Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Szilard engine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 414 KiB  
Article
Maxwell’s Demon Is Foiled by the Entropy Cost of Measurement, Not Erasure
by Ruth E. Kastner
Foundations 2025, 5(2), 16; https://doi.org/10.3390/foundations5020016 - 22 May 2025
Viewed by 1111
Abstract
I dispute the conventional claim that the second law of thermodynamics is saved from a “Maxwell’s demon” by the entropy cost of information erasure and show that instead it is measurement that incurs the entropy cost. Thus, Brillouin, who identified measurement as savior [...] Read more.
I dispute the conventional claim that the second law of thermodynamics is saved from a “Maxwell’s demon” by the entropy cost of information erasure and show that instead it is measurement that incurs the entropy cost. Thus, Brillouin, who identified measurement as savior of the second law, was essentially correct, and putative refutations of his view, such as Bennett’s claim to measure without entropy cost, are seen to fail when the applicable physics is taken into account. I argue that the tradition of attributing the defeat of Maxwell’s demon to erasure rather than to measurement arose from unphysical classical idealizations that do not hold for real gas molecules, as well as a physically ungrounded recasting of physical thermodynamical processes into computational and information-theoretic conceptualizations. I argue that the fundamental principle that saves the second law is the quantum uncertainty principle applying to the need to localize physical states to precise values of observables in order to effect the desired disequilibria aimed at violating the second law. I obtain the specific entropy cost for localizing a molecule in the Szilard engine and show that it coincides with the quantity attributed to Landauer’s principle. I also note that an experiment characterized as upholding an entropy cost of erasure in a “quantum Maxwell’s demon” actually demonstrates an entropy cost of measurement. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

18 pages, 957 KiB  
Article
Landauer Bound in the Context of Minimal Physical Principles: Meaning, Experimental Verification, Controversies and Perspectives
by Edward Bormashenko
Entropy 2024, 26(5), 423; https://doi.org/10.3390/e26050423 - 15 May 2024
Cited by 8 | Viewed by 5306
Abstract
The physical roots, interpretation, controversies, and precise meaning of the Landauer principle are surveyed. The Landauer principle is a physical principle defining the lower theoretical limit of energy consumption necessary for computation. It states that an irreversible change in information stored in a [...] Read more.
The physical roots, interpretation, controversies, and precise meaning of the Landauer principle are surveyed. The Landauer principle is a physical principle defining the lower theoretical limit of energy consumption necessary for computation. It states that an irreversible change in information stored in a computer, such as merging two computational paths, dissipates a minimum amount of heat kBTln2 per a bit of information to its surroundings. The Landauer principle is discussed in the context of fundamental physical limiting principles, such as the Abbe diffraction limit, the Margolus–Levitin limit, and the Bekenstein limit. Synthesis of the Landauer bound with the Abbe, Margolus–Levitin, and Bekenstein limits yields the minimal time of computation, which scales as τmin~hkBT. Decreasing the temperature of a thermal bath will decrease the energy consumption of a single computation, but in parallel, it will slow the computation. The Landauer principle bridges John Archibald Wheeler’s “it from bit” paradigm and thermodynamics. Experimental verifications of the Landauer principle are surveyed. The interrelation between thermodynamic and logical irreversibility is addressed. Generalization of the Landauer principle to quantum and non-equilibrium systems is addressed. The Landauer principle represents the powerful heuristic principle bridging physics, information theory, and computer engineering. Full article
Show Figures

Figure 1

14 pages, 527 KiB  
Article
On the Precise Link between Energy and Information
by Cameron Witkowski, Stephen Brown and Kevin Truong
Entropy 2024, 26(3), 203; https://doi.org/10.3390/e26030203 - 27 Feb 2024
Cited by 4 | Viewed by 2828
Abstract
We present a modified version of the Szilard engine, demonstrating that an explicit measurement procedure is entirely unnecessary for its operation. By considering our modified engine, we are able to provide a new interpretation of Landauer’s original argument for the cost of erasure. [...] Read more.
We present a modified version of the Szilard engine, demonstrating that an explicit measurement procedure is entirely unnecessary for its operation. By considering our modified engine, we are able to provide a new interpretation of Landauer’s original argument for the cost of erasure. From this view, we demonstrate that a reset operation is strictly impossible in a dynamical system with only conservative forces. Then, we prove that approaching a reset yields an unavoidable instability at the reset point. Finally, we present an original proof of Landauer’s principle that is completely independent from the Second Law of thermodynamics. Full article
Show Figures

Figure 1

13 pages, 414 KiB  
Article
N-States Continuous Maxwell Demon
by Paul Raux and Felix Ritort
Entropy 2023, 25(2), 321; https://doi.org/10.3390/e25020321 - 9 Feb 2023
Cited by 2 | Viewed by 1875
Abstract
Maxwell’s demon is a famous thought experiment and a paradigm of the thermodynamics of information. It is related to Szilard’s engine, a two-state information-to-work conversion device in which the demon performs single measurements and extracts work depending on the state measurement outcome. A [...] Read more.
Maxwell’s demon is a famous thought experiment and a paradigm of the thermodynamics of information. It is related to Szilard’s engine, a two-state information-to-work conversion device in which the demon performs single measurements and extracts work depending on the state measurement outcome. A variant of these models, the continuous Maxwell demon (CMD), was recently introduced by Ribezzi-Crivellari and Ritort where work was extracted after multiple repeated measurements every time that τ is in a two-state system. The CMD was able to extract unbounded amounts of work at the cost of an unbounded amount of information storage. In this work, we built a generalization of the CMD to the N-state case. We obtained generalized analytical expressions for the average work extracted and the information content. We show that the second law inequality for information-to-work conversion is fulfilled. We illustrate the results for N-states with uniform transition rates and for the N = 3 case. Full article
Show Figures

Figure 1

16 pages, 3690 KiB  
Article
The Ambiguous Functions of the Precursors That Enable Nonclassical Modes of Olanzapine Nucleation and Growth
by Monika Warzecha, Alastair J. Florence and Peter G. Vekilov
Crystals 2021, 11(7), 738; https://doi.org/10.3390/cryst11070738 - 26 Jun 2021
Cited by 6 | Viewed by 2571
Abstract
One of the most consequential assumptions of the classical theories of crystal nucleation and growth is the Szilard postulate, which states that molecules from a supersaturated phase join a nucleus or a growing crystal individually. In the last 20 years, observations in complex [...] Read more.
One of the most consequential assumptions of the classical theories of crystal nucleation and growth is the Szilard postulate, which states that molecules from a supersaturated phase join a nucleus or a growing crystal individually. In the last 20 years, observations in complex biological, geological, and engineered environments have brought to light violations of the Szilard rule, whereby molecules assemble into ordered or disordered precursors that then host and promote nucleation or contribute to fast crystal growth. Nonclassical crystallization has risen to a default mode presumed to operate in the majority of the inspected crystallizing systems. In some cases, the existence of precursors in the growth media is admitted as proof for their role in nucleation and growth. With the example of olanzapine, a marketed drug for schizophrenia and bipolar disorder, we demonstrate that molecular assemblies in the solution selectively participate in crystal nucleation and growth. In aqueous and organic solutions, olanzapine assembles into both mesoscopic solute-rich clusters and dimers. The clusters facilitate nucleation of crystals and crystal form transformations. During growth, however, the clusters land on the crystal surface and transform into defects, but do not support step growth. The dimers are present at low concentrations in the supersaturated solution, yet the crystals grow by the association of dimers, and not of the majority monomers. The observations with olanzapine emphasize that detailed studies of the crystal and solution structures and the dynamics of molecular association may empower classical and nonclassical models that advance the understanding of natural crystallization, and support the design and manufacture of promising functional materials. Full article
Show Figures

Figure 1

6 pages, 1240 KiB  
Article
Informational Reinterpretation of the Mechanics Notions and Laws
by Edward Bormashenko
Entropy 2020, 22(6), 631; https://doi.org/10.3390/e22060631 - 7 Jun 2020
Cited by 6 | Viewed by 3276
Abstract
The informational re-interpretation of the basic laws of the mechanics exploiting the Landauer principle is suggested. When a physical body is in rest or it moves rectilinearly with the constant speed, zero information is transferred; thus, the informational affinity of the rest state [...] Read more.
The informational re-interpretation of the basic laws of the mechanics exploiting the Landauer principle is suggested. When a physical body is in rest or it moves rectilinearly with the constant speed, zero information is transferred; thus, the informational affinity of the rest state and the rectilinear motion with a constant speed is established. Inertial forces may be involved in the erasure/recording of information. The analysis of the minimal Szilard thermal engine as seen from the noninertial frame of references is carried out. The Szilard single-particle minimal thermal engine undergoes isobaric expansion relative to accelerated frame of references, enabling the erasure of 1 bit of information. The energy ΔQ spent by the inertial force for the erasure of 1 bit of information is estimated as Δ Q 5 3 k B T ¯ , which is larger than the Landauer bound but qualitatively is close to it. The informational interpretation of the equivalence principle is proposed: the informational content of the inertial and gravitational masses is the same. Full article
(This article belongs to the Special Issue The Landauer Principle: Meaning, Physical Roots and Applications)
Show Figures

Figure 1

18 pages, 2623 KiB  
Article
Landauer’s Principle in a Quantum Szilard Engine without Maxwell’s Demon
by Alhun Aydin, Altug Sisman and Ronnie Kosloff
Entropy 2020, 22(3), 294; https://doi.org/10.3390/e22030294 - 3 Mar 2020
Cited by 19 | Viewed by 6706
Abstract
Quantum Szilard engine constitutes an adequate interplay of thermodynamics, information theory and quantum mechanics. Szilard engines are in general operated by a Maxwell’s Demon where Landauer’s principle resolves the apparent paradoxes. Here we propose a Szilard engine setup without featuring an explicit Maxwell’s [...] Read more.
Quantum Szilard engine constitutes an adequate interplay of thermodynamics, information theory and quantum mechanics. Szilard engines are in general operated by a Maxwell’s Demon where Landauer’s principle resolves the apparent paradoxes. Here we propose a Szilard engine setup without featuring an explicit Maxwell’s demon. In a demonless Szilard engine, the acquisition of which-side information is not required, but the erasure and related heat dissipation still take place implicitly. We explore a quantum Szilard engine considering quantum size effects. We see that insertion of the partition does not localize the particle to one side, instead creating a superposition state of the particle being in both sides. To be able to extract work from the system, particle has to be localized at one side. The localization occurs as a result of quantum measurement on the particle, which shows the importance of the measurement process regardless of whether one uses the acquired information or not. In accordance with Landauer’s principle, localization by quantum measurement corresponds to a logically irreversible operation and for this reason it must be accompanied by the corresponding heat dissipation. This shows the validity of Landauer’s principle even in quantum Szilard engines without Maxwell’s demon. Full article
(This article belongs to the Special Issue The Landauer Principle: Meaning, Physical Roots and Applications)
Show Figures

Figure 1

21 pages, 1016 KiB  
Article
Entropy Distribution in a Quantum Informational Circuit of Tunable Szilard Engines
by Jose Diazdelacruz
Entropy 2019, 21(10), 980; https://doi.org/10.3390/e21100980 - 8 Oct 2019
Cited by 1 | Viewed by 2811
Abstract
This paper explores the possibility of extending the existing model of a single-particle Quantum Szilard Engine to take advantage of some features of quantum information for driving typical mechanical systems. It focuses on devices that output mechanical work, extracting energy from a single [...] Read more.
This paper explores the possibility of extending the existing model of a single-particle Quantum Szilard Engine to take advantage of some features of quantum information for driving typical mechanical systems. It focuses on devices that output mechanical work, extracting energy from a single thermal reservoir at the cost of increasing the entropy of a qubit; the reverse process is also considered. In this alternative, several engines may share the information carried by the same qubit, although its interception will prove completely worthless for any illegitimate user. To this end, multi-partite quantum entanglement is employed. Besides, some changes in the cycle of the standard single-particle Quantum Szilard Engine are described, which lend more flexibility to meeting additional requirements in typical mechanical systems. The modifications allow having qubit input and output states of adjustable entropy. This feature enables the possibility of chaining the qubit between engines so that its output state from one can be used as an input state for another. Finally, another tweak is presented that allows for tuning the average output force of the engine. Full article
(This article belongs to the Special Issue The Ubiquity of Entropy)
Show Figures

Graphical abstract

13 pages, 352 KiB  
Article
Informational Work Storage in Quantum Thermodynamics
by Shang-Yung Wang
Quantum Rep. 2019, 1(1), 37-49; https://doi.org/10.3390/quantum1010005 - 4 Jun 2019
Viewed by 3176
Abstract
We present a critical examination of the difficulties with the quantum versions of a lifted weight that are widely used as work storage systems in quantum thermodynamics. To overcome those difficulties, we turn to the strong connections between information and thermodynamics illuminated by [...] Read more.
We present a critical examination of the difficulties with the quantum versions of a lifted weight that are widely used as work storage systems in quantum thermodynamics. To overcome those difficulties, we turn to the strong connections between information and thermodynamics illuminated by Szilard’s engine and Landauer’s principle, and consider the concept of informational work storage. This concept is in sharp contrast with the usual one of mechanical work storage underlying the idealization of a quantum weight. An informational work storage system based on maximally mixed qubits that does not act as an entropy sink and is capable of truly distinguishing work from heat is studied. Applying it to the problem of single-shot work extraction in various extraction schemes, we show that for a given system state the maximum extractable work is independent of extraction scheme, in accordance with the second law of thermodynamics. Full article
Show Figures

Figure 1

20 pages, 743 KiB  
Article
Quantum Information Remote Carnot Engines and Voltage Transformers
by Jose Diazdelacruz and Miguel Angel Martin-Delgado
Entropy 2019, 21(2), 127; https://doi.org/10.3390/e21020127 - 30 Jan 2019
Cited by 2 | Viewed by 3624
Abstract
A physical system out of thermal equilibrium is a resource for obtaining useful work when a heat bath at some temperature is available. Information Heat Engines are the devices which generalize the Szilard cylinders and make use of the celebrated Maxwell demons to [...] Read more.
A physical system out of thermal equilibrium is a resource for obtaining useful work when a heat bath at some temperature is available. Information Heat Engines are the devices which generalize the Szilard cylinders and make use of the celebrated Maxwell demons to this end. In this paper, we consider a thermo-chemical reservoir of electrons which can be exchanged for entropy and work. Qubits are used as messengers between electron reservoirs to implement long-range voltage transformers with neither electrical nor magnetic interactions between the primary and secondary circuits. When they are at different temperatures, the transformers work according to Carnot cycles. A generalization is carried out to consider an electrical network where quantum techniques can furnish additional security. Full article
(This article belongs to the Special Issue Quantum Thermodynamics II)
Show Figures

Figure 1

24 pages, 4111 KiB  
Article
A Programmable Mechanical Maxwell’s Demon
by Zhiyue Lu and Christopher Jarzynski
Entropy 2019, 21(1), 65; https://doi.org/10.3390/e21010065 - 14 Jan 2019
Cited by 8 | Viewed by 6858
Abstract
We introduce and investigate a simple and explicitly mechanical model of Maxwell’s demon—a device that interacts with a memory register (a stream of bits), a thermal reservoir (an ideal gas) and a work reservoir (a mass that can be lifted or lowered). Our [...] Read more.
We introduce and investigate a simple and explicitly mechanical model of Maxwell’s demon—a device that interacts with a memory register (a stream of bits), a thermal reservoir (an ideal gas) and a work reservoir (a mass that can be lifted or lowered). Our device is similar to one that we have briefly described elsewhere, but it has the additional feature that it can be programmed to recognize a chosen reference sequence, for instance, the binary representation of π . If the bits in the memory register match those of the reference sequence, then the device extracts heat from the thermal reservoir and converts it into work to lift a small mass. Conversely, the device can operate as a generalized Landauer’s eraser (or copier), harnessing the energy of a dropping mass to write the chosen reference sequence onto the memory register, replacing whatever information may previously have been stored there. Our model can be interpreted either as a machine that autonomously performs a conversion between information and energy, or else as a feedback-controlled device that is operated by an external agent. We derive generalized second laws of thermodynamics for both pictures. We illustrate our model with numerical simulations, as well as analytical calculations in a particular, exactly solvable limit. Full article
(This article belongs to the Special Issue Thermodynamics of Information Processing)
Show Figures

Figure 1

15 pages, 1124 KiB  
Review
Entropy in Cell Biology: Information Thermodynamics of a Binary Code and Szilard Engine Chain Model of Signal Transduction
by Tatsuaki Tsuruyama
Entropy 2018, 20(8), 617; https://doi.org/10.3390/e20080617 - 19 Aug 2018
Cited by 4 | Viewed by 5092
Abstract
A model of signal transduction from the perspective of informational thermodynamics has been reported in recent studies, and several important achievements have been obtained. The first achievement is that signal transduction can be modelled as a binary code system, in which two forms [...] Read more.
A model of signal transduction from the perspective of informational thermodynamics has been reported in recent studies, and several important achievements have been obtained. The first achievement is that signal transduction can be modelled as a binary code system, in which two forms of signalling molecules are utilised in individual steps. The second is that the average entropy production rate is consistent during the signal transduction cascade when the signal event number is maximised in the model. The third is that a Szilard engine can be a single-step model in the signal transduction. This article reviews these achievements and further introduces a new chain of Szilard engines as a biological reaction cascade (BRC) model. In conclusion, the presented model provides a way of computing the channel capacity of a BRC. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

9 pages, 3201 KiB  
Article
Information Thermodynamics of the Cell Signal Transduction as a Szilard Engine
by Tatsuaki Tsuruyama
Entropy 2018, 20(4), 224; https://doi.org/10.3390/e20040224 - 26 Mar 2018
Cited by 5 | Viewed by 4450
Abstract
A cell signaling system is in a non-equilibrium state, and it includes multistep biochemical signaling cascades (BSCs), which involve phosphorylation of signaling molecules, such as mitogen-activated protein kinase (MAPK) pathways. In this study, the author considered signal transduction description using information thermodynamic theory. [...] Read more.
A cell signaling system is in a non-equilibrium state, and it includes multistep biochemical signaling cascades (BSCs), which involve phosphorylation of signaling molecules, such as mitogen-activated protein kinase (MAPK) pathways. In this study, the author considered signal transduction description using information thermodynamic theory. The ideal BSCs can be considered one type of the Szilard engine, and the presumed feedback controller, Maxwell’s demon, can extract the work during signal transduction. In this model, the mutual entropy and chemical potential of the signal molecules can be redefined by the extracted chemical work in a mechanicochemical model, Szilard engine, of BSC. In conclusion, signal transduction is computable using the information thermodynamic method. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

23 pages, 300 KiB  
Article
Conditioning, Correlation and Entropy Generation in Maxwell’s Demon
by Neal G. Anderson
Entropy 2013, 15(10), 4243-4265; https://doi.org/10.3390/e15104243 - 9 Oct 2013
Cited by 3 | Viewed by 6117
Abstract
Maxwell’s Demon conspires to use information about the state of a confined molecule in a Szilard engine (randomly frozen into a state subspace by his own actions) to derive work from a single-temperature heat bath. It is widely accepted that, if the Demon [...] Read more.
Maxwell’s Demon conspires to use information about the state of a confined molecule in a Szilard engine (randomly frozen into a state subspace by his own actions) to derive work from a single-temperature heat bath. It is widely accepted that, if the Demon can achieve this at all, he can do so without violating the Second Law only because of a counterbalancing price that must be paid to erase information when the Demon’s memory is reset at the end of his operating cycle. In this paper, Maxwell’s Demon is analyzed within a “referential” approach to physical information that defines and quantifies the Demon’s information via correlations between the joint physical state of the confined molecule and that of the Demon’s memory. On this view, which received early emphasis in Fahn’s 1996 classical analysis of Maxwell’s Demon, information is erased not during the memory reset step of the Demon’s cycle, but rather during the expansion step, when these correlations are destroyed. Dissipation and work extraction are analyzed here for a Demon that operates a generalized quantum mechanical Szilard engine embedded in a globally closed composite, which also includes a work reservoir, a heat bath and the remainder of the Demon’s environment. Memory-engine correlations lost during the expansion step, which enable extraction of work from the Demon via operations conditioned on the memory contents, are shown to be dissipative when this decorrelation is achieved unconditionally so no work can be extracted. Fahn’s essential conclusions are upheld in generalized form, and his quantitative results supported via appropriate specialization to the Demon of his classical analysis, all without external appeal to classical thermodynamics, the Second Law, phase space conservation arguments or Landauer’s Principle. Full article
(This article belongs to the Special Issue Maxwell’s Demon 2013)
Show Figures

Figure 1

13 pages, 730 KiB  
Article
The Demon in a Vacuum Tube
by Germano D'Abramo
Entropy 2013, 15(5), 1916-1928; https://doi.org/10.3390/e15051916 - 21 May 2013
Cited by 2 | Viewed by 6268
Abstract
In the present paper, several issues concerning the second law of thermodynamics, Maxwell’s demon and Landauer’s principle are dealt with. I argue that if the demon and the system on which it operates without dissipation of external energy are made of atoms and [...] Read more.
In the present paper, several issues concerning the second law of thermodynamics, Maxwell’s demon and Landauer’s principle are dealt with. I argue that if the demon and the system on which it operates without dissipation of external energy are made of atoms and molecules (gas, liquid or solid) in thermal equilibrium (whose behaviour is described by a canonical distribution), then the unavoidable reason why the demon cannot successfully operate resides in the ubiquity of thermal fluctuations and friction. Landauer’s principle appears to be unnecessary. I also suggest that if the behaviour of the demon and the system on which it acts is not always describable by a canonical distribution, as would happen for instance with the ballistic motion of electrons at early stages of thermionic emission, then a successful working demon cannot be ruled out a priori. A critical review of two recent experiments on thermionic emission Maxwell’s demons is also given. Full article
(This article belongs to the Special Issue Maxwell’s Demon 2013)
Show Figures

Figure 1

Back to TopTop