Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Stem Cells Derived from periodontal dental ligament (PDLSC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1826 KiB  
Article
Epigenetic Signatures of Dental Stem Cells: Insights into DNA Methylation and Noncoding RNAs
by Rosanna Guarnieri, Agnese Giovannetti, Giulia Marigliani, Michele Pieroni, Tommaso Mazza, Ersilia Barbato and Viviana Caputo
Appl. Sci. 2025, 15(15), 8749; https://doi.org/10.3390/app15158749 (registering DOI) - 7 Aug 2025
Abstract
Tooth development (odontogenesis) is regulated by interactions between epithelial and mesenchymal tissues through signaling pathways such as Bone Morphogenetic Protein (BMP), Wingless-related integration site (Wnt), Sonic Hedgehog (SHH), and Fibroblast Growth Factor (FGF). Mesenchymal stem cells (MSCs) derived from dental tissues—including dental pulp [...] Read more.
Tooth development (odontogenesis) is regulated by interactions between epithelial and mesenchymal tissues through signaling pathways such as Bone Morphogenetic Protein (BMP), Wingless-related integration site (Wnt), Sonic Hedgehog (SHH), and Fibroblast Growth Factor (FGF). Mesenchymal stem cells (MSCs) derived from dental tissues—including dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and dental follicle progenitor cells (DFPCs)—show promise for regenerative dentistry due to their multilineage differentiation potential. Epigenetic regulation, particularly DNA methylation, is hypothesized to underpin their distinct regenerative capacities. This study reanalyzed publicly available DNA methylation data generated with Illumina Infinium HumanMethylation450 BeadChip arrays (450K arrays) from DPSCs, PDLSCs, and DFPCs. High-confidence CpG sites were selected based on detection p-values, probe variance, and genomic annotation. Principal Component Analysis (PCA) and hierarchical clustering identified distinct methylation profiles. Functional enrichment analyses highlighted biological processes and pathways associated with specific methylation clusters. Noncoding RNA analysis was integrated to construct regulatory networks linking DNA methylation patterns with key developmental genes. Distinct epigenetic signatures were identified for DPSCs, PDLSCs, and DFPCs, characterized by differential methylation across specific genomic contexts. Functional enrichment revealed pathways involved in odontogenesis, osteogenesis, and neurodevelopment. Network analysis identified central regulatory nodes—including genes, such as PAX6, FOXC2, NR2F2, SALL1, BMP7, and JAG1—highlighting their roles in tooth development. Several noncoding RNAs were also identified, sharing promoter methylation patterns with developmental genes and being implicated in regulatory networks associated with stem cell differentiation and tissue-specific function. Altogether, DNA methylation profiling revealed that distinct epigenetic landscapes underlie the developmental identity and differentiation potential of dental-derived mesenchymal stem cells. This integrative analysis highlights the relevance of noncoding RNAs and regulatory networks, suggesting novel biomarkers and potential therapeutic targets in regenerative dentistry and orthodontics. Full article
Show Figures

Figure 1

14 pages, 3107 KiB  
Article
The Pro-Angiogenic Potential of Periodontal Ligament Stem Cells and Dental Pulp Stem Cells: A Comparative Analysis
by Ilaria Roato, Clarissa Orrico, Sara Meinardi, Riccardo Pedraza, Alessandro Mosca Balma, Giacomo Baima, Tullio Genova, Mario Aimetti and Federico Mussano
Cells 2025, 14(12), 864; https://doi.org/10.3390/cells14120864 - 8 Jun 2025
Viewed by 562
Abstract
The role of periodontal ligament stem cells (PDLSCs) and dental pulp stem cells (DPSCs) in stimulating angiogenesis has been reported, but their angiogenetic potential has not been directly compared. In this work, paired PDLSCs and DPSCs, i.e., derived from the same donor, were [...] Read more.
The role of periodontal ligament stem cells (PDLSCs) and dental pulp stem cells (DPSCs) in stimulating angiogenesis has been reported, but their angiogenetic potential has not been directly compared. In this work, paired PDLSCs and DPSCs, i.e., derived from the same donor, were tested for their immunophenotype and multi-differentiation capabilities, with particular emphasis on their pro-angiogenic activity. Flow cytometry was utilized to study the expression of mesenchymal stem cell, pericyte, and endothelial markers, while gene expression was evaluated through real-time PCR. The angiogenic potential was assessed recurring to tubulogenesis assay, co-cultures with Human Microvascular Endothelial Cell (HMEC-1), and VEGF-A quantification. The immunophenotype of DPSCs and PDLSCs was different in CD146+ and CD31+ cell subsets, but both cell types promoted HMEC-1 tubulogenesis in vitro. Consistently, VEGF-A gene expression level and its quantification in cell-conditioned media of PDLSCs and DPSCs was comparable between them, and both promoted the formation of vessel-like structures, when co-cultured with HMEC-1 cells. All together, these results showed the heterogeneity of PDLSCs and DPSCs, which are constituted of different cellular subsets, likely modulated by the microenvironmental cues. PDLSCs and DPSCs showed comparable pro-angiogenic activity, enhanced by the contemporary expression of angiogenic and chemotactic factors. Full article
Show Figures

Graphical abstract

20 pages, 5549 KiB  
Article
Effects of Oral Cavity Stem Cell Sources and Serum-Free Cell Culture on Hydrogel Encapsulation of Mesenchymal Stem Cells for Bone Regeneration: An In Vitro Investigation
by Premjit Arpornmaeklong, Supakorn Boonyuen, Komsan Apinyauppatham and Prisana Pripatnanont
Bioengineering 2024, 11(1), 59; https://doi.org/10.3390/bioengineering11010059 - 8 Jan 2024
Cited by 3 | Viewed by 2596
Abstract
Introduction: To develop a stem cell delivery model and improve the safety of stem cell transplantation for bone regeneration, this study aimed to determine the effects of stem cell sources, serum-free cell culture, and hydrogel cell encapsulation on the growth and osteogenic differentiation [...] Read more.
Introduction: To develop a stem cell delivery model and improve the safety of stem cell transplantation for bone regeneration, this study aimed to determine the effects of stem cell sources, serum-free cell culture, and hydrogel cell encapsulation on the growth and osteogenic differentiation of mesenchymal stem cells (MSCs) from the oral cavity. Methods: The study groups were categorized according to stem cell sources into buccal fat pad adipose (hBFP-ADSCs) (Groups 1, 4, and 7), periodontal ligament (hPDLSCs) (Groups 2, 5, and 8), and dental pulp-derived stem cells (hDPSCs) (Groups 3, 6, and 9). MSCs from each source were isolated and expanded in three types of sera: fetal bovine serum (FBS) (Groups 1–3), human serum (HS) (Groups 4–6), and synthetic serum (SS) (StemPro™ MSC SFM) (Groups 7–9) for monolayer (m) and hydrogel cell encapsulation cultures (e). Following this, the morphology, expression of MSC cell surface antigens, growth, and osteogenic differentiation potential of the MSCs, and the expression of adhesion molecules were analyzed and compared. Results: SS decreased variations in the morphology and expression levels of cell surface antigens of MSCs from three cell sources (Groups 7m–9m). The levels of osteoblastic differentiation of the hPDLSCs and hBFP-ADSCs were increased in SS (Groups 8m and 7m) and the cell encapsulation model (Groups 1e, 4e, 7e–9e), but the promoting effects of SS were decreased in a cell encapsulation model (Groups 7e–9e). The expression levels of the alpha v beta 3 (ITG-αVβ3) and beta 1 (ITG-β1) integrins in the encapsulated cells in FBS (Group 1e) were higher than those in the SS (Group 7e). Conclusions: Human PDLSCs and BFP-ADSCs were the optimum stem cell source for stem cell encapsulation by using nanohydroxyapatite–calcium carbonate microcapsule–chitosan/collagen hydrogel in serum-free conditions. Full article
(This article belongs to the Special Issue Stem Cell for Tissue Engineering)
Show Figures

Figure 1

50 pages, 1649 KiB  
Review
Adult Mesenchymal Stem Cells from Oral Cavity and Surrounding Areas: Types and Biomedical Applications
by María Eugenia Cabaña-Muñoz, María Jesús Pelaz Fernández, José María Parmigiani-Cabaña, José María Parmigiani-Izquierdo and José Joaquín Merino
Pharmaceutics 2023, 15(8), 2109; https://doi.org/10.3390/pharmaceutics15082109 - 9 Aug 2023
Cited by 22 | Viewed by 5309
Abstract
Adult mesenchymal stem cells are those obtained from the conformation of dental structures (DMSC), such as deciduous and permanent teeth and other surrounding tissues. Background: The self-renewal and differentiation capacities of these adult stem cells allow for great clinical potential. Because DMSC are [...] Read more.
Adult mesenchymal stem cells are those obtained from the conformation of dental structures (DMSC), such as deciduous and permanent teeth and other surrounding tissues. Background: The self-renewal and differentiation capacities of these adult stem cells allow for great clinical potential. Because DMSC are cells of ectomesenchymal origin, they reveal a high capacity for complete regeneration of dental pulp, periodontal tissue, and other biomedical applications; their differentiation into other types of cells promotes repair in muscle tissue, cardiac, pancreatic, nervous, bone, cartilage, skin, and corneal tissues, among others, with a high predictability of success. Therefore, stem and progenitor cells, with their exosomes of dental origin and surrounding areas in the oral cavity due to their plasticity, are considered a fundamental pillar in medicine and regenerative dentistry. Tissue engineering (MSCs, scaffolds, and bioactive molecules) sustains and induces its multipotent and immunomodulatory effects. It is of vital importance to guarantee the safety and efficacy of the procedures designed for patients, and for this purpose, more clinical trials are needed to increase the efficacy of several pathologies. Conclusion: From a bioethical and transcendental anthropological point of view, the human person as a unique being facilitates better clinical and personalized therapy, given the higher prevalence of dental and chronic systemic diseases. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

25 pages, 10886 KiB  
Article
Zinc-Containing Sol–Gel Glass Nanoparticles to Deliver Therapeutic Ions
by Prakan Thanasrisuebwong, Julian R. Jones, Salita Eiamboonsert, Nisarat Ruangsawasdi, Bundhit Jirajariyavej and Parichart Naruphontjirakul
Nanomaterials 2022, 12(10), 1691; https://doi.org/10.3390/nano12101691 - 16 May 2022
Cited by 22 | Viewed by 3084
Abstract
Zn-containing dense monodispersed bioactive glass nanoparticles (Zn-BAGNPs) have been developed to deliver therapeutic inorganic trace elements, including Si, Ca, Sr, and Zn, to the cells through the degradation process, as delivery carriers for stimulating bone regeneration because of their capacity to induce osteogenic [...] Read more.
Zn-containing dense monodispersed bioactive glass nanoparticles (Zn-BAGNPs) have been developed to deliver therapeutic inorganic trace elements, including Si, Ca, Sr, and Zn, to the cells through the degradation process, as delivery carriers for stimulating bone regeneration because of their capacity to induce osteogenic differentiation. The sol–gel-derived dense silica nanoparticles (SiO2-NPs) were first synthesized using the modified Stöber method, prior to incorporating therapeutic cations through the heat treatment process. The successfully synthesized monodispersed Zn-BAGNPs (diameter of 130 ± 20 nm) were homogeneous in size with spherical morphology. Ca, Sr and Zn were incorporated through the two-step post-functionalization process, with the nominal ZnO ratio between 0 and 2 (0, 0.5, 1.0, 1.5 and 2.0). Zn-BAGNPs have the capacity for continuous degradation and simultaneous ion release in SBF and PBS solutions due to their amorphous structure. Zn-BAGNPs have no in vitro cytotoxicity on the murine pre-osteoblast cell (MC3T3-E1) and periodontal ligament stem cells (PDLSCs), up to a concentration of 250 µg/mL. Zn-BAGNPs also stimulated osteogenic differentiation on PDLSCs treated with particles, after 2 and 3 weeks in culture. Zn-BAGNPs were not toxic to the cells and have the potential to stimulate osteogenic differentiation on PDLSCs. Therefore, Zn-BAGNPs are potential vehicles for therapeutic cation delivery for applications in bone and dental regenerations. Full article
(This article belongs to the Special Issue Nanomaterials in Dentistry)
Show Figures

Figure 1

13 pages, 3183 KiB  
Article
Biocompatibility of Biodentine™ ® with Periodontal Ligament Stem Cells: In Vitro Study
by Duaa Abuarqoub, Nazneen Aslam, Hanan Jafar, Zakariya Abu Harfil and Abdalla Awidi
Dent. J. 2020, 8(1), 17; https://doi.org/10.3390/dj8010017 - 8 Feb 2020
Cited by 18 | Viewed by 4201
Abstract
Biodentine™ is a tricalcium silicate-based cement material that has a great impact on different biological processes of dental stem cells, compared to other biomaterials. Therefore, we aimed to investigate the optimum biocompatible concentration of Biodentine™ with stem cells derived from periodontal ligament (hPDLSCs) [...] Read more.
Biodentine™ is a tricalcium silicate-based cement material that has a great impact on different biological processes of dental stem cells, compared to other biomaterials. Therefore, we aimed to investigate the optimum biocompatible concentration of Biodentine™ with stem cells derived from periodontal ligament (hPDLSCs) by determining cell proliferation, cytotoxicity, migration, adhesion and mineralization potential. hPDLSCs were treated with Biodentine™ extract at different concentrations; 20, 2, 0.2 and 0.02 mg/mL. Cells cultured without Biodentine™ were used as a blank control. The proliferation potential of hPDLSCs was evaluated by MTT viability analysis for 6 days. Cytotoxicity assay was performed after 3 days by using AnnexinV/7AAD. Migration potential was investigated by wound healing and transwell migration assays at both cellular and molecular levels. The expression levels of chemokines CXCR4, MCP-1 and adhesion molecules FGF-2, FN, VCAM and ICAM-1 were measured by qPCR. The communication potentials of these cells were determined by adhesion assay. In addition, mineralization potential was evaluated by measuring the expression levels of osteogenic markers; ALP, OCN, OPN and Collagen type1 by qPCR. Our results showed significant increase in the proliferation of hPDLSCs at low concentrations of Biodentine™ (2, 0.2 and 0.02 mg/mL) while higher concentration (20 mg/mL) exhibited cytotoxic effect on the cells. Moreover, 2 mg/mL Biodentine™ showed a significant increase in the migration, adhesion and mineralization potentials of the derived cells among all concentrations and when compared to the blank control. Our findings suggest that 2 mg/mL of Biodentine™ is the most biocompatible concentration with hPDLSCs, showing a high stimulatory effect on the biological processes. Full article
Show Figures

Figure 1

Back to TopTop