous neurodegenerative pathologies in 2006, either as a principal actor or as a cofactor, new pathologies implicating transactive response (TAR) DNA-binding protein 43 (TDP-43) are regularly emerging also beyond the neuronal system. This reflects the fact that TDP-43 functions are particularly complex and broad in a great variety of human cells. In neurodegenerative diseases, this protein is often pathologically delocalized to the cytoplasm, where it irreversibly aggregates and is subjected to various post-translational modifications such as phosphorylation, polyubiquitination, and cleavage. Until a few years ago, the research emphasis has been focused particularly on the impacts of this aggregation and/or on its widely described role in complex RNA splicing, whether related to loss- or gain-of-function mechanisms. Interestingly, recent studies have strengthened the knowledge of TDP-43 activity at the chromatin level and its implication in the regulation of DNA transcription and stability. These discoveries have highlighted new features regarding its own transcriptional regulation and suggested additional mechanistic and disease models for the effects of TPD-43. In this review, we aim to give a comprehensive view of the potential epigenetic (de)regulations driven by (and driving) this multitask DNA/RNA-binding protein. Full article
(This article belongs to the Special Issue Epigenetics in Neurodegenerative Diseases)
Show Figures

Graphical abstract

Back to TopTop