Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = Strecker aldehydes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 967 KiB  
Article
Exploring the Potential of Yellow Mealworm (Tenebrio molitor) Oil as a Nutraceutical Ingredient
by Montserrat Martínez-Pineda, Teresa Juan, Agata Antoniewska-Krzeska, Antonio Vercet, María Abenoza, Cristina Yagüe-Ruiz and Jarosława Rutkowska
Foods 2024, 13(23), 3867; https://doi.org/10.3390/foods13233867 - 29 Nov 2024
Cited by 4 | Viewed by 2043
Abstract
During defatted Tenebrio molitor (TM) larvae powder production, oil is obtained as a by-product, mainly intended for feed enrichment or as a biofuel component. In 2021, EFSA authorized TM as the first insect to be a novel food. Thus, the study aimed to [...] Read more.
During defatted Tenebrio molitor (TM) larvae powder production, oil is obtained as a by-product, mainly intended for feed enrichment or as a biofuel component. In 2021, EFSA authorized TM as the first insect to be a novel food. Thus, the study aimed to assess the composition, including fatty acids (FAs), tocopherols, carotenoids, phenolics, volatiles, antioxidant capacity, sensory aroma attributes, physical properties, and oxidative and hydrolytic stability of TM oil. The FAs profile was dominated by oleic—C18:19c (36.8%) and linoleic—C18:29c12c (32,4%) acids, resulting in a PUFA/SFA ratio similar to vegetable oils. Thus, TM oil was characterized by a beneficial Health Promoting Index (HPI) (2.42), which was 10-fold higher than the HPI of common animal fats. TM oil contained bioactive compounds such as carotenoids (13.65 mg/kg), tocopherols (105.8 mg/kg), and phenolic compounds (74 mg GAE/kg). A noticeable amount of apigenin was also noted among nine detected phenolic compounds. The substantial presence of lipophilic and phenolic compounds contributed to antioxidative potential. Sensory estimation revealed the dominance of fried and nutty aromas, probably because of the abundance of Strecker aldehydes and pyrazines in their volatile profile. The results indicated that the technological process needs modification to limit the formation of lipid oxidation volatile compounds such as aldehydes and eliminate some differences between batches. This preliminary study on the composition and properties of TM oil encourages its use as an ingredient for food, pharmaceutical, and cosmetics purposes. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

26 pages, 4106 KiB  
Systematic Review
From Conventional to Craft Beer: Perception, Source, and Production of Beer Color—A Systematic Review and Bibliometric Analysis
by Nélio Jacinto Manuel Ualema, Lucely Nogueira dos Santos, Stanislau Bogusz and Nelson Rosa Ferreira
Foods 2024, 13(18), 2956; https://doi.org/10.3390/foods13182956 - 18 Sep 2024
Cited by 2 | Viewed by 3158
Abstract
Beer is a popular beverage consumed globally, and studies have emphasized the benefits of moderate consumption as well as its sensory effects on consumers. Color is a crucial sensory attribute, being the first aspect a consumer notices when assessing a beer’s quality. This [...] Read more.
Beer is a popular beverage consumed globally, and studies have emphasized the benefits of moderate consumption as well as its sensory effects on consumers. Color is a crucial sensory attribute, being the first aspect a consumer notices when assessing a beer’s quality. This review seeks to offer detailed insights into how brewing methods, raw materials, and the chemical diversity of beer influence the production of beer color. The chemical mechanisms responsible for color development and how consumers and color systems perceive the color of beer were assessed. A systematic review following the PRISMA methodology, coupled with a bibliometric analysis, was performed using (Rayyan 2022) and (VOSviewer 1.6.20) software to assess and evaluate the scientific research retrieved from the Web of Science Core Collection. The findings highlight the significant roles of malt types, heat brewing processes, control of chemical parameters, and innovative brewing techniques in conventional beer color production. Novel chromophores like perlolyrine, pyrrolothiazolate, and furpenthiazinate are thought to affect Pilsen-style beers, along with melanoidins, Strecker aldehydes, and 5-hydroxymethylfurfural (HMF) in conventional beers. In craft beers, such as fruit- or herb-based beers, flavonoids like anthocyanins, along with other natural pigments and synthetic colorants, are identified as the primary sources of color. However, studies related to the influence of chromophores like perlolyrine, pyrrolothiazolate, and furpenthiazinate on beer color are scarce, and emerging additives, such as pigments from microorganisms, spices, exotic herbs, and leaves of plants, on craft beer offer insights for future research. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

16 pages, 2514 KiB  
Article
Influence of Drying and Storage Conditions on the Volatile Organic Compounds Profile of Spirulina Platensis
by Alberto Ughetti, Veronica D’Eusanio, Lorenzo Strani, Andrea Luca Russo and Fabrizio Roncaglia
Separations 2024, 11(6), 180; https://doi.org/10.3390/separations11060180 - 10 Jun 2024
Cited by 2 | Viewed by 2529
Abstract
Spirulina platensis (SP) has gained popularity over the last few years, owing to its remarkable nutritional properties and high potential across various industrial sectors. In this study, we analyzed the volatile profile of eight SP samples from the same strain subjected to different [...] Read more.
Spirulina platensis (SP) has gained popularity over the last few years, owing to its remarkable nutritional properties and high potential across various industrial sectors. In this study, we analyzed the volatile profile of eight SP samples from the same strain subjected to different drying (oven-drying, air-drying, and spray-drying) and storing conditions (“freshly prepared” and after 12 months of storage) using HS-SPME-GC-MS. Principal component analysis (PCA) was used as a multivariate technique to discern similarities and differences among the samples. The main aim was to assess the impact of the drying technique on the aroma profile and storage life of SP samples. Air-drying leads to the less pronounced formation of by-products related to heat treatment, such as Maillard and Strecker degradation compounds, but promotes oxidative and fermentative phenomena, with the formation of organic acids and esters, especially during storage. Thermal treatment, essential for limiting degradation and fermentation during storage and extending shelf life, alters the aroma profile through the formation of volatile compounds, such as Strecker aldehydes and linear aldehydes, from amino acid and lipid degradation. High temperatures in spray-drying favor the formation of pyrazines. The findings underscore the trade-offs inherent in choosing an appropriate drying method, thereby informing decision-making processes in industrial settings aimed at optimizing both product quality and efficiency. Full article
(This article belongs to the Special Issue Advanced Research on Extraction and Analysis of Plant Extracts)
Show Figures

Figure 1

19 pages, 3438 KiB  
Article
The Influence of Cooking Methods and Muscle on Beef Aroma Profile and Consumer Satisfaction: Insights from Volatile Compound Analysis
by Iwona Wojtasik-Kalinowska, Linda J. Farmer, Terence D. J. Hagan, Alan W. Gordon, Rod Polkinghorne, Grzegorz Pogorzelski, Agnieszka Wierzbicka and Andrzej Poltorak
Appl. Sci. 2024, 14(11), 4477; https://doi.org/10.3390/app14114477 - 24 May 2024
Cited by 4 | Viewed by 2250
Abstract
The objective of this study is to determine the effect of two distinct cooking techniques, namely roasting and stewing, on the formation of volatile compounds in various beef muscles (Semimembranosus, Biceps femoris, and Rectus femoris) and how this relates [...] Read more.
The objective of this study is to determine the effect of two distinct cooking techniques, namely roasting and stewing, on the formation of volatile compounds in various beef muscles (Semimembranosus, Biceps femoris, and Rectus femoris) and how this relates to consumer acceptance. The research employs the concept of volatile “marker” compounds to discern the influence of cooking techniques on the flavor profile of beef. Eighteen “marker compounds” were selected to represent a number of the mechanisms of formation and quantified in beef subjected to two different cooking methods. While no statistically significant differences were observed in consumer evaluations between the two cooking methods, notable disparities emerged in the consumer assessments of specific muscle cuts. Notably, the Rectus femoris muscle received the highest ratings (p < 0.05) among other evaluated muscles. The utilization of Solid-Phase Microextraction (SPME) and gas chromatography–mass spectrometry (GC-MS) methods for the analysis of volatile “marker compounds” in beef proved effective in highlighting significant differences in flavor compound classes between cooking methods, and these differed between muscles. The main effect was of the cooking method with stewed beef aroma having approximately 39× more dimethyl trisulphide, 9× more dimethyl disulphide, 7× more pentanal, 3× more hexanal, and twice as much benzaldehyde and 2-methylthiophene. Dimethyldisulphide, dimethyltrisulphide, hexanal, and heptanal, therefore, emerged as characteristic volatile compounds associated with the stewing cooking technique, suggesting their potential as markers for lipid and other oxidation reactions. This work indicates that certain lipid oxidation compounds, Strecker aldehydes, and sulfur compounds can be markers for the undesirable and/or desirable flavors of cooked beef, but that this depends on the cooking method chosen. It shows that flavor differences may be understood through the analysis of volatile flavor compounds in association with palatability and other chemical measurements. Full article
Show Figures

Figure 1

17 pages, 1634 KiB  
Article
Use of Botanical Ingredients: Nice Opportunities to Avoid Premature Oxidation of NABLABs by Increasing Their ORAC Values Strongly Impacted by Dealcoholization or Pasteurization
by Margaux Simon, Hubert Kageruka and Sonia Collin
Molecules 2024, 29(10), 2370; https://doi.org/10.3390/molecules29102370 - 17 May 2024
Cited by 4 | Viewed by 1164
Abstract
Even when fresh, non-alcoholic, and low-alcoholic beers (NABLABs) exhibit significant staling defects due to premature oxidation. In this study, the antioxidant power of eleven fresh commercial NABLABs was assessed by means of three different assays: the oxygen radical absorbance capacity (ORAC), the linoleic [...] Read more.
Even when fresh, non-alcoholic, and low-alcoholic beers (NABLABs) exhibit significant staling defects due to premature oxidation. In this study, the antioxidant power of eleven fresh commercial NABLABs was assessed by means of three different assays: the oxygen radical absorbance capacity (ORAC), the linoleic acid-induced oxidation (TINH), and the indicator time test (ITT). Only the first two assays, both involving radicalar degradations initiated by AAPH, were found to correlate with each other. NABLABs displayed lower ORAC values than conventional beers (on average, 6127 μmol eq. Trolox/L), except for three samples made with special-colored malts or dry-hopped. Dealcoholization was the step with the greatest impact on the ORAC value (up to a 95% loss) and on flavan-3-ols, sotolon, and polyfunctional thiols, while pasteurization strongly affected color, TBA, and Strecker aldehydes. ORAC assays applied to hop, alternative cereals, and various botanical ingredients indicated that mashing with red sorghum, dry hopping/spicing, and wood maturation could bring the antioxidant power of a NABLAB close to those of conventional beers. With an ORAC value not reached by any other tested botanical ingredient (5234 µmol eq. Trolox/g), African Vernonia amygdalina leaves (traditionally used for Rwandan Ikigage beers) emerged here as the best candidate. Full article
(This article belongs to the Section Flavours and Fragrances)
Show Figures

Figure 1

23 pages, 4677 KiB  
Article
Comparison of Storage-Related Volatile Profiles and Sensory Properties of Cookies Containing Xylitol or Sucrose
by Jaroslawa Rutkowska, Damian Baranowski, Agata Antoniewska-Krzeska and Eliza Kostyra
Foods 2023, 12(23), 4270; https://doi.org/10.3390/foods12234270 - 26 Nov 2023
Cited by 9 | Viewed by 3420
Abstract
Excessive consumption of simple sugars is responsible for non-communicable diseases such as obesity, cardiovascular diseases, and diabetes. Xylitol has anticarcinogenic, prebiotic-like characteristics and a lower glycaemic index and caloric value than sugars, which makes it a valuable alternative sweetener. The aim of this [...] Read more.
Excessive consumption of simple sugars is responsible for non-communicable diseases such as obesity, cardiovascular diseases, and diabetes. Xylitol has anticarcinogenic, prebiotic-like characteristics and a lower glycaemic index and caloric value than sugars, which makes it a valuable alternative sweetener. The aim of this study was to examine the effects of storage of volatile compounds and sensory profiles of cookies containing xylitol as a sucrose alternative or sucrose by applying solid-phase microextraction gas chromatography/mass spectrometry and quantitative descriptive analysis. The volatile compound profiles of both kinds of cookies were similar, especially regarding markers of Maillard reactions (Strecker aldehydes, pyrazines) and unfavourable compounds (aldehydes, hydrocarbons, and organic acids). Throughout the period of storage lasting 0–9 months, the total content of hydrocarbons was stable and averaged 10.2% in xylitol cookies and 12.8% in sucrose cookies; their storage for 12 months significantly (p < 0.05) increased the contents to 58.2% and 60.35%, respectively. Unlike sucrose, xylitol improved the stability of the pH and water activity of cookies and sensory attributes such as buttery aroma and texture characteristics during 12 months of storage. The results indicated that 9 months of cookie storage was the maximum recommended period. The inclusion of xylitol in cookies might replace sucrose and high-fructose-corn syrup and synthetic additives commonly used in industrial production. Full article
(This article belongs to the Special Issue Food Flavor Chemistry and Sensory Evaluation)
Show Figures

Figure 1

11 pages, 2037 KiB  
Article
Effect of Wort Boiling System and Hopping Regime on Wort and Beer Stale-Flavor Aldehydes
by Alexandr Mikyška and Karel Štěrba
Foods 2023, 12(16), 3111; https://doi.org/10.3390/foods12163111 - 18 Aug 2023
Cited by 1 | Viewed by 1883
Abstract
The main factor responsible for the sensory aging of beer is the increase in off-flavor aldehydes during beer storage. In pilot brews (200 L) of pale lager beer with different hopping regimes and wort boiling systems, 15 carbonyls were monitored using the GC-MS [...] Read more.
The main factor responsible for the sensory aging of beer is the increase in off-flavor aldehydes during beer storage. In pilot brews (200 L) of pale lager beer with different hopping regimes and wort boiling systems, 15 carbonyls were monitored using the GC-MS method. Factor analysis revealed several groups of aldehydes with similar behavior during wort boiling. The concentration of most of them decreased with atmospheric wort boiling and increased with the time and energy-saving pressurized boiling system. Wort clarification was a critical step because of the increase in carbonyl concentration, with the level of most carbonyls being higher in the final wort compared to sweet wort. The hopping regimes only affected the level of 3-methylbutan-2-one in the wort. The concentration of carbonyls decreased significantly (30–90%) during fermentation, except for trans-2-butenal, which increased by 59% on average, likely due to the release from imine complex. The concentration of free aldehydes in the fresh beers was similar for all variants used, but the pressurized wort boiling system could result in lower sensory stability of the beer due to the release of aldehydes from inactive complexes formed during fermentation. This aspect requires further investigation. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

14 pages, 1567 KiB  
Article
Effects of Non-Enzymatic Browning and Lipid Oxidation on Color of Ready-to-Eat Abalone during Accelerated Storage and Its Control
by Yingchen Fan, Manman Yu, Deyang Li, Guanhua Zhao, Min Zhang, Zonghan Wang, Yuxin Liu and Dayong Zhou
Foods 2023, 12(7), 1514; https://doi.org/10.3390/foods12071514 - 3 Apr 2023
Cited by 15 | Viewed by 3599
Abstract
The deepening of color of ready-to-eat (RTE) abalone during storage leads to sensory quality degradation, which seriously affects the shelf life of products and consumers’ purchasing desire. The goal of this study is to look into the causes of non-enzymatic browning and lipid [...] Read more.
The deepening of color of ready-to-eat (RTE) abalone during storage leads to sensory quality degradation, which seriously affects the shelf life of products and consumers’ purchasing desire. The goal of this study is to look into the causes of non-enzymatic browning and lipid oxidation, as well as how to control them, and their effect on the color of RTE abalone during storage. The control, bloodletting and antioxidants groups (lactic acid, citric acid and 4-hexylresorcinol) of RTE abalone were stored for 0, 20 and 40 days at 40 °C, respectively, to explore the rule and mechanism of the color change in RTE abalone. This research shows that RTE abalone undergoes browning during storage. Meanwhile, the content of reducing sugar, phenols and unsaturated fatty acids decreases, while the formation of lipid hydroperoxides and aldehydes increases during storage. In addition, the color change in RTE abalone during storage is mainly related to the Maillard reaction, while the lipid oxidation mainly forms pyrrole and participates in the Strecker degradation process as part of the Maillard reaction. The quality of RTE abalone can be maintained by controlling browning effectively as well as lipid oxidation through bloodletting and the addition of antioxidants to ensure that RTE abalone has high storage stability. According to our research, bloodletting and the addition of antioxidants to RTE abalone have a good application prospect and popularizing value in the storage of RTE abalone. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

16 pages, 3205 KiB  
Article
Differentiating Huangjiu with Varying Sugar Contents from Different Regions Based on Targeted Metabolomics Analyses of Volatile Carbonyl Compounds
by Junting Yu, Zhilei Zhou, Xibiao Xu, Huan Ren, Min Gong, Zhongwei Ji, Shuangping Liu, Zhiming Hu and Jian Mao
Foods 2023, 12(7), 1455; https://doi.org/10.3390/foods12071455 - 29 Mar 2023
Cited by 15 | Viewed by 2322
Abstract
Huangjiu is one of the oldest alcoholic beverages in the world. It is usually made by fermenting grains, and Qu is used as a saccharifying and fermenting agent. In this study, we identified differential carbonyl compounds in Huangjiu with varying sugar contents from [...] Read more.
Huangjiu is one of the oldest alcoholic beverages in the world. It is usually made by fermenting grains, and Qu is used as a saccharifying and fermenting agent. In this study, we identified differential carbonyl compounds in Huangjiu with varying sugar contents from different regions. First, we developed and validated a detection method for volatile carbonyl compounds in Huangjiu, and for optimal extraction, 5 mL of Huangjiu and 1.3 g/L of O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) were incubated at 45 °C for 5 min before extracting the volatile carbonyl compounds at 45 °C for 35 min. Second, the targeted quantitative analysis of 50 carbonyl compounds in Huangjiu showed high levels of Strecker aldehydes and furans. Finally, orthogonal projections to latent structures discriminant analysis (OPLS-DA) was used to differentiate between Huangjiu with different sugar contents, raw materials, and region of origin. A total of 19 differential carbonyl compounds (VIP > 1, p < 0.05) were found in Huangjiu with different sugar contents (semidry and semisweet Huangjiu), and 20 differential carbonyl compounds (VIP > 1, p < 0.05) were found in different raw materials for Huangjiu production (rice and nonrice Huangjiu). A total of twenty-two and eight differential carbonyl compounds, with VIP > 1 and p < 0.05, were identified in semidry and semisweet Huangjiu from different regions (Zhejiang, Jiangsu, Shanghai, and Fujian), respectively. Full article
Show Figures

Figure 1

32 pages, 18259 KiB  
Review
Catalytic Efficiency of Primary α-Amino Amides as Multifunctional Organocatalysts in Recent Asymmetric Organic Transformations
by Ummareddy Venkata Subba Reddy, Bheemreddy Anusha, Zubeda Begum, Chigusa Seki, Yuko Okuyama, Michio Tokiwa, Suguru Tokiwa, Mitsuhiro Takeshita and Hiroto Nakano
Catalysts 2022, 12(12), 1674; https://doi.org/10.3390/catal12121674 - 19 Dec 2022
Cited by 5 | Viewed by 3470
Abstract
Chiral primary α-amino amides, consisting of an adjacent enamine bonding site (Bronsted base site), a hydrogen bonding site (Bronsted acid site), and flexible bulky substituent groups to modify the steric factor, are proving to be extremely valuable bifunctional organocatalysts for a wide range [...] Read more.
Chiral primary α-amino amides, consisting of an adjacent enamine bonding site (Bronsted base site), a hydrogen bonding site (Bronsted acid site), and flexible bulky substituent groups to modify the steric factor, are proving to be extremely valuable bifunctional organocatalysts for a wide range of asymmetric organic transformations. Primary α-amino amides are less expensive alternatives to other primary amino organocatalysts, such as chiral diamines and cinchona-alkaloid-derived primary amines, as they are easy to synthesize, air-stable, and allow for the incorporation of a variety of functional groups. In recent years, we have demonstrated the catalytic use of simple primary α-amino amides and their derivatives as organocatalysts for the aldol reaction, Strecker reaction, Michael tandem reaction, allylation of aldehydes, reduction of N-Aryl mines, opening of epoxides, hydrosilylation, asymmetric hydrogen transfer, and N-specific nitrosobenzene reaction with aldehydes. Full article
(This article belongs to the Special Issue Advances in Asymmetric Organocatalytic Reactions)
Show Figures

Graphical abstract

16 pages, 1521 KiB  
Review
Role of Lipids in Food Flavor Generation
by Fereidoon Shahidi and Abul Hossain
Molecules 2022, 27(15), 5014; https://doi.org/10.3390/molecules27155014 - 6 Aug 2022
Cited by 291 | Viewed by 18018
Abstract
Lipids in food are a source of essential fatty acids and also play a crucial role in flavor and off-flavor development. Lipids contribute to food flavor generation due to their degradation to volatile compounds during food processing, heating/cooking, and storage and/or interactions with [...] Read more.
Lipids in food are a source of essential fatty acids and also play a crucial role in flavor and off-flavor development. Lipids contribute to food flavor generation due to their degradation to volatile compounds during food processing, heating/cooking, and storage and/or interactions with other constituents developed from the Maillard reaction and Strecker degradation, among others. The degradation of lipids mainly occurs via autoxidation, photooxidation, and enzymatic oxidation, which produce a myriad of volatile compounds. The oxidation of unsaturated fatty acids generates hydroperoxides that then further break down to odor-active volatile secondary lipid oxidation products including aldehydes, alcohols, and ketones. In this contribution, a summary of the most relevant and recent findings on the production of volatile compounds from lipid degradation and Maillard reactions and their interaction has been compiled and discussed. In particular, the effects of processing such as cooking, drying, and fermentation as well as the storage of lipid-based foods on flavor generation are briefly discussed. Full article
Show Figures

Figure 1

13 pages, 1404 KiB  
Article
Factors That Affect the Accumulation of Strecker Aldehydes in Standardized Wines: The Importance of pH in Oxidation
by Almudena Marrufo-Curtido, Vicente Ferreira and Ana Escudero
Molecules 2022, 27(10), 3056; https://doi.org/10.3390/molecules27103056 - 10 May 2022
Cited by 9 | Viewed by 2435
Abstract
Strecker aldehydes (SA) can be formed in wine from the degradation of Strecker and, to a lesser degree, via the oxidation of higher alcohols. The objective of this article is to assess the magnitude of the differences introduced by wine compositional factors other [...] Read more.
Strecker aldehydes (SA) can be formed in wine from the degradation of Strecker and, to a lesser degree, via the oxidation of higher alcohols. The objective of this article is to assess the magnitude of the differences introduced by wine compositional factors other than amino acids and Fe, in the accumulation of SA during oxidation. Eight red, two rosé and two white wines were oxidized. The accumulation of SA was analyzed. Whites and rosés presented negative accumulations for isobutyraldehyde, and in general, these wines accumulated smaller concentrations of the other SA than red wines. Only methional and phenylacetaldehyde were accumulated in all of the wines during oxidation. 2-methylbutanal and 3-methylbutanal were accumulated in 9 out of the 12 wines, whereas isobutyraldehyde was accumulated only in 5 out of the 12. 2-methylbutanal was, on average, the least accumulated aldehyde. Methional was the aldehyde formed most homogenously. Most of the observed differences can be attributed to three factors: the pH, oxidation time and native levels of Strecker aldehydes. The influence of pH was particularly intense in the cases of phenylacetaldehyde and methional. An independent test using synthetic wines with Strecker amino acids and 4-methylcatechol with different pHs (4.2, 3.5 and 2.8) was carried out in order to verify the higher pH value, the greater accumulation in SA after oxidation process. The results strongly suggest the important role played by pH in the accumulation of SA in wine oxidation. Full article
(This article belongs to the Special Issue Recent Advances and Future Challenges in Food Analysis)
Show Figures

Figure 1

18 pages, 2369 KiB  
Article
Maturation of Moristel in Different Vineyards: Amino Acid and Aroma Composition of Mistelles and Wines with Particular Emphasis in Strecker Aldehydes
by Ignacio Arias-Pérez, Ignacio Ontañón, Vicente Ferreira and Ana Escudero
Foods 2022, 11(7), 958; https://doi.org/10.3390/foods11070958 - 25 Mar 2022
Cited by 4 | Viewed by 2416
Abstract
The aim of this article was to assess the influence of the harvest date on the composition of amino acids and derived aromatic compounds in grape-mistelle and wine of the Moristel variety, in different vineyards. Two vineyards were sampled in 2016 and [...] Read more.
The aim of this article was to assess the influence of the harvest date on the composition of amino acids and derived aromatic compounds in grape-mistelle and wine of the Moristel variety, in different vineyards. Two vineyards were sampled in 2016 and another one in 2017. At each sampling point, grapes were collected, destemmed, crushed and divided into four aliquots. The first three were fermented, and the latter was treated with ethanol, to produce 1-week macerates containing 15% ethanol (v/v)-mistelles. Overall, 10 mistelles and 33 wines were produced. Amino acids, Strecker aldehydes and aroma compounds were analysed. Amino acid profiles are characteristic of the vineyard and level of ripeness, converging with maturation. In fermentation, major amino acids, except proline, are consumed at a relatively fixed and specific tax, while consumption of 13 amino acids is determined by the ratios of alanine, glutamic acid, serine and threonine, with γ-aminobutyric acid. After fermentation, amino acid precursors to Strecker aldehydes are maxima in unripe and overripe samples, while Strecker aldehydes are maxima in unripe wines. No direct correlations between precursor amino acids in mistelle and aromatic compounds in wine have been found. Nevertheless, must amino acid profiles could determine wine aroma composition. Full article
(This article belongs to the Special Issue Advance in Grape Derived Product Aroma and Flavour Chemistry)
Show Figures

Figure 1

15 pages, 422 KiB  
Article
Olive Cake Powder as Functional Ingredient to Improve the Quality of Gluten-Free Breadsticks
by Giuditta de Gennaro, Graziana Difonzo, Carmine Summo, Antonella Pasqualone and Francesco Caponio
Foods 2022, 11(4), 552; https://doi.org/10.3390/foods11040552 - 15 Feb 2022
Cited by 17 | Viewed by 3479
Abstract
The growing demand for high-quality gluten-free baked snacks has led researchers to test innovative ingredients. The aim of this work was to assess the feasibility of olive cake powder (OCP) to be used as a functional ingredient in gluten-free (GF) breadsticks. OCP was [...] Read more.
The growing demand for high-quality gluten-free baked snacks has led researchers to test innovative ingredients. The aim of this work was to assess the feasibility of olive cake powder (OCP) to be used as a functional ingredient in gluten-free (GF) breadsticks. OCP was used by replacing 1, 2, and 3% of maize flour into GF breadstick production (BS1, BS2, BS3, respectively), and their influence on nutritional, bioactive, textural, and sensorial properties was assessed and compared with a control sample (BSC). BS1, BS2, and BS3 showed a higher lipid, moisture, and ash content. BS2 and BS3 had a total dietary fibre higher than 3 g 100 g−1, achieving the nutritional requirement for it to be labelled as a “source of fibre”. The increasing replacement of olive cake in the formulation resulted in progressively higher total phenol content and antioxidant activity for fortified GF breadsticks. The L* and b* values decreased in all enriched GF breadsticks when compared with the control, while hardness was the lowest in BS3. The volatile profile highlighted a significant reduction in aldehydes, markers of lipid oxidation, and Maillard products (Strecker aldehydes, pyrazines, furans, ketones) in BS1, BS2, and BS3 when compared with BSC. The sensory profile showed a strong influence of OCP addition on GF breadsticks for almost all the parameters considered, with a higher overall pleasantness score for BS2 and BS3. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

15 pages, 1751 KiB  
Article
Assessment of Staling Aldehydes in Lager Beer under Maritime Transport and Storage Conditions
by Dayana Aguiar, Ana C. Pereira and José C. Marques
Molecules 2022, 27(3), 600; https://doi.org/10.3390/molecules27030600 - 18 Jan 2022
Cited by 4 | Viewed by 2504
Abstract
Beer flavor stability is greatly influenced by external temperature, vibrations, and longer delivery times. The present study assessed the impact of transport and storage conditions on staling aldehyde evolution in lager beers across five sample groups (fresh, transport, and storage simulation, and their [...] Read more.
Beer flavor stability is greatly influenced by external temperature, vibrations, and longer delivery times. The present study assessed the impact of transport and storage conditions on staling aldehyde evolution in lager beers across five sample groups (fresh, transport, and storage simulation, and their controls), which differed in their bottle opening system (either crown cap or ring pull cap). Maritime transport conditions (45 days of travel, vibrations of 1.7 Hz, and warm temperatures (21–30 °C)) were simulated, together with storage time in a distributor’s warehouse (up to 75 days). The results revealed that the concentration of Strecker aldehydes increased more quickly after transport and storage simulation in beer bottles with the ring pull cap opening system, and the contents of 2-methylpropanal and 3-methylbutanal, in particular, were up to three times higher. Benzaldehyde content also increased significantly, by 33% on average, in these samples. Hexanal was only found in beers with a ring pull cap that underwent transport simulation. Further storage after transport simulation significantly reduced the content of 2-methylpropanal, 3-methylbutanal, and hexanal, by 73%, 57%, and 43%, respectively, suggesting the formation of a bound state. 5-hydroxymethylfurfural was continuously increased by 78.5% and 40.5% after the Transport and Transport & Storage simulations, respectively. Transport conditions lead to a slight increase, of 0.6 EBC units, in beer color. Full article
Show Figures

Figure 1

Back to TopTop