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Abstract: Chiral primary α-amino amides, consisting of an adjacent enamine bonding site (Bronsted
base site), a hydrogen bonding site (Bronsted acid site), and flexible bulky substituent groups to modify
the steric factor, are proving to be extremely valuable bifunctional organocatalysts for a wide range of
asymmetric organic transformations. Primary α-amino amides are less expensive alternatives to other
primary amino organocatalysts, such as chiral diamines and cinchona-alkaloid-derived primary amines,
as they are easy to synthesize, air-stable, and allow for the incorporation of a variety of functional
groups. In recent years, we have demonstrated the catalytic use of simple primary α-amino amides and
their derivatives as organocatalysts for the aldol reaction, Strecker reaction, Michael tandem reaction,
allylation of aldehydes, reduction of N-Aryl mines, opening of epoxides, hydrosilylation, asymmetric
hydrogen transfer, and N-specific nitrosobenzene reaction with aldehydes.

Keywords: asymmetric organic transformations; organocatalysis; primary α-amino amides; bifunctional
organocatalysts; enamine bonding

1. Introduction

Bifunctional catalysts have low molecular weight, two distinct functional groups, and a
chiral scaffold. Hence, these catalysts can cause additional reactivity and/or selectivity into
various reactions. The reactions are classically polar addition reactions of pro-nucleophiles
and electrophiles in which simple, low-cost starting materials are ideally converted into
highly selective specified products as a result of the bifunctional catalyst system. Most
bifunctional catalysts with Lewis or Brønsted basic functionality and a tunable hydrogen
bonding site suitably positioned over a chiral scaffold can be easily tuned to optimize
reactivity and selectivity in synthetically relevant reactions, allowing for high reaction rates
and excellent stereoselectivity.

Compared to single functional group catalysts, the cooperative effect of the two
complimentary functional groups can lead to new reactivity and stereo control in previ-
ously difficult or unexpected processes. The development of simple bifunctional catalysts
has been a profitable and active topic of research in chemical synthesis during the last few
decades [1–5]. Along with metal–organic cooperative asymmetric catalysts [6–9], a variety
of bifunctional organocatalysts, including H-bond donors, as well as Lewis/Brønsted basic,
nucleophilic, acidic functional groups (such as proline and its analogues [10–12], ammonium
salts of diamine [13–15], cinchona alkaloids and derivatives [16–19], primary β-amino alco-
hols [20], thiourea derivatives [21–23], amino squaramide derivatives [24–27], phosphoric

Catalysts 2022, 12, 1674. https://doi.org/10.3390/catal12121674 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal12121674
https://doi.org/10.3390/catal12121674
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://doi.org/10.3390/catal12121674
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal12121674?type=check_update&version=3


Catalysts 2022, 12, 1674 2 of 32

acid derivatives [28,29], H-bonding phase-transfer catalysts [30–32], and peptides [33,34])
have been developed and tested in asymmetric organic transformations to investigate their
catalytic activity.

Owing to their ease of synthesis and stability in air, amino amides have emerged as af-
fordable and self-sufficient multifunctional chiral templates in enantioselective organocatalysis
in recent years. Amino amide structures can be easily generated from commercially available
amino acids and free amines using well-known coupling procedures (Scheme 1). A carboxylic
acid is activated by an activating (A) group, followed by nucleophilic displacement by a free
amine in the presence of a coupling reagent and a base. The necessary amino amide scaffolds
can then be created through easy deprotection of the coupling product’s amine function.
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These simple amino amide scaffolds possessing free amine and amide function can 

activate the reactant molecules through the enamine bonding site (acting as Brønsted 

base) and hydrogen bonding site (acting as Brønsted acid). Alternatively, the free amino 

group can also cause hydrogen bonding in the presence of external usage of Lewis acid 

through the formation of ammonium salt (Scheme 2a). The flexible substituent groups R1 

and R2 can acts as steric factors to shield the one enantiotopic face of reactant molecules. 

This facility could enhance the catalytic activity of this class of scaffolds. 

H2N

R1

N

O

R2

H

enamine formation
site

hydrogen bonding
site

steric influence
groups

O

N
H

O

N
H

(a) (b)  

Scheme 2. (a) Multifunctional activity of amino amide scaffolds. (b) Resonance structure of amide 

bond. 

Owing to the strong electronegativity of the oxygen atom of the carbonyl function, 

the lone-pair electrons in the adjacent positioned nitrogen atom of the amide bond are 

Scheme 1. A conventional approach for construction of simple amino amide scaffolds.

These simple amino amide scaffolds possessing free amine and amide function can
activate the reactant molecules through the enamine bonding site (acting as Brønsted base)
and hydrogen bonding site (acting as Brønsted acid). Alternatively, the free amino group
can also cause hydrogen bonding in the presence of external usage of Lewis acid through
the formation of ammonium salt (Scheme 2a). The flexible substituent groups R1 and R2
can acts as steric factors to shield the one enantiotopic face of reactant molecules. This
facility could enhance the catalytic activity of this class of scaffolds.
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Scheme 2. (a) Multifunctional activity of amino amide scaffolds. (b) Resonance structure of amide bond.

Owing to the strong electronegativity of the oxygen atom of the carbonyl function,
the lone-pair electrons in the adjacent positioned nitrogen atom of the amide bond are
delocalized via resonance (Scheme 2b). Because the C=O bond has a higher dipole than
the N=C bond, amides can operate as H-bond acceptors. The presence of N-H dipoles in
primary and secondary amides allows them to function as H-bond donors as well. Owing to
the favorable constructional properties of amino-amide-based bifunctional organocatalysts
(such as easy synthesis, high polarity, stability in air, conformational diversity, their wide
potential for steric site alteration, and their ability to be used as iminium bond sources
and hydrogen bond sources), this class of catalysts is becoming increasingly popular with
organic chemists in the field of asymmetric organic synthesis. Taking advantage of these
benefits, various amino amide-based chiral organocatalysts have been created and tested
for catalytic activity in a variety of processes in recent years.
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To date, only one review has been reported on the catalytic competence of amino-
amide-based organocatalysts by Xiaoming Feng et al. in 2009 [35], and Panday discussed
proline amides as organocatalysts as part of his review of proline derivatives in 2011 [36].
In 2019, Surendra Singh et al. [37] reported the catalytic effectiveness of prolinamide and its
derivatives using asymmetric methods. Along with prolinamide, a number of other simple
amino amides have been created in recent years to examine their impact as bifunctional
organocatalysts in asymmetric organic synthesis.

It is always a difficult task to find simple organic compounds and use them as indepen-
dent chiral agents in asymmetric synthesis. Recently, we investigated the catalytic activity of
simple β-amino alcohols as organocatalysts in asymmetric organic synthesis [20]. In this arti-
cle, we report on the catalytic activity of simple amino-amide-based bifunctional asymmetric
organocatalysts (from 2011 to date, excluding prolinamide) in valuable chemical transforma-
tions. Recently developed amino amide organocatalysts are exemplified as general base and
general acid activation patterns through both covalent and noncovalent modes of interaction
with the substrate in various organic asymmetric transformations, such as aldol reaction,
Strecker reaction, Michael tandem reaction, allylation of aldehydes, reduction of N-Aryl imines,
opening of epoxides, hydrosilylation, asymmetric transfer of hydrogen, and N-specific reaction
of nitrosobenzene (Figure 1).
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2. Primary α-Amino-Amide-Catalyzed Asymmetric Organic Transformations
2.1. Asymmetric Aldol Reaction

In current synthetic organic chemistry, the aldol reaction has established itself as one
of the most powerful carbon–carbon bond-forming reactions [38,39]. It provides a complete
atom-economic approach to β-hydroxyl carbonyls, which are used in various value-added
process, such as the manufacturing of bulk and fine chemicals, as well as the preparation of
biologically active compounds [40–44]. As a result, the development of asymmetric catalysis
for aldol processes utilizing effective catalysts has been extensively researched. Since reports
of L-proline-catalyzed intramolecular aldol reactions in the 1970s [45,46] and the development
of proline-catalyzed asymmetric direct aldol reactions reported by List et al. in 2000 [47,48],
a large number of proline-derived organocatalysts, such as proline analogues [49–51], acyclic
amino acids [52–54], proline thioamides [55–57], sulphonamides [58–60], chiral amines [61–63],
and organic salts [64–66], have been developed for their catalytic activity relating to direct
asymmetric aldol reaction.

Subsequently, a variety of bifunctional amino-amide-based organocatalysts were
created for the asymmetric aldol reaction. Enamine is produced in this catalysis by the
reaction of a carbonyl function with amine, whereas hydrogen bonding between the N-H of
the amide and the acceptor is required for asymmetric induction (Scheme 3). The primary
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focus of this review is the design and synthesis of various bifunctional catalysts based
on the structure of amino amide bond, as well as the importance of N-H bonds in direct
asymmetric aldol processes. The various substituent groups (R1 group in Scheme 3) were
introduced on the N atom of the amide function by increasing the acidity of the proton of
the amide, forming a strong hydrogen bond with the aldol acceptor and, by steric induction,
controlling the approach of the enamine to the aldol acceptor.
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We designed and synthesized simple amino amide catalysts from their corresponding
amino acids and simple amines using a well-established coupling method with
1-hydroxybenzotriazole (HOBt) and 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide
(EDC) as coupling agents [67], owing to the prominence of the amino amide moiety as
a bifunctional, self-sufficient organocatalyst that activates the reactants through covalent
bond (Scheme 4) [68].
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We predicted that our synthesized catalysts (3a–k) would have a flexible, bulky amide
polycyclic aromatic hydrocarbon group, as well as an enamine site and a hydrogen bonding
site. These sites would protect one enantiotopic enamine face from cyclic and acyclic
ketones to produce high enantioselectivity. These chiral amino amides (3a–k) were tested
as catalysts in the aldol reaction of isatins with various cyclic ketones [69]. We discovered
that the related aldol adducts had outstanding chemical and optical yields (Scheme 5).
Among the known catalysts, catalyst 3i, with a t-butyl group in the α position and a
1-anthracenyl group on the amide nitrogen, produces the optimal results.
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Scheme 5. Isatin–cycloketone aldol reaction with amino amides as organocatalysts.

Scheme 6 represents the proposed reaction mechanism for this process. The enamine
intermediate is formed by the condensation of catalyst 3i with 5, which is conformationally
locked by the H-bonding interaction between the enamine N atom and the catalyst’s
amide H atom. The enamine intermediate can exist as I-1, I-2, or I-3; among these three
conceivable enamine intermediates, I-1 has low energy and stable confirmation, as proven
by energy calculations of the three intermediates (I-1–3) at the theoretical levels of B3LYP/
6-311++G(d,2p)/B3LYP/6-31+G(d) (Figure 2) [69]. This was also proven by the basis of
isomer I-1–3 and isatin 4 boundary molecular orbital energies. As a result, the matching
aldol product was produced with outstanding enantioselectivity and diastereoselectivity
via intermediate I-1.

Catalysts 2022, 12, x  6 of 36 
 

 

 

Scheme 6. Proposed mechanism of aldol reaction of isatin with cyclic ketones. 

Inspired by these findings and using the bifunctional catalytic efficiency of these 

simple amino amide skeletons, we then investigated the aldol reaction of cyclic ketones 

with aromatic aldehydes [70]. Among all screened catalysts, catalyst 10b demonstrated 

the most efficient catalytic activity in the crossed aldol reaction of various cyclic ketones 

(7) with various substituted aromatic aldehydes (8) to yield the corresponding anti-aldol 

adducts (9) with good to excellent chemical yields and stereoselectivities (up to 99%, up 

to syn:anti 1:99, up to 97% ee) with a low-loading catalyst (5 mol%) (Scheme 7) [70]. 

 

Figure 2. Structures and relative energies of intermediates I-1–3 calculated at the 

B3LYP/6-311++G(d,2p)//B3LYP/6-31+G(d) levels of theory. Energy values are compared to the 

lowest-energy isomer I-1. Reprinted with permission from Ref. [69]. Copyright 2016, John Wiley 

and Sons. 

 

Scheme 6. Proposed mechanism of aldol reaction of isatin with cyclic ketones.



Catalysts 2022, 12, 1674 6 of 32

1 
 

 
 
 
 

 

Figure 2. Structures and relative energies of intermediates I-1–3 calculated at the B3LYP/6-
311++G(d,2p)//B3LYP/6-31+G(d) levels of theory. Energy values are compared to the lowest-energy
isomer I-1. Reprinted with permission from Ref. [69]. Copyright 2016, John Wiley and Sons.

Inspired by these findings and using the bifunctional catalytic efficiency of these
simple amino amide skeletons, we then investigated the aldol reaction of cyclic ketones
with aromatic aldehydes [70]. Among all screened catalysts, catalyst 10b demonstrated
the most efficient catalytic activity in the crossed aldol reaction of various cyclic ketones
(7) with various substituted aromatic aldehydes (8) to yield the corresponding anti-aldol
adducts (9) with good to excellent chemical yields and stereoselectivities (up to 99%, up to
syn:anti 1:99, up to 97% ee) with a low-loading catalyst (5 mol%) (Scheme 7) [70].
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Scheme 7. Aldol reaction of ketones with aromatic aldehydes using amino amides as catalysts.

The following reaction course was proposed (Scheme 8). The bonding connection
between the hydrogen atom on the nitrogen atom of the enamine segment and the amide
carbonyl group in organocatalyst species fixes the enamine intermediate I-2 formed by
the condensation of organocatalyst 10b with 7. As a result, 4-nitrobenzaldehyde (8) could
approach the stable enamine intermediate (I-2) in a variety of ways to form different
transition states, but TS-A has the least steric interaction and stable confirmation to yield
the anti-aldol product (9). These were confirmed using calculation studies (Figure 3) and
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by calculating the energies and coefficients of their frontier orbitals (8 and I-2) obtained by
DFT at the B3LYP/6- 31G(d) level (Figure 4) [70].
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Figure 3. A scan of total energies of the intermediate (I) generated by varying two torsion angles
(dihedral scans represented with u-shaped arrows, as shown in the right structure). The arrow at
the bottom represents the global energy minimum conformer (in the left figure). Reprinted with
permission from Ref. [70]. Copyright 2018, Elsevier.
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Kaori Ishimaru et al. reported [71] the asymmetric aldol reaction of ketones with
aromatic aldehydes using simple amino amides as organocatalysts based on electrostatic
repulsion between oxygen in the amide and aromatic fluorine of the catalyst, along with
the hydrogen-bonding interactions between the hydrogen of amide nitrogen and the
fluorine of the aromatic group, to control stereoselectivity (Figure 5) [71]. The authors
synthesized several amino amides (11a-g) and tested their efficacy as simple chiral agents
in the asymmetric aldol reaction of various cyclic ketones (12) with substituted aromatic
aldehydes (13) and isatins (Scheme 9). Among all screened catalysts, 11a, which can
generate hydrogen bonding and electrostatic repulsions, provided the highest yield (up to
99% yield) and selectivity (up to 99% ee and 1:99 = syn:anti).

Catalysts 2022, 12, x  9 of 36 
 

 

H2N

O

HN

F

F

11a

X

O

HN

N

H
F

F
O

X

H

Hydrogen Bonding

Elctrostatic repulsion

small spacelarge space

Enamine intermediate

12  

Figure 5. Concept of amino amide catalyst for asymmetric aldol reaction. 

X

O

H

O

NO2

Catalyst 11a
(25 mol%)

brine, rt, 3 h X

O OH

NO2

12 13 14

H2N

HN

O

F

F

H2N

HN

O H2N

HN

O

F

F

H2N

HN

O

F

H2N HN

O

H2N HN

O

H2N HN

O

OMe

11a 11b 11c 11d

11e 11f 11g

X = CH2, O, S up to 99% yield

up to 99% ee, syn:anti=1:99

 

Scheme 9. Asymmetric aldol reaction using simple amino amides as chiral agents. 

Using computational analysis, the authors detailed the mechanism, highlighting the 

importance of the best catalyst structure (11a) to provide high selectivity through hy-

drogen bonding and electrostatic repulsions when compared to other catalysts (Figure 6). 

The authors also used DFT calculations to study the transition-state structures in order to 

justify the anti-aldol product (Figure 7). 

Hua Yang and colleagues [72] later showed that the α-amino acid sulphonamides 

(12a–f) may be employed as standalone bifunctional organocatalysts in asymmetric aldol 

processes without being linked to additional chiral moieties. They successfully catalyzed 

the asymmetric aldol reaction between isatin 4 and cyclohexanone 5 under neat condi-

tions at room temperature by synthesizing a series of primary α-amino-acid-derived 

sulfonamides (12a–f) via direct coupling of Cbz-protected amino acids with sulphona-

mides, followed by deprotection. 

Figure 5. Concept of amino amide catalyst for asymmetric aldol reaction.

Catalysts 2022, 12, x  9 of 36 
 

 

H2N

O

HN

F

F

11a

X

O

HN

N

H
F

F
O

X

H

Hydrogen Bonding

Elctrostatic repulsion

small spacelarge space

Enamine intermediate

12  

Figure 5. Concept of amino amide catalyst for asymmetric aldol reaction. 

X

O

H

O

NO2

Catalyst 11a
(25 mol%)

brine, rt, 3 h X

O OH

NO2

12 13 14

H2N

HN

O

F

F

H2N

HN

O H2N

HN

O

F

F

H2N

HN

O

F

H2N HN

O

H2N HN

O

H2N HN

O

OMe

11a 11b 11c 11d

11e 11f 11g

X = CH2, O, S up to 99% yield

up to 99% ee, syn:anti=1:99

 

Scheme 9. Asymmetric aldol reaction using simple amino amides as chiral agents. 

Using computational analysis, the authors detailed the mechanism, highlighting the 

importance of the best catalyst structure (11a) to provide high selectivity through hy-

drogen bonding and electrostatic repulsions when compared to other catalysts (Figure 6). 

The authors also used DFT calculations to study the transition-state structures in order to 

justify the anti-aldol product (Figure 7). 

Hua Yang and colleagues [72] later showed that the α-amino acid sulphonamides 

(12a–f) may be employed as standalone bifunctional organocatalysts in asymmetric aldol 

processes without being linked to additional chiral moieties. They successfully catalyzed 

the asymmetric aldol reaction between isatin 4 and cyclohexanone 5 under neat condi-

tions at room temperature by synthesizing a series of primary α-amino-acid-derived 

sulfonamides (12a–f) via direct coupling of Cbz-protected amino acids with sulphona-

mides, followed by deprotection. 

Scheme 9. Asymmetric aldol reaction using simple amino amides as chiral agents.

Using computational analysis, the authors detailed the mechanism, highlighting the
importance of the best catalyst structure (11a) to provide high selectivity through hydrogen
bonding and electrostatic repulsions when compared to other catalysts (Figure 6). The
authors also used DFT calculations to study the transition-state structures in order to justify
the anti-aldol product (Figure 7).
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Hua Yang and colleagues [72] later showed that the α-amino acid sulphonamides
(12a–f) may be employed as standalone bifunctional organocatalysts in asymmetric aldol
processes without being linked to additional chiral moieties. They successfully catalyzed the
asymmetric aldol reaction between isatin 4 and cyclohexanone 5 under neat conditions at room
temperature by synthesizing a series of primary α-amino-acid-derived sulfonamides (12a–f) via
direct coupling of Cbz-protected amino acids with sulphonamides, followed by deprotection.

They performed this reaction in various solvents and with various additives but
discovered that molecular sieves, as privileged additives, played a critical role in achieving
high enantioselectivity (up to 92% ee) and high diastereoselectivity (up to 95:5 dr) under
neat reaction conditions with excellent yields (up to 99%) (Scheme 10). They also tested the
practicality and reliability of their technique by scaling it up to 2 mmol; they discovered the
same selectivities with good to exceptional yields utilizing their best catalysts (12a). Based
on the experimental data and the influence of molecular sieves, they postulated a feasible
reaction path in which hydrogen bonding between the N-H of sulphonamide and isatin
would trigger an enamine re-face attack on the carbonyl group of isatin (4) (Figure 8).



Catalysts 2022, 12, 1674 10 of 32Catalysts 2022, 12, x  11 of 36 
 

 

 

Scheme 10. Asymmetric aldol reaction catalyzed by amino acid sulphonamides. 

HN

O
O

HN

O

N S

O

OO
H

H

H

Reface Attack  

Figure 8. Proposed reaction mode of aldol reaction. 

Bert F. Sels et al. [73] pioneered the syn-asymmetric aldol reaction of linear ketones 

with aromatic aldehydes at ambient temperature catalyzed by various amino acids, 

amino amides (16, 17, and 18) and diamines (19). (Scheme 11) [73]. The authors tested this 

reaction with numerous acids as additives, including TFA, CCl3COOH, m-NO2 bzac, 

H3PW12O40, p-TSA, DNP, PhCOOH, TFA/AcOH, TFA/m-NO2 bzac, and TFA/DNP. They 

used trifluoroacetic acid (TFA) as Bronsted acid and 2,4-dinitrophenol (DNP) as cocata-

lyst and successfully used the simple amino amides (16, 17, and 18) as bifunctional cata-

lysts for this reaction. However, the yields and selectivity were insufficient. On the other 

hand, diamine catalysts (19) provided very high yields and outstanding selectivity for 

this syn-asymmetric aldol process. 

Scheme 10. Asymmetric aldol reaction catalyzed by amino acid sulphonamides.

Catalysts 2022, 12, x  11 of 36 
 

 

 

Scheme 10. Asymmetric aldol reaction catalyzed by amino acid sulphonamides. 

HN

O
O

HN

O

N S

O

OO
H

H

H

Reface Attack  

Figure 8. Proposed reaction mode of aldol reaction. 

Bert F. Sels et al. [73] pioneered the syn-asymmetric aldol reaction of linear ketones 

with aromatic aldehydes at ambient temperature catalyzed by various amino acids, 

amino amides (16, 17, and 18) and diamines (19). (Scheme 11) [73]. The authors tested this 

reaction with numerous acids as additives, including TFA, CCl3COOH, m-NO2 bzac, 

H3PW12O40, p-TSA, DNP, PhCOOH, TFA/AcOH, TFA/m-NO2 bzac, and TFA/DNP. They 

used trifluoroacetic acid (TFA) as Bronsted acid and 2,4-dinitrophenol (DNP) as cocata-

lyst and successfully used the simple amino amides (16, 17, and 18) as bifunctional cata-

lysts for this reaction. However, the yields and selectivity were insufficient. On the other 

hand, diamine catalysts (19) provided very high yields and outstanding selectivity for 

this syn-asymmetric aldol process. 

Figure 8. Proposed reaction mode of aldol reaction.

Bert F. Sels et al. [73] pioneered the syn-asymmetric aldol reaction of linear ketones
with aromatic aldehydes at ambient temperature catalyzed by various amino acids, amino
amides (16, 17, and 18) and diamines (19). (Scheme 11) [73]. The authors tested this
reaction with numerous acids as additives, including TFA, CCl3COOH, m-NO2 bzac,
H3PW12O40, p-TSA, DNP, PhCOOH, TFA/AcOH, TFA/m-NO2 bzac, and TFA/DNP. They
used trifluoroacetic acid (TFA) as Bronsted acid and 2,4-dinitrophenol (DNP) as cocatalyst
and successfully used the simple amino amides (16, 17, and 18) as bifunctional catalysts
for this reaction. However, the yields and selectivity were insufficient. On the other
hand, diamine catalysts (19) provided very high yields and outstanding selectivity for this
syn-asymmetric aldol process.

Christoforos G. Kokotos et al. [74] then examined the efficacy of amino-amide-type
catalysts (21 to 26) and prolinamide-type catalysts (27 and 28) in direct aldol condensation
between several aromatic aldehydes and cyclic or acyclic ketones in acetonitrile and a water
medium with 4-nitro benzoic acid as the cocatalyst (Scheme 12) [74]. The anti-aldol product
was obtained with excellent yields (up to 100%) but with low to moderate diastereoselectivity
(up to 69:31 dr) and enantioselectivity (up to 80% ee). However, they achieved the highest
yields (up to 100%) and selectivity (98:2 dr and 99% ee) in this anti-aldol reaction at ambient
temperature using a wet acetonitrile medium with 4-NBA as an additive.
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In general, the predominant reaction products in aldol reaction have anti configuration.
However, in extremely rare cases, syn-aldol products have been reported. Sergei G. Zlotin
et al. [75] designed and synthesized the first chiral ionic liquid containing primary α-amino
amides in 2011 (Scheme 13) and efficiently used these as self-determining organocatalysts
for the aldol reaction of ketones with secondary carbon atoms at the α position with
respect to the carbonyl group and aromatic aldehydes, yielding the corresponding syn-
aldol products in high yields (up to 99%) (Scheme 14). These ionic liquid chiral primary
α-amino amide catalysts (34a–b) were created by the authors using commercially available
N-Cbz-protected threonine amino acids. Scheme 13 describes the entire synthesis operation.
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Among these two created organocatalysts, (2S,3R)-threonine (34a) produced the appropriate
syn-aldol products with higher selectivity than catalyst 34b (Scheme 14). The authors also
proved the viability of recycling the catalyst for this reaction, discovering that after three
cycles, the catalyst yielded the syn-aldol products with no loss of selectivity or yield,
although the reaction duration was increased to seven days from one day in the first cycle.
The yield was suddenly reduced to 20% in the fourth cycle.
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Scheme 14. 34a catalyzed asymmetric syn-aldol reactions between compounds 35 and 36.

The authors then began an inquiry to determine the cause of the catalyst 34a’s unex-
pected deactivation after three cycles. In 2017, they discovered [76] that after 72 h, catalyst
34a was transformed into a dipeptide compound (38) by the O-N migration of the carbonyl
group via a five-membered transition state, as validated by the 1H-13C HMBC and HSQC
spectral data of compound 38 (Scheme 15). As a result, the catalyst abruptly deactivated
after 72 h [76].
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Scheme 15. Transformation of 34a to 38 according to the 1H–13C HMBC and HSQC spectral data.

The authors hypothesized that the simple displacement of the acyl spacer group from
the threonine unit of catalyst 34a to the distal amido-alcohol fragment might significantly
slow the parasitic O–N migration rate (Scheme 16).
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To test this hypothesis, they synthesized compound 39 and calculated the distances
between the primary amine N-4 atom and the ester carbonyl C-5 atoms in the minimum-
energy conformations of the five-membered transition state of compound 34a and the
eight-membered transition state of compound 39 optimized at the PBE0–D3/cc-pVTZ
level of theory with toluene solvation effects modelled with the solvation model based on
density (SMD) (Figure 9) [76]. Quantum theory of atoms in molecules (QTAIM) analysis
and subsequent application of Espinosa–Molins–Lecomte (EML) correlation for the strength
of the noncovalent interaction revealed strong hydrogen bonds between the 1-H and O-2
atoms (ca. 12.8 kcal mol-1), as well as between the amine N-4 and 3-H atoms (ca. 6.9 kcal
mol-1), which is expected to additionally stabilize the open-chain conformation of 39 and
prevent the intramolecular approach of the amine unit to the ester group required for the
undesirable O–N migration.
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Figure 9. Minimum-energy conformers of model compounds of the five-membered transition state
(7’) of 34a and the eight-membered transition state (9’) of compound 39 (9) optimized at the RIJCOSX-
PBE0–D3–gCP/def2-TZVP SMD and PBE0–D3/cc-pVTZ SMD energy level theory.

The authors investigated the catalytic capability of a newly synthesized ionic liquid-
supported amino amide catalyst (39) in the presence of the above reaction conditions for
the identical aldol reaction (Scheme 17). High yield and selectivity were found for the
matching aldol product (up to 99%, dr; 97:3, 99% ee). The hypothesis that catalyst 39 has
good catalytic for proficiency as many as seven cycles without affecting stereo induction
was proven.
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Scheme 17. Efficiency of catalyst 39 in aldol reaction.

Headly et al. [77] developed and synthesized a new series of cyclohexanediamine
organocatalysts (42) with primary amine function as an enamine source and explored their
catalytic effectiveness in the syn-aldol reaction of hydroxyacetone (40) with a range of
substituted benzaldehydes (41). The associated syn-aldol compounds achieved high yields
and high selectivity (up to 98%, syn/anti: 90/10, up to 93% ee) (Scheme 18).
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Scheme 18. Syn-aldol reaction using a chiral primary amine organocatalyst.

Owing to the hydrogen link between the OH group of hydroxyl acetone and the acetic
proton of enamine nitrogen, a stable Z-isomer (44) is preferred, yielding a syn-aldol product
by interaction of this acetic proton with the oxygen of the carbonyl group of aldehyde (45).
(Figure 10).
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In 2019, Michael Kinsella et al. [78] described a direct asymmetric aldol reaction in-
volving isatin and acetone (along with cyclic ketones) in the presence of chiral sources such
as β-amino amides. The authors synthesized catalysts 50a–d (Scheme 19) for the initial
catalytic design and investigated their catalytic efficiency in the aldol process. Although
the aldol adducts were produced in moderate to exceptional yield (up to 99%), enantiose-
lectivity was evident in all cases. The authors predicted that the addition of a second chiral
center would increase chiral selectivity in aldol adducts. They created new chiral β-amino
amides (50e to 50i) and tested them in the aldol reaction. Comparable aldol adducts were
produced with high yields (up to 99%) and diastereoselectivity (up to 99% dr) but with
low enantioselectivity (up to 52% ee). According to the authors’ predictions, the newly
introduced chiral center plays an important role in acquiring chirality in aldol products, as
evidenced by changing the chiral center in catalysts 50h and 50i, which produced opposite
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enantiomers in comparison to 50e to 50g as a result of the opposite configuration of the
phenyl ethyl group attached to the amide moiety (Scheme 20). The hypothesized process
shown in Scheme 21 demonstrates the significance of an additional chiral center in inducing
chirality in aldol products. The steric component of the phenyl group and the interaction
between the phenyl group and isatin 51 determines isatin’s approach to enamine.
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2.2. Asymmetric Michael Reaction

The Michael addition reaction is an example of one of the most influential methods for
the creation of carbon–carbon bonds with full atom economy in organic synthesis [79–82]. The
asymmetric Michael reaction is one of the most versatile, direct, and appealing approaches to
organic synthesis [83–85]. The Michael addition of 4-hydroxycoumarin to benzylidenacetone
in the presence of chiral scaffolds as catalysts is a simple way to produce enantiomerically
enriched warfarin, which is an effective and relatively safe medication for thrombosis and
embolism prevention [86–88]. Owing to warfarin’s intriguing biological action, our research has
focused on the synthesis of its chiral variants. We examined the possibility of α-amino amides
as chiral templates (57 to 60) in the synthesis of chiral warfarin (56) from 4-hydroxycoumarin
(54) and benzylidenacetone (55) in 2015 [89].

The α-amino amide alcohol catalysts 57 to 60 were made from the appropriate amino
acids and α-amino alcohols and employed in the direct Michael addition of
4-hydroxycoumarin (54) to benzylidenacetone (55) to generate chiral warfarin (56) with up
to 92% yield and up to 52% ee (Scheme 22). We also produced a variety of warfarin deriva-
tives (63) from various 4-hydroxycoumarins (61) and unsaturated ketones (62) (Scheme 23)
with good yields and moderate enantioselectivity under optimal reaction conditions uti-
lizing our best catalysts (57). The proposed transition state model shown in Scheme 24
demonstrates that si-face attack is more advantageous than re-face attack for harvesting
chiral warfarin.

Catalysts 2022, 12, x  19 of 36 
 

 

 

Scheme 22. Asymmetric synthesis of warfarin using amino amides as chiral templates. 

O

R3

R2

R1

OH

O
R

O

O

R3

R2

R1

OH

O

R O

Catalyst 57
(20 mol%)

THF, rt, 72 h

61 62 63

R1 = H, Cl
R2 = Me, H
R3 = H, Cl, Me

R = 3-F-Ph, 4-F-Ph,
3-Cl-Ph, 2-Cl-Ph, 4-Cl-Ph,
1-naph, 2-naph, furyl

up to 87% yield
up to 56% ee

 

Scheme 23. Asymmetric synthesis of warfarin derivatives. 

 

Scheme 24. Proposed transition-state model of Michael addition. 

Recently, we investigated the catalytic proficiency of α-amino amide catalysts (3a, 

3i, 10a to 10e, 64, and 65) with primary amine groups for enamine formation and hy-

drogen bond formation. We also investigated the amide group as a hydrogen bonding 

site in the Michael addition reaction of β-keto esters (66) with trans-nitro olefins (67) in 

aqueous medium at room temperature [90]. Our finest catalyst for this transformation 

(10a) (5 mol%) offered a Michael adduct with outstanding selectivity and yield (up to 

99%, dr; 99:1, ee 98%) under environmentally acceptable reaction circumstances (Scheme 

25). To improve selectivity, the bulky flexible polycyclic aromatic ring on the nitrogen 

atom of the amide group in the catalyst may be successfully sheltered by a steric com-

ponent on the one enantiotopic face. 

Scheme 22. Asymmetric synthesis of warfarin using amino amides as chiral templates.

Catalysts 2022, 12, x  19 of 36 
 

 

 

Scheme 22. Asymmetric synthesis of warfarin using amino amides as chiral templates. 

O

R3

R2

R1

OH

O
R

O

O

R3

R2

R1

OH

O

R O

Catalyst 57
(20 mol%)

THF, rt, 72 h

61 62 63

R1 = H, Cl
R2 = Me, H
R3 = H, Cl, Me

R = 3-F-Ph, 4-F-Ph,
3-Cl-Ph, 2-Cl-Ph, 4-Cl-Ph,
1-naph, 2-naph, furyl

up to 87% yield
up to 56% ee

 

Scheme 23. Asymmetric synthesis of warfarin derivatives. 

 

Scheme 24. Proposed transition-state model of Michael addition. 

Recently, we investigated the catalytic proficiency of α-amino amide catalysts (3a, 

3i, 10a to 10e, 64, and 65) with primary amine groups for enamine formation and hy-

drogen bond formation. We also investigated the amide group as a hydrogen bonding 

site in the Michael addition reaction of β-keto esters (66) with trans-nitro olefins (67) in 

aqueous medium at room temperature [90]. Our finest catalyst for this transformation 

(10a) (5 mol%) offered a Michael adduct with outstanding selectivity and yield (up to 

99%, dr; 99:1, ee 98%) under environmentally acceptable reaction circumstances (Scheme 

25). To improve selectivity, the bulky flexible polycyclic aromatic ring on the nitrogen 

atom of the amide group in the catalyst may be successfully sheltered by a steric com-

ponent on the one enantiotopic face. 

Scheme 23. Asymmetric synthesis of warfarin derivatives.



Catalysts 2022, 12, 1674 17 of 32

Catalysts 2022, 12, x  19 of 36 
 

 

 

Scheme 22. Asymmetric synthesis of warfarin using amino amides as chiral templates. 

O

R3

R2

R1

OH

O
R

O

O

R3

R2

R1

OH

O

R O

Catalyst 57
(20 mol%)

THF, rt, 72 h

61 62 63

R1 = H, Cl
R2 = Me, H
R3 = H, Cl, Me

R = 3-F-Ph, 4-F-Ph,
3-Cl-Ph, 2-Cl-Ph, 4-Cl-Ph,
1-naph, 2-naph, furyl

up to 87% yield
up to 56% ee

 

Scheme 23. Asymmetric synthesis of warfarin derivatives. 

 

Scheme 24. Proposed transition-state model of Michael addition. 

Recently, we investigated the catalytic proficiency of α-amino amide catalysts (3a, 

3i, 10a to 10e, 64, and 65) with primary amine groups for enamine formation and hy-

drogen bond formation. We also investigated the amide group as a hydrogen bonding 

site in the Michael addition reaction of β-keto esters (66) with trans-nitro olefins (67) in 

aqueous medium at room temperature [90]. Our finest catalyst for this transformation 

(10a) (5 mol%) offered a Michael adduct with outstanding selectivity and yield (up to 

99%, dr; 99:1, ee 98%) under environmentally acceptable reaction circumstances (Scheme 

25). To improve selectivity, the bulky flexible polycyclic aromatic ring on the nitrogen 

atom of the amide group in the catalyst may be successfully sheltered by a steric com-

ponent on the one enantiotopic face. 

Scheme 24. Proposed transition-state model of Michael addition.

Recently, we investigated the catalytic proficiency of α-amino amide catalysts (3a, 3i, 10a
to 10e, 64, and 65) with primary amine groups for enamine formation and hydrogen bond
formation. We also investigated the amide group as a hydrogen bonding site in the Michael
addition reaction of β-keto esters (66) with trans-nitro olefins (67) in aqueous medium at
room temperature [90]. Our finest catalyst for this transformation (10a) (5 mol%) offered a
Michael adduct with outstanding selectivity and yield (up to 99%, dr; 99:1, ee 98%) under
environmentally acceptable reaction circumstances (Scheme 25). To improve selectivity, the
bulky flexible polycyclic aromatic ring on the nitrogen atom of the amide group in the catalyst
may be successfully sheltered by a steric component on the one enantiotopic face.
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Kun Wei et al. [91] developed and synthesized adamantyl-based prolinamides and 

primary amino amides in 2015 (Scheme 27). The catalytic activity of these synthesized 

α-amino amides for Michael addition of aldehydes and ketones to nitroalkenes was in-

vestigated by the authors. After testing numerous acids and bases as additives in various 

solvents, they discovered that toluene is the best solvent and benzoic acid is the leading 

additive for this Michael addition. The prolinamide adamantoyl catalysts were superior 

in producing these Michael adducts. In addition, the primary α-amino amide adaman-

toyl as chiral catalysts also produced the corresponding products in moderate to good 

yields and selectivities under optimized reaction conditions (Scheme 28). 

Scheme 25. Michael addition in the presence of amino amides as chiral templates.

Scheme 26 depicts the hypothesized reaction transition state. The creation of enamine
species was not detected in this reaction based on the calculation findings of the scan total
energy of catalyst 10a and the electrostatic potential maps of 10a, as well as the calculation
of the energies and coefficients of frontier orbitals of reactants 66 and 67 [90]. This finding
suggests that amino amide 10a may operate as a basic catalyst via hydrogen bonding
between oxygen in the nitro group and hydrogen in the primary amine, as well as between
oxygen in the keto ester and hydrogens in the primary amine.



Catalysts 2022, 12, 1674 18 of 32

Catalysts 2022, 12, x  20 of 36 
 

 

 

Scheme 25. Michael addition in the presence of amino amides as chiral templates. 

Scheme 26 depicts the hypothesized reaction transition state. The creation of 

enamine species was not detected in this reaction based on the calculation findings of the 

scan total energy of catalyst 10a and the electrostatic potential maps of 10a, as well as the 

calculation of the energies and coefficients of frontier orbitals of reactants 66 and 67 [90]. 

This finding suggests that amino amide 10a may operate as a basic catalyst via hydrogen 

bonding between oxygen in the nitro group and hydrogen in the primary amine, as well 

as between oxygen in the keto ester and hydrogens in the primary amine. 

N

O

H

N O

O

H

H
O

MeO
O

H
H

O

OMe

O
NO2

N
H

O

NH2

O
OMe

O

NO210a

66 67
68

 

Scheme 26. Proposed reaction mechanism of Michael addition using amino amides as chiral 

agents. 

Kun Wei et al. [91] developed and synthesized adamantyl-based prolinamides and 

primary amino amides in 2015 (Scheme 27). The catalytic activity of these synthesized 

α-amino amides for Michael addition of aldehydes and ketones to nitroalkenes was in-

vestigated by the authors. After testing numerous acids and bases as additives in various 

solvents, they discovered that toluene is the best solvent and benzoic acid is the leading 

additive for this Michael addition. The prolinamide adamantoyl catalysts were superior 

in producing these Michael adducts. In addition, the primary α-amino amide adaman-

toyl as chiral catalysts also produced the corresponding products in moderate to good 

yields and selectivities under optimized reaction conditions (Scheme 28). 

Scheme 26. Proposed reaction mechanism of Michael addition using amino amides as chiral agents.

Kun Wei et al. [91] developed and synthesized adamantyl-based prolinamides and
primary amino amides in 2015 (Scheme 27). The catalytic activity of these synthesized
α-amino amides for Michael addition of aldehydes and ketones to nitroalkenes was in-
vestigated by the authors. After testing numerous acids and bases as additives in various
solvents, they discovered that toluene is the best solvent and benzoic acid is the leading
additive for this Michael addition. The prolinamide adamantoyl catalysts were superior in
producing these Michael adducts. In addition, the primary α-amino amide adamantoyl as
chiral catalysts also produced the corresponding products in moderate to good yields and
selectivities under optimized reaction conditions (Scheme 28).
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2.3. Asymmetric Strecker Reaction

The asymmetric Strecker reaction is one of the simplest and most cost-effective multi-
component reactions, involving the hydrocyanation of imines to yield α-amino nitrile, which
is then hydrolyzed to yield natural and un-natural α-amino acids [92,93]. Asymmetric amino
acids are crucial protocols in many biological active scaffolds. Many asymmetric Strecker
procedures mediated by metal [94–96] and free of metal [97] have been reported and recorded.
In 2012, N.H. Khan et al. [98] developed and synthesized a series of C1- and C2-symmetric
amino amide organocatalysts with variable steric characteristics and one to four chiral centers
from L-phenyl alanine in two simple stages (Scheme 29).
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Scheme 29. Synthesis of C1- and C2-symmetric amino amide organocatalysts.

The authors investigated these C1- and C2-symmetric amino amide organocatalysts
(79 and 78) in toluene for the enantioselective Strecker reaction of N-benzhydrylimine
(80) with ethyl cyanoformate (81) as a cyanide source. All tested organocatalysts showed
catalytic activity in the production of enantioselective α-amino nitriles with moderate to
high yields and selectivity (Scheme 30), confirming that the C2-symmetric catalyst (78d)
(10 mol%) optimally furnished the Strecker product, i.e., α-aminonitriles (82) in toluene as
a solvent and i-PrOH as an additive and proton source at −10 ◦C in high yield (95%) with
excellent chiral induction (up to 99% ee) (Scheme 30).
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Scheme 30. Enantioselective Strecker reaction of N-benzhydrylimine (80) with ethyl cyanoformate
(81) in the presence of organocatalysts 78 and 79.

Scheme 31 shows the reaction path of this transition. In the first stage, the imine
nitrogen of N-benzhydrylimine bonded with the more acidic proton of the catalyst’s
sulphonamide origin. To obtain the end product, the CN group was transferred from ethyl
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cyanoformate, followed by the transfer of an acidic proton from the additive, i-PrOH. The
recyclability of best catalyst (78d) was also investigated, and it was discovered that it could
provide the product for up to three cycles without losing yield or selectivity.
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Later, the same Strecker reaction was reported [99] with a variety of N-benzhydryl- and
N-tosyl-substituted imines (85) in the presence of simple N-sulfonamide amino amide chiral
catalysts (88–99) using various cyanide sources, such as ethyl cyanoformate, TMSCN, and
acetone cyanohydrin (86), and i-PrOH as additive and proton source at 0 ◦C (Scheme 32).
In the case of both N-benzhydryl- and N-tosyl-substituted imines, they achieved the
corresponding α-amino nitriles (87) in 24 h at 0 ◦C with high yield (up to 91%) and
outstanding enantioselectivity (up to 99% ee of product) (Scheme 32). Among the evaluated
chiral sources, catalyst 92 produced the best results under optimum reaction circumstances
(yields up to 91%, up to 99% ee) (Scheme 32). The authors thoroughly investigated the
optimum reaction conditions in order to achieve high yield and selectivity. They discovered
that the addition sequence of reactants, including the cyanide source, is critical to obtaining
optimal outcomes. The addition of a cyanide source to the best catalyst (92), followed by
the addition of an imine, resulted in a significant shift in enantioselectivity for all three
cyanide sources.

These findings show that the cyanide sources interacted with catalyst 92, which was
validated by 1H-NMR spectra. The authors also presented a stereo selection model for the
hydrocyanation of imines based on their research, as illustrated in Figure 11.

2.4. Enantioselective Allylation of Aldehydes

In 2013, Sayed H.R. Abdi et al. [100] reported the metal-free asymmetric synthesis
of homoallyl alcohol from the well-known allylation process of carbonyl compounds.
These are crucial building blocks for the synthesis of physiologically active chemicals. In
outstanding yields, the authors developed and synthesized tosylated L-phenylalanine
derivatives as effective catalysts, i.e., 100 to 110, in a single step by amidation of tosylated
L-phenylalanine/L-alanine/L-phenyl glycine. These new chiral amides (100 to 110) served
as effective organocatalysts for the reaction of allyl-trichlorosilane 112 with aryl, hetero-aryl,
and, α, β-unsaturated aldehydes (111) to generate the required homoallylic alcohols in good
yield (up to 90%) and high enantioselectivity (up to 99%). (Scheme 33). They discovered
that catalyst (101) had the best selectivity in the presence of diisopropylethylamine (DIPEA,
2.0 eq.) as an additive in CH2Cl2: THF (7:3) at 0 ◦C. According to the experimental data
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and DFT calculations, para-substituted aromatic aldehydes as a substrate exhibited higher
ee in the product than ortho/meta equivalents. Figure 12 depicts the reaction path.
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2.5. Hydrosilylation of 1,4-Benzooxazines

Chiral 3-substituted 3,4-dihydro-2H-1,4-benzooxazine is an important structural mo-
tif in chiral pharmaceuticals, as well as medically interesting natural chemicals, such as
obscurinervidine, niblinine, and levofloxacin. The development of an organocatalyst to syn-
thesize chiral 3-substituted 3,4-dihydro-2H-1,4-benzoxazine is significant and exceedingly
valuable. Jian Sun et al. [101] developed the amino amide catalysts 116–118 as new Lewis
base organocatalysts. 117 and 118 have stereogenic sulfur centers, along with stereogenic
carbon. Th authors successfully employed them to synthesize 3-substituted 3,4-dihydro-2H-
1,4-benzooxazines via an asymmetric procedure. Catalyst 117b is exceedingly active, with
2 mol% of this catalyst forming the suitable chiral 3-aryl-3,4-dihydro-2H-1,4-benzooxazine
products (115) via hydrosilylation with good to high yields (66–98%) and enantioselectivity
(70–99% ee) (Scheme 34).
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2.6. Asymmetric N-Specific Reaction of Nitrosobenzene with Aldehydes

Atom-specific reactions are both fascinating and important for the production of diverse
products using a molecule with varied reactive atoms. Nitroso compounds are appealing
because their N and O atoms are highly reactive toward nucleophiles, and they are widely used
to construct structures containing nitrogen or oxygen. Yi-Feng Zhou et al. [102] successfully
synthesized simple α-amino amide organocatalysts 122–123 with hydroxyl functional groups
in 2011 and employed them in the enantioselective N-specific reaction of nitrosobenzene with
unmodified aldehydes. The corresponding aldehyde hydroxyamination products (121) were
produced increased yield and selectivity (Scheme 35). After screening multiple solvents at
various temperatures, the best results were obtained using CH2Cl2 as a solvent at −20 ◦C
in the presence of 20 mol% of the most efficient catalyst, i.e., 122a. The reaction process is
explained in Scheme 36. The presence of the base had no effect on enantioselectivity. Owing
to the bulkier substituents of the organocatalyst and the two hydrogen bonds formed between
two hydrogen atoms of amide and hydroxyl groups and the oxygen atom of nitrosobenze, the
reaction is nitrogen-selective. Furthermore, the larger group of an aldehyde’s carbon chain
at the β-carbon can boost product enantioselectivity, whereas α-substituted aldehydes often
achieve lower enantioselectivity.
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2.7. Opening of Epoxide

Kurshy et al. [103] designed and synthesized a simple chiral sulfinamide-based
organocatalyst from commercially available starting materials and used it successfully
for the asymmetric ring-opening (ARO) reaction of meso-epoxides with anilines. They
created chiral promoters by protecting primary amines with chloroacetyl chloride and
replacing the chlorine atom with sulfinamide groups (Scheme 37). The authors investigated
the reaction conditions for the model reaction, such as catalyst loading and solvent choice.
They concluded that 20 mol% of catalyst 126b and dichloromethane as solvent at room
temperature produced the corresponding product (129) with high yield (up to 96%) and
excellent enantiomeric excess (up to >99% ee) (Scheme 38).

The experimental examination of 1H and 13C-NMR spectra led to the predicted reaction
pathway depicted in Scheme 39. The interaction of the catalyst with the epoxide substrate
was studied and confirmed with chemical shift values of N-H protons in 1H-NMR at
various stages of the reaction course via hydrogen bonds between N-H protons of the
carbonyl, as well as sulfonyl moieties of the catalyst with the oxygen of the epoxide. This
was supported by 13C-NMR of the catalyst and NMR spectra of the epoxide.
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2.8. Asymmetric Reduction of N-Aryl Imines

Zhouyu Wang et al. [104] created a variety of Lewis basic organocatalysts derived from
L-pipecolinic acid for the enantioselective reduction of N-aryl ketimines utilizing trichlorosi-
lane as the reducing agent. The investigation of the link between the structure of the side
amide group and its catalytic performance yielded exceptionally potent catalysts (132–138). In
particular, an arylamido-type catalyst (134i) and non-arylamido-type catalyst (133c) demon-
strated high reactivity and enantioselectivity, allowing for the reduction of a wide range of
N-aryl imines with high isolated yields (up to 98%) and ee values (up to 96%) under mild
conditions, i.e., dichloromethane as a solvent at 0 ◦C temperature (Scheme 40). Previously, the
133c catalyst was produced, and its catalytic efficacy was evaluated. They discovered that the
best catalyst (134i), which is structurally simpler, easier to synthesize, and significantly less
expensive than the previous catalyst (133c), exhibits nearly the same efficiency as 133c and is
applicable to difficult substrates containing a relatively bulky alkyl group that 133c cannot
tolerate. Furthermore, they thoroughly investigated the structure–efficiency relationship (SER),
application breadth, and limitations of the catalytic system for this reaction.
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2.9. Asymmetric Hydrogen Transfer of Acetophenone

Asymmetric hydrogen transfer of ketones is one of the most effective and efficient
methods for producing stereoselective chiral alcohols, which are essential building blocks
for the production of chiral fine chemicals, medicines, agrochemicals, and bioactive natural
products. Anil K. Kinage et al. [105] employed easy ways to create chiral amino-amide-
based ionic liquids, which they then used as stereoselective organocatalysts in the asym-
metric transfer hydrogenation of acetophenone at room temperature to produce chiral
alcohols. The amino acid amides that comprise the chiral ionic liquids were synthesized in
two steps. In the first stage, amino acid amides 141a–d were produced in a single step at
room temperature by amidation with dichlorodimethyl silane as a silylating agent and a
chiral amino acid employing a simultaneous protection and activation method. The amino
acid amides from the first step were protonated in the second step to produce chiral ionic
liquids (CILs) 142a–d (Scheme 41).
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The authors first investigated the catalytic activity of simple amino amides (141) for
asymmetric transfer hydrogenation of acetophenone. However, even after 24 h, they did
not acquire a result. Then, utilizing chiral ionic liquids of amino acid amides (142) as
chiral sources, they obtained the corresponding asymmetric transfer hydrogenation of
acetophenone products with good yields and outstanding enantioselectivity (Scheme 42).
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Scheme 42. Asymmetric transfer hydrogenation of acetophenone utilizing chiral ionic liquids of
amino acid amides.

Scheme 43 depicts the suggested reaction mechanism. The positively charged nitrogen
atom from chiral ionic liquids of amino acid amide donates a proton to the oxygen atom of
the carbonyl group of ketones, and the hydride anion is transferred to carbonyl carbon in
an alkaline medium, resulting in the formation of chiral alcohols. The reusability of these
ionic liquid catalysts was also studied, and up to three cycles were obtained with no yield
or selectivity loss.
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3. Conclusions

In recent years, simple primary α-amino amides have become one of the most im-
portant classes of organocatalysts, owing to their simplicity of synthesis, the existence of
adjacent bifunctional groups, and the availability of a variety of alternatives to strengthen
the fundamental steric sites. Because they each contain two contiguous bifunctional groups,
they are capable of universal base or acid activation via covalent and non-covalent ways of
interaction with substrates. As organocatalysts, these simple primary α-amino amides are
less costly alternatives to chiral diamines and cinchona-derived primary amines. Surendra
Singh et al. (2019) and Pandey et al. (2011) published reviews on the catalytic efficiency
of prolinamides as organocatalysts, and in 2009, Xiaoming Feng et al. reported on the
catalytic efficiency of α-amino amides as organocatalysts. It is always a challenging task to
investigate the applicability of simple types of organocatalysts such as α-amino amides
in a variety of organic transformations. In this review, we discussed the recent catalytic
efficiencies of α-amino amides and their single-step derivatives in aldol reaction, Strecker
reaction, Michael tandem reaction, allylation of aldehydes, reduction of N-Aryl imines,
opening of epoxides, hydrosilylation, asymmetric transfer of hydrogen, and N-specific
reaction of nitrosobenzene with aldehydes (from 2011 to date). To our satisfaction, we
have had the opportunity to contribute to this field, and we intend to continue searching
for organocatalytic uses of simple α-amino amides. Owing to the existence of several
functional groups and the simplicity of synthesis and operation, we expect that this type
of primary α-amino amides will become a useful class of organocatalysts. We anticipate
significant advancements in this field in the near future.
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