Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (571)

Search Parameters:
Keywords = T cell-mediated inflammatory diseases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 769 KiB  
Review
Intersections Between Allergic Diseases and Multiple Sclerosis: Mechanisms, Clinical Implications, and Hypersensitivity Reactions to Therapy
by Guillermo Cervera-Ygual, Ana Delgado-Prada and Francisco Gascon-Gimenez
Allergies 2025, 5(3), 26; https://doi.org/10.3390/allergies5030026 - 5 Aug 2025
Abstract
Multiple sclerosis (MS) and allergic diseases, traditionally considered immunologically opposing entities, may share pathogenic mechanisms rooted in immune dysregulation. While MS is predominantly mediated by Th1 and Th17 responses and allergies by Th2 responses, emerging evidence suggests overlapping immunological pathways, including the involvement [...] Read more.
Multiple sclerosis (MS) and allergic diseases, traditionally considered immunologically opposing entities, may share pathogenic mechanisms rooted in immune dysregulation. While MS is predominantly mediated by Th1 and Th17 responses and allergies by Th2 responses, emerging evidence suggests overlapping immunological pathways, including the involvement of histamine, regulatory T cells, and innate lymphoid cells. This review synthesizes current knowledge on the epidemiological and immunopathological associations between MS and allergies. Epidemiological studies have yielded inconsistent results, with some suggesting a protective role for respiratory and food allergies against MS onset, while others find no significant correlation. Clinical studies indicate that food allergies in adults may be associated with increased MS inflammatory activity, whereas childhood atopy might exert a protective effect. In addition, we review hypersensitivity reactions to disease-modifying treatments for MS, detailing their immunological mechanisms, clinical presentation, and management, including desensitization protocols where applicable. Finally, we explore how treatments for allergic diseases—such as clemastine, allergen immunotherapy, montelukast, and omalizumab—may modulate MS pathophysiology, offering potential therapeutic synergies. Understanding the interplay between allergic and autoimmune processes is critical for optimizing care and developing innovative treatment approaches in MS. Full article
(This article belongs to the Section Physiopathology)
Show Figures

Figure 1

28 pages, 13735 KiB  
Article
Immunohistopathological Analysis of Spongiosis Formation in Atopic Dermatitis Compared with Other Skin Diseases
by Ryoji Tanei and Yasuko Hasegawa
Dermatopathology 2025, 12(3), 23; https://doi.org/10.3390/dermatopathology12030023 - 1 Aug 2025
Viewed by 276
Abstract
Whether the spongiotic reaction caused by the interaction of keratinocytes, T-lymphocytes, inflammatory dendritic epidermal cells (IDECs), and Langerhans cells (LCs) observed in atopic dermatitis (AD) represents a common feature of spongiosis in various skin diseases remains unclear. We analyzed the characteristics of spongiosis [...] Read more.
Whether the spongiotic reaction caused by the interaction of keratinocytes, T-lymphocytes, inflammatory dendritic epidermal cells (IDECs), and Langerhans cells (LCs) observed in atopic dermatitis (AD) represents a common feature of spongiosis in various skin diseases remains unclear. We analyzed the characteristics of spongiosis in AD compared with those in other eczematous dermatitis and inflammatory skin diseases by using immunohistochemical methods. Infiltration of IDECs (CD11c+ cells and/or CD206+ cells) and T-lymphocytes, accompanied by degenerated keratinocytes and aggregated LCs (CD207+ cells), was frequently observed as a common feature of spongiosis in multiple conditions. However, IDECs expressing IgE were identified exclusively in IgE-mediated AD. Aggregation of IDECs was predominantly observed in the spongiosis of adaptive immune-mediated eczematous disorders, such as AD and allergic contact dermatitis. These IDEC aggregations constituted the major components of the epidermal dendritic cell clusters seen in AD and other eczematous or eczematoid dermatoses, and may serve as a useful distinguishing marker from Pautrier collections seen in cutaneous T-cell lymphoma. These findings suggest that IDECs, in cooperation with other immune cells, may play a pivotal role in spongiosis formation in AD and various skin diseases, although the underlying immunopathological mechanisms differ among these conditions. Full article
Show Figures

Figure 1

18 pages, 2205 KiB  
Article
Lupeol Attenuates Oxysterol-Induced Dendritic Cell Activation Through NRF2-Mediated Antioxidant and Anti-Inflammatory Effects
by Sarmistha Saha, Antonella Capozzi, Elisabetta Profumo, Cristiano Alessandri, Maurizio Sorice, Luciano Saso and Brigitta Buttari
Int. J. Mol. Sci. 2025, 26(15), 7179; https://doi.org/10.3390/ijms26157179 - 25 Jul 2025
Viewed by 212
Abstract
Oxysterols such as 7-ketocholesterol (7KCh) contribute to the pathogenesis of autoimmune and chronic inflammatory diseases by inducing oxidative stress and promoting pro-inflammatory immune cell activation. Dendritic cells (DCs) play a central role in maintaining immune tolerance, and their dysregulation is a key driver [...] Read more.
Oxysterols such as 7-ketocholesterol (7KCh) contribute to the pathogenesis of autoimmune and chronic inflammatory diseases by inducing oxidative stress and promoting pro-inflammatory immune cell activation. Dendritic cells (DCs) play a central role in maintaining immune tolerance, and their dysregulation is a key driver of autoimmunity. Targeting DCs by using natural compounds offers a promising strategy to restore redox balance and suppress aberrant immune responses. This study investigated the immunomodulatory and antioxidant properties of Lupeol, a natural triterpenoid, in human monocyte-derived DCs exposed to 7KCh. Flow cytometry and cytokine profiling demonstrated that Lupeol preserved the immature, tolerogenic phenotype of DCs by promoting a dose-dependent increase in the anti-inflammatory cytokine IL-10. Lupeol also inhibited the 7KCh-induced upregulation of maturation markers (CD83, CD86) and suppressed the release of pro-inflammatory cytokines IL-1β and IL-12p70. Functionally, Lupeol-treated DCs directed T cell polarization toward an anti-inflammatory and regulatory profile while dampening the inflammatory responses triggered by 7KCh. This immunoregulatory effect was further supported by the decreased secretion of the pro-inflammatory cytokines IL-1β and IL-12p70 in DC culture supernatants. Mechanistic analyses using immunofluorescence showed that Lupeol alone significantly increased nuclear NRF2 levels and upregulated HO-1 expression. Western blot analysis further confirmed Lupeol’s ability to activate the KEAP1-NRF2 signaling pathway, as evidenced by increased expression of NRF2 and its downstream target, NQO1. The use of ML385, a selective NRF2 inhibitor, in ROS and cytokine assays supported the involvement of NRF2 in mediating the Lupeol antioxidant and anti-inflammatory effects in DCs. Notably, the oxidative burden induced by 7KCh limited the full activation of NRF2 signaling triggered by Lupeol. Furthermore, docking and MM/PBSA analyses revealed the specific interactions of Lupeol with the kelch domain of KEAP1. These findings suggest that Lupeol may serve as a promising orally available immunomodulatory agent capable of promoting tolerogenic DCs, offering potential applications in autoimmune and other chronic inflammatory diseases. Full article
(This article belongs to the Special Issue Updates on Synthetic and Natural Antioxidants)
Show Figures

Figure 1

23 pages, 39698 KiB  
Article
Anti-C1q Autoantibody-Binding Engineered scFv C1q-Mimicking Fragment Enhances Disease Progression in Lupus-Prone MRL/lpr Mice
by Silviya Bradyanova, Nikolina Mihaylova, Nikola Ralchev, Alexandra Kapogianni, Ginka Cholakova, Kalina Nikolova-Ganeva, Ivanka Tsacheva and Andrey Tchorbanov
Int. J. Mol. Sci. 2025, 26(15), 7048; https://doi.org/10.3390/ijms26157048 - 22 Jul 2025
Viewed by 207
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment [...] Read more.
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment of C1q-mediated apoptotic clearance as part of human homeostasis. The capacity of C1q to bind early apoptotic cells could be decreased or even lost in the presence of anti-C1q antibodies. A monoclonal anti-idiotypic single-chain (scFv) antibody was selected from the phage library Griffin1” to recognize anti-C1q autoantibodies, purified from sera of lupus nephritis patients. Lupus-prone MRL/lpr mice were injected weekly with scFv A1 fragment-binding anti-C1q antibodies. The number of in vitro and ex vivo studies with collected cells, sera, and organs from the treated animals was performed. scFv treatment changed the percentage of different B-, T-, and NK-cell subpopulations as well as plasma cells and plasmablasts in the spleen and bone marrow. An increase in the levels of splenocyte proliferation, anti-C1q antibodies, and the number of plasma cells producing anti-dsDNA and anti-C1q antibodies were also observed in scFv-treated animals. High levels of proteinuria and hematuria combined with unstable levels of IL10 and IFNγ promote the development of severe lupus and shorten the survival of treated MRL/lpr mice. Therapy with the scFv A1 antibody resulted in BCR recognition on the surface of anti-C1q-specific B-cells and had a disease progression effect, enhancing lupus symptoms in the MRL/lpr mouse model of SLE. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 2031 KiB  
Review
Anti-Inflammatory Pathways Mediating tDCS’s Effects on Neuropathic Pain
by Haipeng Zhang, Xinyan Zheng and Binn Zhang
Biology 2025, 14(7), 892; https://doi.org/10.3390/biology14070892 - 20 Jul 2025
Viewed by 456
Abstract
Neuropathic pain (NP) is a prevalent clinical condition resulting from diseases or injuries affecting the somatosensory system. Conventional analgesics often exhibit limited efficacy, leading to suboptimal therapeutic outcomes. The pathogenesis of NP is complex and involves multiple mechanisms. The existing evidence suggests that [...] Read more.
Neuropathic pain (NP) is a prevalent clinical condition resulting from diseases or injuries affecting the somatosensory system. Conventional analgesics often exhibit limited efficacy, leading to suboptimal therapeutic outcomes. The pathogenesis of NP is complex and involves multiple mechanisms. The existing evidence suggests that maladaptive neuronal plasticity plays a central role in NP development. Additionally, emerging research highlights the contribution of neuroinflammatory responses mediated by glial cells in the onset of NP and associated sensory hypersensitivity. Among non-invasive neuromodulation techniques, transcranial direct current stimulation (tDCS) has gained prominence as a potential treatment for NP. Numerous studies have demonstrated its analgesic effects; however, the precise regulatory mechanisms remain unclear. The current evidence indicates that tDCS may alleviate NP by enhancing glial–neuronal interactions, which suppress nociceptive signaling pathways and reduce pain sensitivity. The reciprocal modulation between tDCS-mediated anti-inflammatory actions, as evidenced by decreased levels of pro-inflammatory cytokines and increased levels of anti-inflammatory mediators, and its facilitation of adaptive neural plasticity represents a particularly compelling therapeutic axis. This review elucidates inflammatory regulation by tDCS as a fundamental mechanism for NP alleviation, while delineating important unresolved questions regarding these complex interactions. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

13 pages, 3385 KiB  
Review
Efficacy of Dupilumab in a Young Woman with Refractory Cutaneous Lichen Planus: A Case-Based Review
by Cristina Guerriero, Luisa Boeti, Francesco Mastellone, Giulia Coscarella, Gennaro Marco Falco, Gerardo Palmisano, Helena Pelanda, Ketty Peris and Donato Rigante
Diseases 2025, 13(7), 225; https://doi.org/10.3390/diseases13070225 - 18 Jul 2025
Viewed by 449
Abstract
Background: Cutaneous lichen planus (CLP) is a chronic inflammatory T cell-mediated disease driven by a mixed Th1 and Th2 lymphocyte population, for which many of the currently available treatments have poor efficacy. Aim: The aim of this study was to indicate the clinical [...] Read more.
Background: Cutaneous lichen planus (CLP) is a chronic inflammatory T cell-mediated disease driven by a mixed Th1 and Th2 lymphocyte population, for which many of the currently available treatments have poor efficacy. Aim: The aim of this study was to indicate the clinical success of dupilumab administration after two years of treatment in a case of longstanding CLP and to perform a review of the medical literature related to the use of dupilumab in different dermatologic settings and in CLP. Case presentation: One 26-year-old woman with a previous history of atopic dermatitis had a long-lasting skin condition, referred to as a suspected lichen, which started when she was 7 years old. Her disease exhibited a relapsing–remitting course with severe bouts of pruritus over a very long period. The final histological diagnosis of CLP was confirmed at the age of 26. Starting dupilumab (injected subcutaneously at a dose of 600 mg followed by a maintenance dose of 300 mg every two weeks) resolved the skin scenery of this patient, who is currently in full remission. Conclusions: The remarkable recovery from CLP obtained via treatment with dupilumab in this single-patient case study emphasizes the potential therapeutic implications of targeting the Th2 pathway in this skin disorder. Full article
Show Figures

Graphical abstract

20 pages, 2298 KiB  
Review
CD20+ T Cells in Multiple Sclerosis: From Pathogenesis to Treatment-Induced Depletion
by Anna Chiara Mazzeo, Laura Calabresi, Valentina Damato, Gregorio Spagni, Luca Massacesi and Alice Mariottini
Int. J. Mol. Sci. 2025, 26(14), 6655; https://doi.org/10.3390/ijms26146655 - 11 Jul 2025
Viewed by 442
Abstract
The traditional paradigm of multiple sclerosis (MS) as a T cell-mediated disorder has been challenged by the effectiveness of monoclonal antibodies (mAbs) targeting CD20-expressing lymphocytes. Although these are mostly represented by B cells, the CD20 marker is expressed by 2–6% of T cells [...] Read more.
The traditional paradigm of multiple sclerosis (MS) as a T cell-mediated disorder has been challenged by the effectiveness of monoclonal antibodies (mAbs) targeting CD20-expressing lymphocytes. Although these are mostly represented by B cells, the CD20 marker is expressed by 2–6% of T cells (CD20+ T), which are effectively depleted in serum and cerebrospinal fluid of MS patients by anti-CD20 mAbs. CD20+ T cells are characterized by a pro-inflammatory phenotype and increased potential for migrating and invading the central nervous system (CNS) compared to CD20− T cells. Furthermore, CD20+ T cells are detected within brain inflammatory lesions from MS patients and actively participate in the experimental MS model. This review aims to summarize the current knowledge on CD20+ T cells, from their identification and characterization to evidence of depletion by disease-modifying treatments (DMTs), likely contributing to therapeutic efficacy. Conflicting hypotheses on the origin and development of CD20+ T cells will also be discussed, as well as evidence from clinical and preclinical studies supporting their pathogenetic role in MS. Full article
Show Figures

Figure 1

17 pages, 1764 KiB  
Review
The Role of Cutibacterium acnes in the Etiopathogenesis of Sarcoidosis: Current Insights and Future Study Directions
by Angela Maria Di Francesco, Giuliana Pasciuto, Elena Verrecchia, Ludovico Luca Sicignano, Laura Gerardino, Donato Rigante and Raffaele Manna
Int. J. Mol. Sci. 2025, 26(14), 6652; https://doi.org/10.3390/ijms26146652 - 11 Jul 2025
Viewed by 358
Abstract
Cutibacterium acnes (C. acnes) is a commensal bacterium of the skin microbiota that can transform itself into a pathogen depending on the peculiar susceptibility of the host: it is the sole microorganism so far to be found in the specific organ [...] Read more.
Cutibacterium acnes (C. acnes) is a commensal bacterium of the skin microbiota that can transform itself into a pathogen depending on the peculiar susceptibility of the host: it is the sole microorganism so far to be found in the specific organ lesions of sarcoidosis, and C. acnes-induced activation of T-helper-type-1 cell responses is generally higher in patients with sarcoidosis than in healthy subjects. This bacterium acts as an opportunistic agent in several inflammatory conditions other than sarcoidosis, such as prostate cancer and prosthetic joint infections. Both innate and adaptive immunity systems are involved in the pathogenesis of C. acnes-mediated sarcoid lesions, and a seminal role is played by host toll-like receptor (TLR)-2, TLR-4, TLR-6, NOD-like receptors, and mononuclear cell cytoplasmic receptors. This review summarizes current knowledge on the potential cause–effect relationship existing between C. acnes and sarcoidosis, addressing issues of future research directions and novel therapeutic strategies in the management of a complex disease such as sarcoidosis. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

17 pages, 283 KiB  
Review
Food-Specific IgG Antibodies: Decoding Their Dual Role in Immune Tolerance and Food Intolerance
by Jenny Valentina Garmendia, Juan Bautista De Sanctis and Alexis Hipólito García
Immuno 2025, 5(3), 25; https://doi.org/10.3390/immuno5030025 - 27 Jun 2025
Viewed by 1302
Abstract
IgG antibodies, particularly those of the IgG4 subclass, have generated significant debate regarding their role in immune tolerance versus food intolerance. This article comprehensively reviews the literature on the subject, exploring evidence from healthy individuals and patient populations with varied clinical conditions. On [...] Read more.
IgG antibodies, particularly those of the IgG4 subclass, have generated significant debate regarding their role in immune tolerance versus food intolerance. This article comprehensively reviews the literature on the subject, exploring evidence from healthy individuals and patient populations with varied clinical conditions. On one hand, IgG—especially IgG4—is frequently detected in individuals without adverse food reactions and may represent a normal adaptive immune response to constant dietary antigen exposure, contributing to the development of regulatory T-cell–mediated tolerance. On the other hand, several studies have linked elevated food-specific IgG levels with conditions characterized by increased intestinal permeability and inflammation, including eosinophilic esophagitis, irritable bowel syndrome, inflammatory bowel disease, and autoimmune disorders. The review discusses multiple investigations where IgG-guided elimination diets have yielded symptomatic improvements, suggesting a potential benefit for targeted dietary interventions. However, these findings are tempered by the observation that IgG antibodies are commonly present in asymptomatic individuals, thereby questioning their specificity as markers of adverse food reactions. Current diagnostic guidelines from leading allergy and immunology organizations discourage routine IgG testing for food allergies and intolerances, highlighting that these antibodies might instead indicate exposure or underlying inflammation rather than an actual pathogenic mechanism. There is a need for well-controlled, large-scale studies to clearly define the clinical relevance of food-specific IgG responses. Until more substantial evidence is provided, clinicians are advised to interpret the IgG results cautiously and to consider them within the broader context of each patient’s clinical presentation before recommending restrictive dietary changes. Full article
13 pages, 612 KiB  
Review
JAK2 Inhibitors and Emerging Therapies in Graft-Versus-Host Disease: Current Perspectives and Future Directions
by Behzad Amoozgar, Ayrton Bangolo, Abdifitah Mohamed, Charlene Mansour, Daniel Elias, Christina Cho and Siddhartha Reddy
Biomedicines 2025, 13(7), 1527; https://doi.org/10.3390/biomedicines13071527 - 23 Jun 2025
Viewed by 690
Abstract
Graft-versus-host disease (GVHD) remains a significant barrier to the success of allogeneic hematopoietic stem cell transplantation (allo-HSCT), contributing to long-term morbidity and non-relapse mortality in both pediatric and adult populations. Central to GVHD pathophysiology is the Janus kinase (JAK)-signal transducer and activator of [...] Read more.
Graft-versus-host disease (GVHD) remains a significant barrier to the success of allogeneic hematopoietic stem cell transplantation (allo-HSCT), contributing to long-term morbidity and non-relapse mortality in both pediatric and adult populations. Central to GVHD pathophysiology is the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, where JAK2 mediates key pro-inflammatory cytokines, including IL-6, IFN-γ, and GM-CSF. These cytokines promote donor T cell activation, effector differentiation, and target organ damage. The introduction of ruxolitinib, a selective JAK1/2 inhibitor, has transformed the treatment landscape for steroid-refractory acute and chronic GVHD, leading to improved response rates and durable symptom control. However, its limitations—such as cytopenias, infectious complications, and incomplete responses—have catalyzed the development of next-generation agents. In 2024, the FDA approved axatilimab, a CSF-1R inhibitor that targets monocyte-derived macrophages in fibrotic chronic GVHD, and remestemcel-L, an allogeneic mesenchymal stromal cell therapy, for pediatric steroid-refractory acute GVHD. Both agents offer mechanistically distinct and clinically meaningful additions to the therapeutic armamentarium. In parallel, emerging combination strategies involving JAK2 inhibitors and novel biologics show promise in enhancing immune tolerance while preserving graft-versus-leukemia (GvL) effects. Recent advances in biomarker development, such as the MAGIC Algorithm Probability (MAP), are enabling early risk stratification and response prediction. The integration of these tools with organ-specific and personalized approaches marks a shift toward more precise, durable, and tolerable GVHD therapy. This review highlights the current state and future direction of JAK2 inhibition and complementary therapies in the evolving GVHD treatment paradigm. Full article
(This article belongs to the Special Issue An Update on Transplantation Immunology)
Show Figures

Figure 1

35 pages, 820 KiB  
Review
Dairy Propionibacteria: Probiotic Properties and Their Molecular Bases
by Franca Rossi, Serena Santonicola, Valerio Giaccone, Alessandro Truant and Giampaolo Colavita
Biomolecules 2025, 15(6), 886; https://doi.org/10.3390/biom15060886 - 17 Jun 2025
Viewed by 1081
Abstract
This review summarizes the current knowledge on the probiotic characteristics of dairy propionibacteria, represented by Propionibacterium freudenreichii and some Acidipropionibacterium species commonly consumed through raw milk cheese. For example, in Swiss-type cheeses, P. freudenreichii is added as a starter culture. Some strains of [...] Read more.
This review summarizes the current knowledge on the probiotic characteristics of dairy propionibacteria, represented by Propionibacterium freudenreichii and some Acidipropionibacterium species commonly consumed through raw milk cheese. For example, in Swiss-type cheeses, P. freudenreichii is added as a starter culture. Some strains of P. freudenreichii have been included in mixed probiotic commercial preparations or used to produce tablets from fermented culture media containing bioactive substances such as short-chain fatty acids (SCFAs), bifidogenic molecules, and vitamins. Acidipropionibacterium acidipropionici and A. jensenii strains have mainly been evaluated as health and productivity promoters in farm animals. For P. freudenreichii, the molecular mechanisms behind its probiotic action have been well elucidated, and recently, novel potential applications have been demonstrated in animal models. P. freudenreichii strains have been shown to mitigate inflammatory bowel diseases (IBDs) and mucositis and prevent necrotizing enterocolitis (NEC) in newborns. Their immunomodulation capacity has alleviated symptoms of food allergies, obesity, diabetes, colorectal cancer (CRC), and infections. Moreover, P. freudenreichii inhibited osteoclastogenesis in a rheumatoid arthritis model. Most observed effects are mediated by proteins on the cell surface or contained in extracellular vesicles (EVs) such as the surface layer (S-layer) protein SlpB, DlaT, and GroEL. No safety issues have been reported for these bacteria. However, investigations into transferable antibiotic resistance traits are still needed, and clinical trials are required to evaluate their effectiveness as probiotics for humans. Full article
Show Figures

Figure 1

23 pages, 2556 KiB  
Review
Immunometabolic Interactions in Obesity: Implications for Therapeutic Strategies
by Qin Fei, Jueru Huang, Yi He, Yufeng Zhang, Xiaojun Zhang, Jing Wang and Qiang Fu
Biomedicines 2025, 13(6), 1429; https://doi.org/10.3390/biomedicines13061429 - 10 Jun 2025
Viewed by 963
Abstract
Obesity is characterized by excessive fat accumulation that triggers chronic low-grade inflammation and systemic immune dysregulation, significantly increasing the risk of metabolic disorders including insulin resistance, type 2 diabetes, and cardiovascular disease. This review examines the bidirectional relationship between obesity and immune dysfunction, [...] Read more.
Obesity is characterized by excessive fat accumulation that triggers chronic low-grade inflammation and systemic immune dysregulation, significantly increasing the risk of metabolic disorders including insulin resistance, type 2 diabetes, and cardiovascular disease. This review examines the bidirectional relationship between obesity and immune dysfunction, focusing on how immune cell infiltration in adipose tissue drives inflammatory processes. We highlight the phenotypic shifts in key immune populations—macrophages polarized toward proinflammatory M1 phenotypes, T cell exhaustion occurrs, and alterations appear in B cells, natural killer (NK) cells, and dendritic cells—that collectively contribute to metabolic deterioration. The gut microbiome emerged as a critical mediator in this relationship, influencing both immune responses and metabolic regulation through gut–liver and gut–brain axes. We explore emerging immunomodulatory therapeutic strategies, including anti-inflammatory agents, microbiota interventions, and targeted immune therapies such as innovative nanomedicine approaches. The review also addresses the challenges of immunotherapy in obesity, particularly the paradoxical effects observed in cancer immunotherapy outcomes and the need for personalized treatment approaches. Artificial intelligence is highlighted as a potential tool to enhance patient stratification and treatment optimization in future immunomodulatory interventions. Understanding these immunometabolic interactions provides a foundation for developing more effective therapeutic strategies that could transform obesity management and reduce the burden of obesity-related metabolic diseases. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

19 pages, 1445 KiB  
Review
Understanding the Immune System’s Intricate Balance: Activation, Tolerance, and Self-Protection
by Jui-Yun Chen, Li-Jane Shih, Min-Tser Liao, Kuo-Wang Tsai, Kuo-Cheng Lu and Wan-Chung Hu
Int. J. Mol. Sci. 2025, 26(12), 5503; https://doi.org/10.3390/ijms26125503 - 8 Jun 2025
Viewed by 877
Abstract
Understanding the mechanisms of immune activation and deactivation is paramount. A host must initiate effective immunity against pathogenic infections while avoiding triggering immunity against self-antigens, which can lead to detrimental autoimmune disorders. Host immunological pathways can be categorized as Immunoglobulin (Ig)G-dominant eradicable immune [...] Read more.
Understanding the mechanisms of immune activation and deactivation is paramount. A host must initiate effective immunity against pathogenic infections while avoiding triggering immunity against self-antigens, which can lead to detrimental autoimmune disorders. Host immunological pathways can be categorized as Immunoglobulin (Ig)G-dominant eradicable immune reactions and IgA-dominant tolerable immune reactions. Eradicable immune reactions include Th1, Th2, Th22, and Thαβ immune responses against four different types of pathogens. Tolerable immune reactions include Th1-like, Th9, Th17, and Th3 immune responses against four different types of pathogens. Here, we try to determine the mechanisms of activation and deactivation of host immune reactions. The spleen and liver play contrasting roles in mediating immune responses: the spleen is primarily involved in immune activation, whereas the liver is responsible for immune deactivation. Similarly, the sympathetic and parasympathetic nervous systems have opposing functions in immune modulation, with the sympathetic system promoting pro-inflammatory responses and the parasympathetic system facilitating anti-inflammatory processes. Furthermore, adrenocorticotropic hormone (ACTH) and glucocorticosteroids exhibit contrasting effects on immune regulation: ACTH is involved in activating adaptive immunity while inhibiting innate immunity, whereas glucocorticosteroids activate natural IgM antibody associated with innate immunity while inhibiting adaptive immunity. Heat shock proteins, particularly molecular chaperones induced by fever, play pivotal roles in immune activation. Conversely, IgD B cells and gamma/delta T cells contribute to immune deactivation through mechanisms such as clonal anergy. Understanding these mechanisms provides insights into immunological pathways, aiding in the better management of infectious diseases and autoimmune disorders. Full article
(This article belongs to the Special Issue The Role of Cytokines in Health and Diseases)
Show Figures

Figure 1

20 pages, 2657 KiB  
Article
Terpinen-4-ol Targets HIF-1α/TGF-β1/TNF-α Axis to Attenuate Ethanol-Induced Hepatotoxicity: Network Pharmacology and In Vitro Validation
by Tariq G. Alsahli, Maryam Khalid, Muhammad Nasir Hayat Malik and Saud O. Alshammari
Medicina 2025, 61(6), 1048; https://doi.org/10.3390/medicina61061048 - 6 Jun 2025
Viewed by 641
Abstract
Background and Objective: Alcoholic liver disease (ALD) is a major health burden caused by chronic alcohol consumption, leading to oxidative stress, inflammation, and fibrosis. Current treatments are limited, highlighting the need for novel therapeutic agents. This study investigated the hepatoprotective effects of ‘Terpinen-4-ol [...] Read more.
Background and Objective: Alcoholic liver disease (ALD) is a major health burden caused by chronic alcohol consumption, leading to oxidative stress, inflammation, and fibrosis. Current treatments are limited, highlighting the need for novel therapeutic agents. This study investigated the hepatoprotective effects of ‘Terpinen-4-ol (T4OL)’, a natural monoterpene from tea tree oil, against ethanol-induced liver injury, focusing on its molecular and cellular mechanisms. Materials and Methods: Network pharmacology and molecular docking were employed to predict T4OL’s interaction with ALD-associated targets. Human HepG2 cells were used to validate the in silico findings. Cells were exposed to ethanol (8%) prior to treatment with T4OL or silymarin (SIL), and cytotoxicity was assessed through MTT, crystal violet, and trypan blue assays. Moreover, ELISA and qPCR were conducted to evaluate antioxidant, inflammatory, and fibrotic markers. Results: Network pharmacology analysis suggested that T4OL exerts its hepatoprotective effects by suppressing inflammatory and fibrotic mediators (HIF-1α, TGF-β1, and TNF-α). Docking studies also exhibited a strong binding affinity of T4OL to key ALD targets, with docking scores comparable to SIL. In addition, T4OL (13–1300 µM) dose-dependently protected HepG2 cells from ethanol-induced damage, restoring viability by up to 80% at 650 µM. It significantly elevated antioxidant levels (GSH by 2.5-fold, SOD by 1.8-fold) and suppressed pro-inflammatory and fibrotic markers (IL-6, COL1A1, TIMP-1) by 40–60%. At higher concentrations (650–1300 µM), T4OL outperformed SIL in cytoprotection and anti-fibrotic effects. Conclusions: T4OL mitigates ethanol-induced liver injury by targeting oxidative stress, inflammation, and fibrosis pathways, demonstrating superior efficacy to SIL at optimal doses. Its multi-target action supports its potential as a therapeutic candidate for ALD. Full article
Show Figures

Graphical abstract

18 pages, 2548 KiB  
Article
Integrative Analysis of Plasma Proteomics and Transcriptomics Reveals Potential Therapeutic Targets for Psoriasis
by Hesong Wang, Chenguang Wang, Ruihao Qin, Jia He, Xuan Zhang, Chenjing Ma, Shi Li, Lijun Fan, Liuying Wang and Lei Cao
Biomedicines 2025, 13(6), 1380; https://doi.org/10.3390/biomedicines13061380 - 4 Jun 2025
Viewed by 759
Abstract
Background Psoriasis (PsO): is an immune-mediated inflammatory disease that imposes a significant burden on patients. Many patients experience relapse or inadequate responses, and PsO subtypes also lack effective therapies, highlighting the need for new therapeutic targets. Methods: We performed a proteome-wide Mendelian [...] Read more.
Background Psoriasis (PsO): is an immune-mediated inflammatory disease that imposes a significant burden on patients. Many patients experience relapse or inadequate responses, and PsO subtypes also lack effective therapies, highlighting the need for new therapeutic targets. Methods: We performed a proteome-wide Mendelian randomization (MR) to explore potential therapeutic targets for PsO. Protein quantitative trait loci (pQTLs) data were obtained from the Pharma Proteomics Project (54,219 UK Biobank participants, 2923 proteins), and PsO phenotype and subtype data were sourced from FinnGen (10,312 cases; 397,564 controls) for discovery. Replication MR utilized integrated protein data (Iceland and Norfolk) and phenotype data from multiple databases (UK Biobank and GWAS Catalog). Reverse MR and colocalization were used to support causal relationships. Single-cell RNA-seq analysis revealed distinct expression patterns of protein-coding genes across different cell types in PsO biopsy samples and normal skin tissues. Protein-protein interactions (PPI) and molecular docking were used to evaluate druggability. Results: MR analysis identified 13 proteins significantly associated with PsO risk (p < 2.56×105), including 10 proteins associated with PsO subtypes. Decreased levels of eight proteins (IFNLR1, APOF, TDRKH, DDR1, HLA-E, LTA, MOG, and ICAM3) and increased levels of five proteins (IFNGR2, HCG22, IL12B, BTN3A2, and TRIM40) showed protective effects against PsO progression. Robust colocalization (PPH4 > 0.9) identified IFNLR1, IFNGR2, APOF, and TDRKH as top candidates. Single-cell RNA sequencing analysis revealed that IFNLR1, IFNGR2, LTA, TDRKH, and DDR1 were specifically expressed in T cells of psoriatic biopsy specimens compared to healthy controls. Molecular docking indicated the druggability of IFNLR1 and IFNGR2. Conclusions: We identified several potential therapeutic targets for PsO, with IFNLR1, IFNGR2, APOF, and TDRKH emerging as promising candidates, particularly IFNLR1 and IFNGR2, which are associated with the IFN family. These findings may provide new perspectives on PsO therapy and pathogenesis. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

Back to TopTop