Comparison of Storage-Related Volatile Profiles and Sensory Properties of Cookies Containing Xylitol or Sucrose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cookies
2.2. Physicochemical Properties (Water Activity Determination, pH Measurement) and Microbiological Analysis of Cookies
2.3. Analysis of the Volatile Compound Profile
2.4. Sensory Evaluation of Cookies
2.5. Data Analysis
3. Results and Discussion
3.1. pH Values, Water Activity, and Microbiological Assay
3.2. Profile of Volatile Compounds of Cookies
Volatile Compound (%) | Cc | LRI | CAS No | Odour Description | Cookies with Sucrose | Cookies with Xylitol | Xylitol vs. Sucrose | Storage Time, Sucrose | Storage Time, Xylitol | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fresh | Stored for 12 Months | Fresh | Stored for 12 Months | ||||||||||||||||
11% | 17% | 23% | 11% | 17% | 23% | 11% | 17% | 23% | 11% | 17% | 23% | ||||||||
Cyclobutanol | Alc | - | 2919-23-5 | --- | 2.14 ± 0.16 | 1.84 ± 0.12 | 1.43 ± 0.09 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | * | * | |
Butanal | Ald | - | 123-72-8 | Pungent, cocoa, musty, malty, bready [48] | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.49 ± 0.06 | 1.53 ± 0.07 | 1.56 ± 0.10 | n.d. | n.d. | n.d. | * | * | |
Phenylacetaldehyde | Ald | 1043 | 122-78-1 | Fatty, fruity, cake crust, bready [23] | 0.24 ± 0.04 | 0.38 ± 0.01 | 0.40 ± 0.03 | n.d. | n.d. | n.d. | 0.34 ± 0.01 | 0.46 ± 0.07 | 0.47 ± 0.05 | n.d. | n.d. | n.d. | * | * | |
4-Methyl-4-Hydroxy-2-Pentanone | K | 836 | 123-42-2 | --- | 1.81 ± 0.24 | 1.34 ± 0.13 | 3.37 ± 0.23 | n.d. | n.d. | n.d. | 1.55 ± 0.17 | 0.71 ± 0.09 | 1.46 ± 0.29 | n.d. | n.d. | n.d. | * | * | * |
5-Methyl-2-Hexanone | K | 896 | 110-12-3 | --- | 0.47 ± 0.06 | 0.43 ± 0.04 | 0.33 ± 0.07 | n.d. | n.d. | n.d. | 0.31 ± 0.04 | 0.31 ± 0.00 | 0.43 ± 0.06 | n.d. | n.d. | n.d. | * | * | |
1-Phenylethanone (Acetophenone) | K | 1065 | 98-86-2 | Sweet, cake crust, burnt [23] | 0.26 ± 0.12 | 0.42 ± 0.04 | 0.40 ± 0.05 | n.d. | n.d. | n.d. | 0.42 ± 0.01 | 0.36 ± 0.04 | 0.42 ± 0.00 | n.d. | n.d. | n.d. | * | * | |
Acetic acid | Ac | - | 64-19-7 | Sharp, pungent, sour, vinegar [27] | 7.93 ± 0.36 | 8.38 ± 0.69 | 11.33 ± 0.48 | n.d. | n.d. | n.d. | 6.97 ± 0.58 | 8.30 ± 0.16 | 7.74 ± 0.27 | n.d. | n.d. | n.d. | * | * | * |
Butyl acetate | E | 813,5 | 123-86-4 | Ethereal, solvent, fruity, banana [48] | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.19 ± 0.11 | 0.11 ± 0.04 | 0.28 ± 0.08 | n.d. | n.d. | n.d. | * | * | |
Butyl 3-methylbutyrate | E | 1050 | 109-19-3 | --- | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.22 ± 0.11 | 0.55 ± 0.08 | 0.62 ± 0.14 | n.d. | n.d. | n.d. | * | * | |
Methylpyrazine | P | 818 | 109-08-0 | Nutty, cocoa, roasted, chocolate, peanut [48] | 0.20 ± 0.06 | 0.29 ± 0.03 | 0.39 ± 0.10 | n.d. | n.d. | n.d. | 0.17 ± 0.10 | 0.54 ± 0.13 | 0.94 ± 0.10 | n.d. | n.d. | n.d. | * | * | |
2,5-Dimethylpyrazine | P | 910 | 123-32-0 | cake crust, nutty, bready [23] | 0.95 ± 0.31 | 1.67 ± 0.22 | 1.54 ± 0.01 | n.d. | n.d. | n.d. | 1.13 ± 0.19 | 1.11 ± 0.06 | 0.66 ± 0.03 | n.d. | n.d. | n.d. | * | * | |
2,6-Dimethylpyrazine | P | 915 | 108-50-9 | Cocoa, coffee, green, roast beef, roasted nut, roasted [32] | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.34 ± 0.08 | 0.69 ± 0.01 | 0.82 ± 0.13 | n.d. | n.d. | n.d. | * | * | |
2,3,5-Trimethylpyrazine | P | 1000 | 14667-55-1 | Cocoa, earthy, must, potato, roast [32] | 0.65 ± 0.08 | 0.94 ± 0.06 | 1.10 ± 0.14 | n.d. | n.d. | n.d. | 0.41 ± 0.24 | 0.60 ± 0.01 | 0.58 ± 0.01 | n.d. | n.d. | n.d. | * | * | |
3-Ethyl-2,5-Dimethylpyrazine | P | 1069 | 13360-65-1 | Potato, cocoa, roasted, nutty [48] | 0.13 ± 0.04 | 0.27 ± 0.01 | 0.29 ± 0.01 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | * | * | |
1,4-Dichlorobenzene | Hc | 1006 | 106-46-7 | --- | 0.62 ± 0.05 | 0.62 ± 0.02 | 0.62 ± 0.04 | n.d. | n.d. | n.d. | 0.63 ± 0.08 | 0.60 ± 0.01 | 1.50 ± 0.01 | n.d. | n.d. | n.d. | * | * | |
2-furancarboxy aldehyde | Fc | 833 | 98-01-1 | Spicy, bready [23] | 0.12 ± 0.06 | 0.29 ± 0.01 | 0.37 ± 0.04 | n.d. | n.d. | n.d. | 0.04 ± 0.01 | 0.19 ± 0.04 | 0.20 ± 0.07 | n.d. | n.d. | n.d. | * | * | |
Ethanol | Alc | - | 64-17-5 | Sweet, alcoholic [49] | 2.88 ± 0.19 | 2.50 ± 0.28 | 2.03 ± 0.05 | 1.39 ± 0.06 | 1.40 ± 0.20 | 1.74 ± 0.32 | 2.42 ± 0.19 | 2.59 ± 0.13 | 1.38 ± 0.06 | 3.20 ± 0.35 | 2.29 ± 0.16 | 2.20 ± 0.02 | * | ||
3-Methylbutanal | Ald | 643 | 590-86-3 | Musty, cocoa, coffee, nutty [27] | 4.51 ± 0.89 | 4.29 ± 0.28 | 5.85 ± 0.35 | 1.64 ± 0.31 | 1.90 ± 0.01 | 1.69 ± 0.13 | 4.42 ± 0.64 | 5.42 ± 0.23 | 7.87 ± 0.31 | 2.03 ± 0.02 | 2.84 ± 0.45 | 2.40 ± 0.45 | * | * | * |
2-Methylbutanal | Ald | 653,5 | 96-17-3 | Ethereal, aldehydic, chocolate, peach, fatty [28] | 4.57 ± 0.81 | 5.09 ± 0.42 | 6.00 ± 0.21 | 3.00 ± 0.44 | 3.73 ± 0.05 | 4.43 ± 0.41 | 5.18 ± 0.33 | 6.14 ± 0.41 | 7.87 ± 0.12 | 3.12 ± 0.07 | 4.21 ± 0.58 | 5.02 ± 0.17 | * | * | * |
Pentanal | Ald | 696 | 110-62-3 | Fermented, bready, fruity, nutty, berry [48] | 4.23 ± 0.32 | 3.73 ± 0.24 | 3.41 ± 0.09 | 3.10 ± 0.32 | 3.29 ± 0.17 | 3.85 ± 0.41 | 4.54 ± 0.24 | 4.21 ± 0.11 | 3.71 ± 0.03 | 6.02 ± 0.48 | 6.03 ± 0.61 | 4.54 ± 0.05 | * | * | * |
Hexanal | Ald | 798 | 66-25-1 | Green, fatty, leafy, fruity, aldehydic, sweaty, grass [27] | 5.25 ± 0.36 | 3.89 ± 0.45 | 3.89 ± 0.07 | 0.99 ± 0.09 | 0.87 ± 0.14 | 1.44 ± 0.25 | 5.64 ± 0.15 | 5.75 ± 0.52 | 4.00 ± 0.13 | 1.53 ± 0.03 | 1.79 ± 0.12 | 2.16 ± 0.66 | * | * | * |
Heptanal | Ald | 901 | 111-71-7 | Fresh, green, sweet, herbal, wine-lee, ozone [27] | 2.02 ± 0.14 | 1.47 ± 0.02 | 1.24 ± 0.05 | 0.34 ± 0.05 | 0.36 ± 0.01 | 0.60 ± 0.06 | 1.69 ± 0.21 | 1.66 ± 0.01 | 1.33 ± 0.04 | 0.58 ± 0.05 | 0.53 ± 0.02 | 0.54 ± 0.04 | * | * | * |
Benzaldehyde | Ald | 960 | 100-52-7 | Strong, sharp, sweet, bitter, almond, cherry [27] | 0.58 ± 0.11 | 1.30 ± 0.13 | 0.42 ± 0.02 | 0.13 ± 0.06 | 0.17 ± 0.03 | 0.28 ± 0.04 | 0.97 ± 0.15 | 0.93 ± 0.01 | 0.89 ± 0.08 | 0.21 ± 0.05 | 0.26 ± 0.07 | 0.28 ± 0.02 | * | * | * |
Octanal | Ald | 1003 | 124-13-0 | Aldehydic, waxy, citrus, orange, green, peel [27] | 0.93 ± 0.01 | 0.94 ± 0.01 | 1.00 ± 0.06 | 1.12 ± 0.37 | 1.06 ± 0.30 | 0.95 ± 0.01 | 0.83 ± 0.18 | 0.89 ± 0.04 | 0.65 ± 0.00 | 1.24 ± 0.02 | 0.91 ± 0.07 | 0.89 ± 0.02 | * | * | |
Nonanal | Ald | 1104 | 124-19-6 | Bready, cake crust [23] | 5.35 ± 0.46 | 4.09 ± 0.06 | 3.73 ± 0.06 | 5.92 ± 0.05 | 7.92 ± 0.27 | 4.61 ± 0.17 | 5.42 ± 0.21 | 4.46 ± 0.19 | 2.39 ± 0.03 | 3.22 ± 0.21 | 3.29 ± 0.15 | 3.39 ± 0.32 | * | * | * |
Decanal | Ald | 1206 | 112-31-2 | Sweet, waxy, orange peel, citrus, floral [27] | 0.32 ± 0.01 | 0.24 ± 0.00 | 0.16 ± 0.23 | 0.28 ± 0.05 | 0.29 ± 0.01 | 0.40 ± 0.06 | n.d. | n.d. | n.d. | 0.31 ± 0.04 | 0.35 ± 0.01 | 0.45 ± 0.02 | * | * | * |
Acetone (2-Propanon) | K | - | 67-64-1 | --- | 5.11 ± 0.47 | 4.58 ± 0.24 | 3.76 ± 0.46 | n.d. | n.d. | n.d. | 9.23 ± 0.71 | 8.51 ± 0.59 | 8.37 ± 0.37 | 5.18 ± 0.70 | 6.57 ± 0.66 | 5.68 ± 0.40 | * | * | * |
2-Pentanone | K | 681,5 | 107-87-9 | --- | 2.77 ± 0.14 | 2.43 ± 0.25 | 2.56 ± 0.11 | n.d. | n.d. | n.d. | 2.24 ± 0.12 | 2.24 ± 0.08 | 2.72 ± 0.05 | 0.59 ± 0.26 | 0.82 ± 0.02 | 0.91 ± 0.28 | * | * | * |
3-Hydroxy-2-Butanone (Acetoin) | K | 706 | 513-86-0 | Buttery, creamy, dairy, milky, fatty, sweet yogurt [50] | 3.11 ± 0.33 | 1.97 ± 0.16 | 2.02 ± 0.51 | 0.87 ± 0.13 | 0.87 ± 0.14 | 1.17 ± 0.27 | 2.49 ± 0.57 | 3.60 ± 1.00 | 2.07 ± 0.23 | 1.50 ± 0.49 | 2.58 ± 0.14 | 2.15 ± 0.72 | * | * | * |
2-Heptanone | K | 890 | 110-43-0 | Fruity, sweet [50] | 15.69 ± 0.71 | 16.35 ± 0.68 | 13.47 ± 0.55 | 0.11 ± 0.02 | 0.17 ± 0.01 | 0.22 ± 0.04 | 13.28 ± 0.07 | 13.74 ± 0.35 | 17.86 ± 0.36 | 0.33 ± 0.04 | 0.26 ± 0.02 | 0.27 ± 0.01 | * | * | |
2-Nonanone | K | 1093 | 821-55-6 | Fruity, hot milk [50] | 7.36 ± 0.62 | 8.17 ± 0.46 | 8.55 ± 0.06 | 0.79 ± 0.02 | 1.09 ± 0.05 | 1.52 ± 0.03 | 7.44 ± 0.32 | 7.81 ± 0.32 | 6.22 ± 0.23 | 0.28 ± 0.03 | 0.29 ± 0.06 | 0.34 ± 0.03 | * | * | * |
2-Undecanone | K | 1294 | 112-12-9 | Fruity, waxy [48] | 1.30 ± 0.03 | 1.54 ± 0.08 | 1.88 ± 0.17 | 0.88 ± 0.11 | 1.12 ± 0.13 | 1.45 ± 0.31 | 1.42 ± 0.08 | 1.76 ± 0.13 | 1.29 ± 0.17 | 0.63 ± 0.06 | 0.83 ± 0.03 | 0.84 ± 0.11 | * | * | |
Butanoic acid | Ac | 788 | 107-92-6 | Sharp, sour, acetic, cheesy [48] | 1.98 ± 0.39 | 2.50 ± 1.04 | 1.74 ± 0.36 | 9.16 ± 0.56 | 5.11 ± 0.22 | 7.93 ± 0.98 | 0.72 ± 0.28 | 0.53 ± 0.12 | 0.34 ± 0.09 | 8.60 ± 0.27 | 4.94 ± 0.10 | 3.24 ± 0.27 | * | * | * |
Hexanoic acid | Ac | 994 | 142-62-1 | Mild, sour, fatty, sweet, cheesy [27] | 0.91 ± 0.17 | 3.20 ± 1.10 | 5.12 ± 0.77 | 6.15 ± 0.91 | 5.46 ± 0.73 | 4.48 ± 0.25 | 1.18 ± 0.05 | 1.01 ± 0.25 | 0.94 ± 0.05 | 5.92 ± 0.75 | 2.70 ± 0.09 | 2.75 ± 1.34 | * | * | * |
α-(+)-Pinene | T | 939 | 80-56-8 | Fresh, camphoreous, sweet, pine, earthy, woody [48] | 0.35 ± 0.06 | 0.44 ± 0.11 | 0.51 ± 0.24 | 0.04 ± 0.00 | 0.05 ± 0.00 | 0.05 ± 0.01 | 0.38 ± 0.12 | 0.32 ± 0.01 | 0.32 ± 0.06 | 0.11 ± 0.02 | 0.08 ± 0.01 | 0.08 ± 0.03 | * | * | * |
D-Limonene | T | 1026 | 5989-27-5 | Citrus, orange, fresh, sweet, [48] | 2.84 ± 0.30 | 3.06 ± 0.18 | 2.54 ± 0.10 | 0.28 ± 0.05 | 0.37 ± 0.16 | 0.42 ± 0.07 | 3.43 ± 0.13 | 2.85 ± 0.06 | 2.21 ± 0.05 | 0.33 ± 0.05 | 0.26 ± 0.03 | 0.45 ± 0.02 | * | * | * |
Cyclopentane | Hc | - | 287-92-3 | --- | 5.30 ± 0.43 | 4.07 ± 0.28 | 2.57 ± 0.71 | 1.53 ± 0.20 | 1.69 ± 0.31 | 1.71 ± 0.23 | 4.93 ± 0.95 | 2.52 ± 0.11 | 4.05 ± 0.14 | 2.37 ± 0.38 | 2.42 ± 0.14 | 2.17 ± 0.15 | * | * | |
2,2,4,6,6-Pentamethylheptane | Hc | 985,5 | 13475-82-6 | --- | 4.37 ± 0.23 | 4.83 ± 0.28 | 3.85 ± 0.11 | 0.13 ± 0.00 | 0.19 ± 0.01 | 0.24 ± 0.01 | 3.88 ± 0.18 | 3.76 ± 0.03 | 3.04 ± 0.01 | 0.11 ± 0.01 | 0.17 ± 0.04 | 0.22 ± 0.03 | * | * | * |
Dodecane | Hc | 1200 | 112-40-3 | Alkane [27] | 0.19 ± 0.01 | 0.25 ± 0.03 | 0.33 ± 0.02 | 0.31 ± 0.05 | 0.37 ± 0.01 | 0.49 ± 0.08 | 0.23 ± 0.04 | 0.21 ± 0.04 | 0.15 ± 0.03 | 0.33 ± 0.03 | 0.32 ± 0.01 | 0.49 ± 0.07 | * | * | * |
Toluene | Hc | 755 | 108-88-3 | --- | 1.12 ± 0.01 | 0.87 ± 0.02 | 0.60 ± 0.01 | 0.34 ± 0.13 | 0.56 ± 0.02 | 0.57 ± 0.01 | 1.97 ± 0.02 | 1.45 ± 0.10 | 1.37 ± 0.02 | 0.59 ± 0.11 | 0.49 ± 0.08 | 0.54 ± 0.03 | * | * | * |
1,4-Dimethylbenzene (1,4-Xylene; P-Xylene) | Hc | 864 | 106-42-3 | --- | 0.63 ± 0.05 | 0.66 ± 0.14 | 0.65 ± 0.12 | 0.13 ± 0.02 | 0.13 ± 0.00 | 0.21 ± 0.04 | 0.77 ± 0.13 | 0.71 ± 0.01 | 0.51 ± 0.11 | 0.25 ± 0.01 | 0.16 ± 0.00 | 0.17 ± 0.02 | * | * | * |
Styrene (Ethenylbenzene) | Hc | 887 | 100-42-5 | --- | 0.81 ± 0.06 | 0.78 ± 0.05 | 0.56 ± 0.05 | 0.14 ± 0.01 | 0.12 ± 0.01 | 0.14 ± 0.03 | 1.20 ± 0.01 | 0.98 ± 0.06 | 0.77 ± 0.03 | 0.10 ± 0.00 | 0.09 ± 0.03 | 0.35 ± 0.03 | * | * | * |
Octanoic acid | Ac | 1182 | 124-07-2 | Fatty, acid, sour [27] | n.d. | n.d. | n.d. | 2.56 ± 0.30 | 0.48 ± 0.10 | 0.88 ± 0.15 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | * | * | |
Pentane | Hc | - | 109-66-0 | --- | n.d. | n.d. | n.d. | 7.25 ± 0.52 | 2.96 ± 0.62 | 4.70 ± 0.21 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | * | * | |
Hexane | Hc | 598 | 110-54-3 | --- | n.d. | n.d. | n.d. | 51.20 ± 0.47 | 58.05 ± 0.00 | 53.58 ± 0.62 | n.d. | n.d. | n.d. | 50.93 ± 0.37 | 54.12 ± 1.66 | 57.22 ± 1.44 | * | * | |
Tetradecane | Hc | 1399 | 629-59-4 | Mild, waxy [27] | n.d. | n.d. | n.d. | 0.22 ± 0.02 | 0.23 ± 0.00 | 0.32 ± 0.08 | n.d. | n.d. | n.d. | 0.37 ± 0.01 | 0.36 ± 0.03 | 0.30 ± 0.04 | * | * | * |
Total alcohols | 5.02 ± 0.03 | 4.33 ± 0.47 | 3.46 ± 0.04 | 1.39 ± 0.06 | 1.40 ± 0.20 | 1.74 ± 0.32 | 2.42 ± 0.19 | 2.59 ± 0.13 | 1.38 ± 0.06 | 3.20 ± 0.35 | 2.29 ± 0.16 | 2.20 ± 0.02 | * | * | * | ||||
Total aldehydes | 27.99 ± 1.60 | 25.40 ± 1.23 | 26.08 ± 0.25 | 16.52 ± 1.00 | 19.58 ± 0.52 | 18.23 ± 0.45 | 30.50 ± 0.65 | 31.43 ± 0.44 | 30.73 ± 0.03 | 18.27 ± 0.22 | 20.23 ± 0.93 | 19.65 ± 1.34 | * | * | * | ||||
Total ketones | 37.88 ± 1.65 | 37.21 ± 1.35 | 36.34 ± 0.52 | 2.65 ± 0.02 | 3.26 ± 0.05 | 4.36 ± 0.64 | 38.36 ± 1.34 | 39.01 ± 0.35 | 40.85 ± 0.26 | 8.52 ± 0.10 | 11.37 ± 0.54 | 10.19 ± 1.55 | * | * | * | ||||
Total acids | 10.82 ± 0.92 | 14.07 ± 0.75 | 18.19 ± 0.89 | 17.87 ± 1.16 | 11.05 ± 0.40 | 13.28 ± 1.07 | 8.86 ± 0.25 | 9.83 ± 0.28 | 9.03 ± 0.30 | 14.52 ± 0.48 | 7.64 ± 0.01 | 5.99 ± 1.60 | * | * | * | ||||
Total esters | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.40 ± 0.21 | 0.66 ± 0.13 | 0.90 ± 0.22 | n.d. | n.d. | n.d. | * | * | |||||
Total pyrazines | 1.93 ± 0.61 | 3.16 ± 0.59 | 3.32 ± 0.25 | n.d. | n.d. | n.d. | 2.04 ± 0.61 | 2.93 ± 0.21 | 3.00 ± 0.26 | n.d. | n.d. | n.d. | * | * | * | ||||
Total terpenes | 3.19 ± 0.36 | 3.50 ± 0.29 | 3.05 ± 0.35 | 0.32 ± 0.05 | 0.42 ± 0.16 | 0.47 ± 0.06 | 3.81 ± 0.25 | 3.16 ± 0.07 | 2.53 ± 0.12 | 0.43 ± 0.07 | 0.34 ± 0.04 | 0.53 ± 0.01 | * | * | * | ||||
Total hydrocarbons | 13.04 ± 0.12 | 12.06 ± 0.21 | 9.18 ± 0.99 | 61.25 ± 0.17 | 64.3 ± 0.30 | 61.94 ± 0.90 | 13.59 ± 1.36 | 10.22 ± 0.21 | 11.38 ± 0.01 | 55.05 ± 0.08 | 58.13 ± 1.34 | 61.45 ± 1.25 | * | * | * |
3.3. Descriptive Sensory Analysis
4. Conclusions
- Analyses conducted using the GC/MS/SPME technique showed similarities in the volatile compound profiles of xylitol- or sucrose-containing cookies. Many compounds assayed in cookies containing xylitol were recognized as markers of Maillard reactions (Strecker aldehydes, and pyrazines), typical for changes in which sugars are the substrate. The similarities applied also to the levels of compounds unfavourably contributing to the volatile profiles of cookies (aldehydes, hydrocarbons, and organic acids).
- The study showed that xylitol had better properties than sucrose as an ingredient in cookies, positively affecting their shelf life. Unlike sucrose, the use of xylitol in the recipe of the “clean label” affected the stability of pH and water activity.
- The buttery aroma was perceived as dominant in fresh cookies containing xylitol, its intensity being similar to that in sucrose cookies (5.66–6.34 and 5.66–6.75 points, respectively. The use of xylitol enabled the maintenance of some sensory attributes, such as buttery aroma and texture characteristics, and limited the formation of unfavourable aromas (such as fatty/rancid) during 12 months of storage.
- Until 9 months of storage, the volatile profiles of cookies contained low amounts of compounds regarded as contaminants. After the 9th month of storage, the hydrocarbons greatly increased (on average, 58.2% and 60.35% in xylitol and sucrose cookies, respectively, stored for 12 months). The results indicated that under the conditions assumed in this study, 9 months is the maximum recommended period of storage for cookies due to safety, without using any additives to extend shelf life.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vahid-Dastjerdi, L.; Jazaeri, S.; Hadaegh, H.; Jahromi, S.R.; Hosseini, S.M.; Farhoodi, M.; Momken, I. Sucrose substitution by polyols for the production of shelf stable macaroon: Attribution of their molecular weight and synergy. Eur. Food Res. Technol. 2020, 246, 1877–1887. [Google Scholar] [CrossRef]
- Sahin, A.W.; Zannini, E.; Coffey, A.; Arendt, E.K. Sugar reduction in bakery products: Current strategies and sourdough technology as a potential novel approach. Food Res. Int. 2019, 126, 108583. [Google Scholar] [CrossRef]
- Patterson, M.E.; Yee, J.K.; Wahjudi, P.; Mao, C.S.; Lee, W.N.P. Acute metabolic responses to high fructose corn syrup ingestion in adolescents with overweight/obesity and diabetes. J. Nutr. Intermed. Metab. 2018, 14, 1–7. [Google Scholar] [CrossRef]
- Regional Office for Europe, World Health Organization. WHO European Regional Obesity Report 2022; Regional Office for Europe, World Health Organization: Copenhagen, Denmark, 2022; Available online: https://apps.who.int/iris/handle/10665/353747 (accessed on 30 September 2023).
- Maya-Romero, A.M.; Dodd, G.E.; Landin, J.D.; Zaremba, H.K.; Allen, O.F.; Bilbow, M.A.; Hammaker, R.D.; Santerre-Anderson, J.L. Adolescent high-fructose corn syrup consumption leads to dysfunction in adult affective behaviors and mesolimbic proteins in male Sprague-Dawley rats. Behav. Brain Res. 2022, 419, 113687. [Google Scholar] [CrossRef]
- Wang, L.; Ji, T.; Yuan, Y.; Fu, H.; Wang, Y.; Tian, S.; Hu, J.; Wang, L.; Wang, Z. High-fructose corn syrup promotes proinflammatory Macrophage activation via ROS-mediated NF-κB signaling and exacerbates colitis in mice. Int. Immunopharmacol. 2022, 109, 108814. [Google Scholar] [CrossRef]
- Do, M.H.; Lee, E.; Oh, M.-J.; Kim, Y.; Park, H.-Y. High-glucose or -fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change. Nutrients 2018, 10, 761. [Google Scholar] [CrossRef]
- Edwards, C.H.; Rossi, M.; Corpe, C.P.; Butterworth, P.J.; Ellis, P.R. The role of sugars and sweeteners in food, diet and health: Alternatives for the future. Trends Food Sci. Technol. 2016, 56, 158–166. [Google Scholar] [CrossRef]
- Livesey, G. Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr. Res. Rev. 2023, 16, 163–191. [Google Scholar] [CrossRef]
- Salli, K.; Lehtinen, M.J.; Tiihonen, K.; Ouwehand, A.C. Xylitol’s health benefits beyond dental health: A comprehensive review. Nutrients 2019, 11, 1813. [Google Scholar] [CrossRef]
- European Food Safety Authority. Xylitol chewing gum/pastilles and reduction of the risk of tooth decay. EFSA J. 2008, 6, 852. [Google Scholar]
- Xiang, S.; Ye, K.; Li, M.; Ying, J.; Wang, H.; Han, J.; Shi, L.; Xiao, J.; Shen, Y.; Feng, X.; et al. Xylitol enhances synthesis of propionate in the colon via cross-feeding of gut microbiota. Microbiome 2021, 9, 62. [Google Scholar] [CrossRef]
- Sato, T.; Kusuhara, S.; Yokoi, W.; Ito, M.; Miyazaki, K. Prebiotic potential of L-sorbose and xylitol in promoting the growth and metabolic activity of specific butyrate-producing bacteria in human fecal culture. FEMS Microbiol. Ecol. 2017, 93, fiw227. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Wu, Y.; He, H.; Zeng, Y.; An, Z.; Jia, W. The effect of different prebiotics on intestinal probiotics in newly diagnosed diabetic patients. Food Sci. Nutr. 2023, 1–9. [Google Scholar] [CrossRef]
- Benahmed, A.G.; Gasmi, A.; Arshad, M.; Shanaida, M.; Lysiuk, R.; Peana, M.; Pshyk-Titko, I.; Adamiv, S.; Shanaida, Y.; Bjørklund, G. Health benefits of xylitol. Appl. Microbiol. Biotechnol. 2020, 104, 7225–7237. [Google Scholar] [CrossRef]
- Lee, B.D.; Park, M.K. Effects and safety of xylitol on middle ear epithelial cells. J. Int. Adv. Otol. 2014, 10, 19–24. [Google Scholar] [CrossRef]
- Ding, S.; Yang, J. The effects of sugar alcohols on rheological properties, functionalities, and texture in baked products—A review. Trends Food Sci. Technol. 2021, 111, 670–679. [Google Scholar] [CrossRef]
- Lin, S.D.; Lee, C.C.; Mau, J.L.; Lin, L.Y.; Chiou, S.Y. Effect of erythritol on quality characteristics of reduced-calorie Danish cookies. J. Food Qual. 2010, 33, 14–26. [Google Scholar] [CrossRef]
- Zoulias, E.I.; Piknis, S.; Oreopoulou, V. Effect of sugar replacement by polyols and acesulfame-K on properties of low-fat cookies. J. Sci. Food Agric. 2000, 80, 2049–2056. [Google Scholar] [CrossRef]
- Martínez-Cervera, S.; Salvador, A.; Sanz, T. Comparison of different polyols as total sucrose replacers in muffins: Thermal, rheological, texture and acceptability properties. Food Hydrocoll. 2014, 35, 1–8. [Google Scholar] [CrossRef]
- Winkelhausen, E.; Jovanovic-Malinovska, R.; Velickova, E.; Kuzmanova, S. Sensory and microbiological quality of a baked product containing xylitol as an alternative sweetener. Int. J. Food Prop. 2007, 10, 639–649. [Google Scholar] [CrossRef]
- Cincotta, F.; Brighina, S.; Condurso, C.; Arena, E.; Verzera, A.; Fallico, B. Sugars replacement as a strategy to control the formation of α-dicarbonyl and furanic compounds during cookie processing. Foods 2021, 10, 2101. [Google Scholar] [CrossRef]
- Garvey, E.C.; O’Sullivan, M.G.; Kerry, J.P.; Milner, L.; Gallagher, E.; Kilcawley, K.N. Characterising the sensory quality and volatile aroma profile of clean-label sucrose reduced sponge cakes. Food Chem. 2021, 342, 128124. [Google Scholar] [CrossRef]
- Diez-Simon, C.; Mumm, R.; Hall, R.D. Mass spectrometry based metabolomics of volatiles as a new tool for understanding aroma and flavour chemistry in processed food products. Metabolomics 2019, 15, 41. [Google Scholar] [CrossRef]
- Garvey, E.C.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Factors influencing the sensory perception of reformulated baked confectionary products. Crit. Rev. Food Sci. Nutr. 2020, 60, 1160–1188. [Google Scholar] [CrossRef]
- Garvey, E.C.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Aroma generation in sponge cakes: The influence of sucrose particle size and sucrose source. Food Chem. 2023, 417, 135860. [Google Scholar] [CrossRef]
- Maire, M.; Rega, B.; Cuvelier, M.E.; Soto, P.; Giampaoli, P. Lipid oxidation in baked products: Impact of formula and process on the generation of volatile compounds. Food Chem. 2013, 141, 3510–3518. [Google Scholar] [CrossRef]
- Mallia, S.; Escher, F.; Schlichtherle-Cerny, H. Aroma-active compounds of butter: A review. Eur. Food Res. Technol. 2008, 226, 315–325. [Google Scholar] [CrossRef]
- Mottram, D.S. The Maillard reaction: Source of flavour in thermally processed foods. In Flavours and Fragrances Chemistry, Bioprocessing and Sustainability; Berger, R.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 269–284. [Google Scholar]
- Pico, J.; Tapia, J.; Bernal, J.; Gómez, M. Comparison of different extraction methodologies for the analysis of volatile compounds in gluten-free flours and corn starch by GC/QTOF. Food Chem. 2018, 267, 303–312. [Google Scholar] [CrossRef]
- Marciniak-Lukasiak, K.; Lesniewska, P.; Zielińska, D.; Sowinski, M.; Zbikowska, K.; Lukasiak, P.; Zbikowska, A. The influence of chestnut flour on the quality of gluten-free bread. Appl. Sci. 2022, 12, 8340. [Google Scholar] [CrossRef]
- Cepeda-Vázquez, M.; Rega, B.; Descharles, N.; Camel, V. How ingredients influence furan and aroma generation in sponge cake. Food Chem. 2018, 245, 1025–1033. [Google Scholar] [CrossRef]
- PN-ISO 21527-2; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds. Part 2: Colony Count Technique in Products with Water Activity Less than or Equal to 0.95. Polish Committee for Standardization: Warsaw, Poland, 2009.
- Antoniewska, A.; Rutkowska, J.; Martinez Pineda, M. Antioxidative, sensory and volatile profiles of cookies enriched with freeze-dried Japanese quince (Chaenomeles japonica) fruits. Food Chem. 2019, 286, 376–387. [Google Scholar] [CrossRef]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Stone, H.; Bleibaum, R.N.; Thomas, H.A. Chapter 6: Descriptive Analysis Sensory. In Evaluation Practices Food Science and Technology, 4th ed.; Elsevier, Academic Press: Cambridge, MA, USA, 2012; pp. 233–289. [Google Scholar]
- ISO 11132: 2021; Sensory Analysis—Methodology—Guidelines for the Measurement of the Performance of a Quantitative Descriptive Sensory Panel. International Organization for Standardization: Geneva, Switzerland, 2021.
- EN ISO 8589:2010/A1:2014; Sensory Analysis—General Guidance for the Design of Test Rooms. Slovenski Inštitut za Standardizacijo: Ljubljana, Slovenia, 2014.
- Chen, G.; Hu, R.; Li, Y. Potassium bicarbonate improves dough and cookie characteristics through influencing physicochemical and conformation properties of wheat gluten. Food Chem. X 2020, 5, 100075. [Google Scholar] [CrossRef]
- Asadi, S.Z.; Khan, M.A.; Zaidi, S. A study on the shelf life of cookies incorporated with sapota and beetroot leaf powders. J. Food Sci. Technol. 2022, 59, 3848–3856. [Google Scholar] [CrossRef]
- Sahin, A.W.; Axel, C.; Zannini, E.; Arendt, E.K. Xylitol, mannitol and maltitol as potential sucrose replacers in burger buns. Food Funct. 2018, 9, 2201–2212. [Google Scholar] [CrossRef]
- Balestra, F.; Verardo, V.; Tappi, S.; Caboni, M.F.; Dalla Rosa, M.; Romani, S. Chemical and physical changes during storage of differently packed biscuits formulated with sunflower oil. J. Food Sci. Technol. 2019, 56, 4714–4721. [Google Scholar] [CrossRef]
- Rakshit, M.; Srivastav, P.P. Sensory evaluation and storage stability of fat reduced shortdough biscuit using hydrolysable tannin encapsulated double emulsion as fat replacer. LWT-Food Sci. Technol. 2022, 154, 112816. [Google Scholar] [CrossRef]
- Peterson, D.G.; Reineccius, G.A. Characterization of the volatile compounds that constitute fresh sweet cream butter aroma. Flavour Fragr. J. 2003, 18, 215–220. [Google Scholar] [CrossRef]
- Pasqualone, A.; Haider, N.N.; Summo, C.; Coldea, T.E.; George, S.S.; Altemimi, A.B. Biscuit contaminants, their sources and mitigation strategies: A Review. Foods 2021, 10, 2751. [Google Scholar] [CrossRef]
- Srivastava, R.; Bousquières, J.; Cepeda-Vázquez, M.; Roux, S.; Bonazzi, C.; Rega, B. Kinetic study of furan and furfural generation during baking of cake models. Food Chem. 2018, 267, 329–336. [Google Scholar] [CrossRef]
- Owczarek-Fendor, A.; De Meulenaer, B.; Scholl, G.; Adams, A.; Lancker, F.V.; Eppe, G.; De Pauw, E.; Scippo, M.L.; De Kimpe, N. Furan formation in starch-based model systems containing carbohydrates in combination with proteins, ascorbic acid and lipids. Food Chem. 2012, 133, 816–821. [Google Scholar] [CrossRef]
- Available online: http://www.thegoodscentscompany.com (accessed on 10 September 2023).
- Available online: https://www.flavornet.org/flavornet.html (accessed on 15 September 2023).
- Korma, S.A.; Li, L.; Ghamry, M.; Zhou, Q.; An, P.; Abdrabo, K.A.E.; Manzoor, M.F.; Rehman, A.; Niazi, S.; Cacciotti, I. Effect of co-fermentation system with isolated new yeasts on soymilk: Microbiological, physicochemical, rheological, aromatic, and sensory characterizations. Braz. J. Microbiol. 2022, 53, 1549–1564. [Google Scholar] [CrossRef] [PubMed]
- Matsakidou, A.; Blekas, G.; Paraskevopoulou, A. Aroma and physical characteristics of cakes prepared by replacing margarine with extra virgin olive oil. LWT-Food Sci. Technol. 2010, 43, 949–957. [Google Scholar] [CrossRef]
- Sousa, B.C.; Pitt, A.R.; Spickett, C.M. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds. Free Radic. Biol. Med. 2017, 111, 294–308. [Google Scholar] [CrossRef]
- Cognat, C.; Shepherd, T.; Verrall, S.R.; Stewart, D. Relationship between volatile profile and sensory development of an oat-based biscuit. Food Chem. 2014, 160, 72–81. [Google Scholar] [CrossRef]
- Newton, A.E.; Fairbanks, A.J.; Golding, M.; Andrewes, P.; Gerrard, J.A. The role of the Maillard reaction in the formation of flavour compounds in dairy products—Not only a deleterious reaction but also a rich source of flavour compounds. Food Funct. 2012, 3, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Grebenteuch, S.; Kanzler, C.; Klaußnitzer, S.; Kroh, L.W.; Rohn, S. The formation of methyl ketones during lipid oxidation at elevated temperatures. Molecules 2021, 26, 1104. [Google Scholar] [CrossRef]
- Fruehwirth, S.; Egger, S.; Flecker, T.; Ressler, M.; Firat, N.; Pignitter, M. Acetone as indicator of lipid oxidation in stored margarine. Antioxidants 2021, 10, 59. [Google Scholar] [CrossRef]
- Rutkowska, J.; Antoniewska-Krzeska, A.; Żbikowska, A.; Cazón, P.; Vázquez, M. Volatile composition and sensory profile of lactose-free kefir, and its acceptability by elderly consumers. Molecules 2022, 27, 5386. [Google Scholar] [CrossRef]
- Rutkowska, J.; Antoniewska, A.; Martinez-Pineda, M.; Nawirska-Olszańska, A.; Żbikowska, A.; Baranowski, D. Black chokeberry fruit polyphenols: A valuable addition to reduce lipid oxidation of muffins containing xylitol. Antioxidants 2020, 9, 394. [Google Scholar] [CrossRef]
- Van Boekel, M.A.J.S. Formation of flavour compounds in the Maillard reaction. Biotechnol. Adv. 2006, 24, 230–233. [Google Scholar] [CrossRef]
- Olinger, P.M.; Velasco, V.S. Opportunities and advantages of sugar replacement. Cereal Foods World 1996, 41, 110–117. [Google Scholar]
- Young, N.W.G.; O’Sullivan, G.R. Chapter 5: The influence of ingredients on product stability and shelf life. In Food and Beverage Stability and Shelf Life; Kilcast, D., Subramaniam, P., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2011; pp. 132–183. [Google Scholar]
- Milner, L.; Kerry, J.P.; O’Sullivan, M.G.; Gallagher, E. Physical, textural and sensory characteristics of reduced sucrose cakes, incorporated with clean-label sugar-replacing alternative ingredients. Innov. Food Sci. Emerg. Technol. 2020, 59, 102235. [Google Scholar] [CrossRef]
- Baranowski, D.; Rutkowska, J.; Antoniewska, A. Ksylitol–rola technologiczna i żywieniowa. Zywnosc-Nauka Technol. Jakosc 2020, 27, 5–21. [Google Scholar] [CrossRef]
Ingredients | Formulations (g/100 g) | |||||
---|---|---|---|---|---|---|
S11% | S17% | S23% | X11% | X17% | X23% | |
Refined wheat flour | 54.0 | 48.0 | 42.0 | 54.0 | 48.0 | 42.0 |
Sucrose | 11.0 | 17.0 | 23.0 | – | – | – |
Xylitol | – | – | – | 11.0 | 17.0 | 23.0 |
Butter | 26.0 | 26.0 | 26.0 | 26.0 | 26.0 | 26.0 |
Egg yolks | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |
Sweetener Content | Water Activity (aw) | pH Value | ||
---|---|---|---|---|
Fresh | Stored | Fresh | Stored | |
Sucrose | ||||
11% | 0.367 ± 0.007 aB | 0.398 ± 0.005 bB | 5.83 ± 0.07 aAB | 5.79 ± 0.14 aBC |
17% | 0.343 ± 0.007 aAB | 0.385 ± 0.008 bAB | 5.80 ± 0.08 aA | 5.61 ± 0.12 aAB |
23% | 0.327 ± 0.003 aA | 0.378 ± 0.009 bA | 5.79 ± 0.11 bA | 5.57 ± 0.08 aA |
Xylitol | ||||
11% | 0.386 ± 0.004 aC | 0.394 ± 0.001 aAB | 5.95 ± 0.07 aBC | 5.93 ± 0.12 aC |
17% | 0.361 ± 0.009 aB | 0.387 ± 0.007 bAB | 5.96 ± 0.05 aC | 5.90 ± 0.14 aC |
23% | 0.352 ± 0.005 aB | 0.380 ± 0.003 bAB | 5.94 ± 0.11 aBC | 5.84 ± 0.07 aC |
Sample | Cookies with Sucrose | Cookies with Xylitol | Xylitol vs. Sucrose | Content, Fresh Cookies | Storage | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fresh | Stored 12 Months | Fresh | Stored 12 Months | ||||||||||||
11% | 17% | 23% | 11% | 17% | 23% | 11% | 17% | 23% | 11% | 17% | 23% | ||||
Appearance | |||||||||||||||
Surface colour | 4.10 ± 0.22 | 5.05 ± 0.28 | 6.89 ± 0.32 | 3.93 ± 0.24 | 4.93 ± 0.23 | 6.97 ± 0.37 | 2.65 ± 0.18 | 4.32 ± 0.30 | 5.80 ± 0.19 | 2.75 ± 0.34 | 4.21 ± 0.29 | 5.73 ± 0.40 | * | * | |
Aroma | |||||||||||||||
Buttery | 5.66 ± 0.22 | 6.56 ± 0.33 | 6.75 ± 0.31 | 2.85 ± 0.33 | 3.12 ± 0.24 | 3.37 ± 0.44 | 5.66 ± 0.24 | 6.34 ± 0.31 | 6.20 ± 0.26 | 4.12 ± 0.35 | 4.84 ± 0.41 | 5.10 ± 0.39 | *Stored | * | * |
Sweet/ Caramelized | 3.51 ± 0.27 | 3.85 ± 0.34 | 4.29 ± 0.35 | 1.25 ± 0.32 | 1.48 ± 0.34 | 1.64 ± 0.40 | 2.94 ± 0.33 | 3.53 ± 0.38 | 3.71 ± 0.37 | 1.10 ± 0.22 | 1.32 ± 0.33 | 1.52 ± 0.39 | *Fresh | * | * |
Fruity | 1.62 ± 0.43 | 1.85 ± 0.24 | 2.10 ± 0.36 | 0.50 ± 0.15 | 0.65 ± 0.23 | 0.78 ± 0.22 | 1.25 ± 0.27 | 1.53 ± 0.40 | 1.85 ± 0.27 | 0.40 ± 0.19 | 0.56 ± 0.21 | 0.64 ± 0.25 | *Fresh | * | * |
Nutty | 2.35 ± 0.32 | 2.51 ± 0.28 | 3.04 ± 0.39 | 0.72 ± 0.21 | 0.85 ± 0.23 | 0.92 ± 0.26 | 2.63 ± 0.48 | 2.91 ± 0.53 | 3.32 ± 0.35 | 0.96 ± 0.19 | 1.12 ± 0.27 | 1.24 ± 0.32 | * | * | * |
Roasted/Baked | 4.60 ± 0.23 | 5.56 ± 0.25 | 6.27 ± 0.20 | 2.85 ± 0.34 | 3.44 ± 0.30 | 3.82 ± 0.39 | 4.88 ± 0.31 | 5.60 ± 0.26 | 7.31 ± 0.46 | 3.05 ± 0.36 | 3.74 ± 0.27 | 4.13 ± 0.35 | * | * | |
Fatty/Rancid | 1.14 ± 0.31 | 1.42 ± 0.55 | 1.68 ± 0.43 | 2.79 ± 0.31 | 3.10 ± 0.23 | 3.21 ± 0.33 | 0.92 ± 0.35 | 1.24 ± 0.43 | 1.38 ± 0.44 | 2.47 ± 0.35 | 2.70 ± 0.23 | 2.78 ± 0.32 | *Stored | * | |
Sour | 1.42 ± 0.28 | 1.75 ± 0.31 | 1.93 ± 0.36 | 2.52 ± 0.34 | 2.78 ± 0.21 | 2.80 ± 0.44 | 0.85 ± 0.38 | 1.14 ± 0.33 | 1.33 ± 0.51 | 1.42 ± 0.21 | 1.67 ± 0.39 | 1.84 ± 0.34 | * | * | |
Pungent | 0.41 ± 0.23 | 0.39 ± 0.18 | 0.54 ± 0.17 | 1.85 ± 0.21 | 2.15 ± 0.24 | 3.10 ± 0.21 | 0.39 ± 0.21 | 0.40 ± 0.16 | 0.45 ± 0.13 | 1.01 ± 0.21 | 1.05 ± 0.18 | 1.15 ± 0.25 | *Stored | * | |
Taste | |||||||||||||||
Buttery | 4.66 ± 0.41 | 5.96 ± 0.27 | 6.35 ± 0.29 | 4.12 ± 0.27 | 5.17 ± 0.40 | 5.48 ± 0.24 | 4.18 ± 0.25 | 4.84 ± 0.16 | 5.11 ± 0.23 | 3.85 ± 0.26 | 3.87 ± 0.22 | 4.02 ± 0.36 | * | * | * |
Sweet | 3.54 ± 0.32 | 5.13 ± 0.41 | 6.06 ± 0.53 | 3.59 ± 0.24 | 5.01 ± 0.39 | 6.02 ± 0.24 | 2.21 ± 0.28 | 3.18 ± 0.21 | 4.35 ± 0.37 | 2.16 ± 0.19 | 3.21 ± 0.21 | 3.98 ± 0.21 | * | * | |
Roasty | 3.72 ± 0.36 | 4.50 ± 0.48 | 4.67 ± 0.38 | 3.01 ± 0.18 | 3.34 ± 0.26 | 3.57 ± 0.27 | 2.74 ± 0.30 | 3.08 ± 0.20 | 4.50 ± 0.45 | 2.53 ± 0.23 | 2.76 ± 0.16 | 4.07 ± 0.35 | * | * | * |
Bitter | 0.18 ± 0.14 | 0.24 ± 0.13 | 0.32 ± 0.12 | 0.32 ± 0.10 | 0.24 ± 0.08 | 0.36 ± 0.11 | 0.19 ± 0.07 | 0.26 ± 0.09 | 0.27 ± 0.23 | 0.41 ± 0.09 | 0.46 ± 0.13 | 0.32 ± 0.11 | |||
Aftertaste: cooling effect | 0.25 ± 0.14 | 0.38 ± 0.16 | 0.36 ± 0.17 | 0.20 ± 0.11 | 0.27 ± 0.13 | 0.31 ± 0.16 | 2.81 ± 0.17 | 3.16 ± 0.23 | 3.89 ± 0.22 | 1.85 ± 0.19 | 2.21 ± 0.28 | 3.10 ± 0.28 | * | *Xyl. | *Xyl. |
Texture | |||||||||||||||
Hardness | 5.07 ± 0.47 | 6.04 ± 0.48 | 6.61 ± 0.41 | 3.82 ± 0.39 | 4.71 ± 0.27 | 5.39 ± 0.33 | 2.43 ± 0.40 | 2.29 ± 0.34 | 3.14 ± 0.31 | 2.37 ± 0.20 | 2.23 ± 0.25 | 3.06 ± 0.26 | * | * | *Sucr. |
Fracturability | 6.00 ± 0.53 | 7.09 ± 0.60 | 7.59 ± 0.43 | 4.87 ± 0.36 | 5.16 ± 0.30 | 5.95 ± 0.27 | 3.36 ± 0.29 | 2.62 ± 0.27 | 3.02 ± 0.40 | 3.21 ± 0.28 | 2.65 ± 0.29 | 2.93 ± 0.24 | * | *Sucr. | *Sucr. |
Moisture | 2.60 ± 0.47 | 2.12 ± 0.45 | 2.01 ± 0.29 | 3.43 ± 0.42 | 3.19 ± 0.28 | 2.85 ± 0.35 | 4.14 ± 0.41 | 5.64 ± 0.43 | 5.63 ± 0.39 | 5.04 ± 0.29 | 6.37 ± 0.31 | 6.49 ± 0.40 | * | * | * |
Adhesiveness | 3.93 ± 0.65 | 3.00 ± 0.42 | 3.11 ± 0.32 | 4.16 ± 0.37 | 3.59 ± 0.35 | 4.04 ± 0.29 | 5.11 ± 0.26 | 4.80 ± 0.24 | 4.60 ± 0.37 | 5.86 ± 0.33 | 5.69 ± 0.28 | 5.33 ± 0.38 | * | *Sucr. | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutkowska, J.; Baranowski, D.; Antoniewska-Krzeska, A.; Kostyra, E. Comparison of Storage-Related Volatile Profiles and Sensory Properties of Cookies Containing Xylitol or Sucrose. Foods 2023, 12, 4270. https://doi.org/10.3390/foods12234270
Rutkowska J, Baranowski D, Antoniewska-Krzeska A, Kostyra E. Comparison of Storage-Related Volatile Profiles and Sensory Properties of Cookies Containing Xylitol or Sucrose. Foods. 2023; 12(23):4270. https://doi.org/10.3390/foods12234270
Chicago/Turabian StyleRutkowska, Jaroslawa, Damian Baranowski, Agata Antoniewska-Krzeska, and Eliza Kostyra. 2023. "Comparison of Storage-Related Volatile Profiles and Sensory Properties of Cookies Containing Xylitol or Sucrose" Foods 12, no. 23: 4270. https://doi.org/10.3390/foods12234270
APA StyleRutkowska, J., Baranowski, D., Antoniewska-Krzeska, A., & Kostyra, E. (2023). Comparison of Storage-Related Volatile Profiles and Sensory Properties of Cookies Containing Xylitol or Sucrose. Foods, 12(23), 4270. https://doi.org/10.3390/foods12234270