Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Spinifex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5797 KB  
Article
Performance Analysis of Spinifex Fibre-Reinforced Mudbrick as a Sustainable Construction Material for Remote Housing in Australia
by Jivan Subedi, Ali Rajabipour, Milad Bazli, Dhyey Vegda, Nafiseh Ostadmoradi and Sunil Thapa
J. Compos. Sci. 2025, 9(10), 520; https://doi.org/10.3390/jcs9100520 - 1 Oct 2025
Cited by 1 | Viewed by 734
Abstract
As a sustainable construction material, mudbrick can be used widely in areas where common modern construction materials are not easily accessible but high clay content soil is available. The inclusion of locally available natural fibres in mudbrick could improve its mechanical and erosion [...] Read more.
As a sustainable construction material, mudbrick can be used widely in areas where common modern construction materials are not easily accessible but high clay content soil is available. The inclusion of locally available natural fibres in mudbrick could improve its mechanical and erosion resistance performance. This study examines the performance of fibre-reinforced mudbrick from spinifex and laterite soil which are abundant in Australia. The main objective of this study is to evaluate the mechanical and durability performance of spinifex fibre-reinforced mudbricks made with Australian laterite soil, focusing on the influence of fibre content, fibre length, and cement stabilisation. Spinifex fibre length (30 mm, 40 mm, 50 mm), spinifex fibre percentage (0.3%, 0.6%, 0.9%), and cement percentage (5% and 10%) are considered as the experiment variables. Results show that compressive strength generally decreases with fibre size. In this regard, specimens with 0.3% spinifex fibre, 40 mm fibre length, and 10% cement, with an average compressive strength value of 4.1 MPa, were found to have the highest strength among all design mixes. The elastic Young’s modulus was highest for the specimens with 0.3% spinifex fibre, 30 mm fibre length, and 10% cement with a 36.1 MPa. A low amount of longer fibres was found to be more effective in reducing water absorption in samples with higher cement content. Water absorption and compressive strength results suggest that, on average, 0.3–0.5% spinifex content of size 30 mm improves both low and high cement content mudbricks properties. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

23 pages, 12244 KB  
Article
The Petrology of Tuffisite in a Trachytic Diatreme from the Kızılcaören Alkaline Silicate–Carbonatite Complex, NW Anatolia
by Yalçın E. Ersoy, Hikmet Yavuz, İbrahim Uysal, Martin R. Palmer and Dirk Müller
Minerals 2025, 15(8), 867; https://doi.org/10.3390/min15080867 - 17 Aug 2025
Viewed by 1277
Abstract
The Kızılcaören alkaline silicate–carbonatite complex, located in the Sivrihisar (Eskişehir, NW Anatolia) region, includes phonolite, trachyte, carbonatite, pyroclastics, and REE mineralization (bastnäsite as a critical REE mineral). The emplacement and origin of this complex are poorly constrained, as previous studies mostly concentrated on [...] Read more.
The Kızılcaören alkaline silicate–carbonatite complex, located in the Sivrihisar (Eskişehir, NW Anatolia) region, includes phonolite, trachyte, carbonatite, pyroclastics, and REE mineralization (bastnäsite as a critical REE mineral). The emplacement and origin of this complex are poorly constrained, as previous studies mostly concentrated on the petrology of the alkaline rocks, carbonatite, and REE-mineralization, and little attention has been paid to the texture, composition, and origin of the pyroclastic rocks. The pyroclastic rocks in the region contain both rounded and angular-shaped cognate and wall-rock xenoliths derived from syenitic/trachytic hypabyssal rocks and carbonatites, as well as juvenile components such as carbonatite droplets and pelletal lapilli. The syenitic/trachytic hypabyssal rock fragments contain sanidine with high BaO (up to 3.3 wt.%) contents, amphibole (magnesio-fluoro-arfvedsonite), and apatite. Some clasts seem to have reacted with carbonatitic material, including high-SrO (up to 0.6 wt.%) calcite, dolomite, baryte, benstonite, fluorapatite. The carbonatite rock fragments are composed of calcite, baryte, fluorite, and bastnäsite. The carbonatite droplets have a spinifex-like texture and contain rhombohedral Mg-Fe-Ca carbonate admixtures, baryte, potassic-richterite, and parisite embedded in larger crystals of high-SrO (up to 0.7 wt.%) calcite. The spherical–elliptical pelletal lapilli (2–3 mm) contain a lithic center mantled by flow-aligned prismatic sanidine (with BaO up to 3.5 wt.%) microphenocrysts settled in a high-SrO (up to 0.7 wt.%) cryptocrystalline CaCO3 matrix. All these components are embedded in an ultra-fine-grained matrix. The EPMA results from the matrix reveal that, chemically, it consists largely of BaO-rich sanidine, with minor carbonate, baryte and Fe-Ti oxide. The presence of pelletal lapilli, which is one of the most common and characteristic features of diatreme fillings in alkaline silicate–carbonatite complexes, reveals that the pyroclastic rocks in the region represent a tuffisite formed by intrusive fragmentation and fluidization processes in the presence of excess volatile components consisting mainly of CO2 and F. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

7 pages, 1277 KB  
Article
Ecological Factors Associated with Burrow System Occupancy by Great Desert Skinks (Liopholis kintorei)
by Maria A. Eifler and Douglas A. Eifler
Diversity 2025, 17(2), 134; https://doi.org/10.3390/d17020134 - 15 Feb 2025
Viewed by 1122
Abstract
The great desert skink (Liopholis kintorei, locally known as tjakuṟa) occupies burrow systems in arid regions of central Australia. Most burrow systems remain occupied for an average of 4, and up to 10, years by the same related individuals. The circumstances [...] Read more.
The great desert skink (Liopholis kintorei, locally known as tjakuṟa) occupies burrow systems in arid regions of central Australia. Most burrow systems remain occupied for an average of 4, and up to 10, years by the same related individuals. The circumstances associated with changes in occupancy are under active investigation. Factors linked to tjakuṟa abandoning burrow systems include intense fires and predation by feral cats (Felis catus). We examined ecological factors associated with whether burrow systems that were occupied in the previous year were currently occupied by tjakuṟa. We determined occupancy of previously occupied tjakuṟa burrow systems by the presence of fresh scats in their latrines. We also assessed the size, vegetation cover, and proximity of termite calics to burrow systems. Neither overall vegetation cover nor spinifex cover was related to burrow system occupancy, but larger burrow systems were more likely to remain occupied. Burrow systems within 10 m of termite structures were more—and those within 2.5 m of Grevillea were less—likely to remain occupied by tjakuṟa. The role of woody vegetation (Grevillea) and termite presence on risk of predation, the behavior of tjakuṟa, and burrow system occupancy merits further investigation on a longer timescale. Full article
(This article belongs to the Special Issue Biogeography, Ecology and Conservation of Reptiles)
Show Figures

Figure 1

24 pages, 3192 KB  
Article
Cenchrus spinifex Invasion Alters Soil Nitrogen Dynamics and Competition
by Meng Meng, Baihui Ren, Jianxin Yu, Daiyan Li, Haoyan Li, Jiahuan Li, Jiyun Yang, Long Bai and Yulong Feng
Microorganisms 2024, 12(11), 2120; https://doi.org/10.3390/microorganisms12112120 - 23 Oct 2024
Cited by 3 | Viewed by 1550
Abstract
Invasive plants often alter biological soil conditions to increase their own competitiveness. Through indoor simulated nitrogen deposition culture experiments, we investigated the differences in growth indicators and nutrient content levels between the invasive plant Cenchrus spinifex Cav. and the native symbiotic plant Agropyron [...] Read more.
Invasive plants often alter biological soil conditions to increase their own competitiveness. Through indoor simulated nitrogen deposition culture experiments, we investigated the differences in growth indicators and nutrient content levels between the invasive plant Cenchrus spinifex Cav. and the native symbiotic plant Agropyron cristatum (L.) Gaertn. under diverse nitrogen application modes and planting-competition ratios. Furthermore, we examined the alterations in key microbial communities involved in soil nitrogen cycling of C. spinifex. The results indicated that the invasion of C. spinifex could inhibit the growth of native plants, and in fact altered the accumulation and transformation processes related to soil nitrogen, resulting in reduced rates of soil nitrogen transformation. The overarching aim of this research was to construct a theoretical foundation for the scientific comprehension of the invasion mechanisms of C. spinifex, in order to better prevent the further spread of this invasive plant and mitigate its pernicious impact on the current environment. Full article
(This article belongs to the Special Issue Insights into Plant–Soil–Microbe Interactions)
Show Figures

Figure 1

28 pages, 16832 KB  
Article
The Tepsi Ultrabasic Intrusion, the Northern Part of the Lapland–Belomorian Belt, Kola Peninsula, Russia
by Andrei Y. Barkov, Andrey A. Nikiforov, Robert F. Martin, Sergey A. Silyanov and Boris M. Lobastov
Minerals 2024, 14(7), 685; https://doi.org/10.3390/min14070685 - 29 Jun 2024
Cited by 6 | Viewed by 1444
Abstract
The Tepsi ultrabasic body is located in the northeastern Fennoscandian Shield close to the junction of the Serpentinite Belt–Tulppio Belt (SB–TB) with suites of the Lapland–Belomorian Belt (LBB) of Paleoproterozoic age. The body is a deformed laccolith that has tectonic contacts with Archean [...] Read more.
The Tepsi ultrabasic body is located in the northeastern Fennoscandian Shield close to the junction of the Serpentinite Belt–Tulppio Belt (SB–TB) with suites of the Lapland–Belomorian Belt (LBB) of Paleoproterozoic age. The body is a deformed laccolith that has tectonic contacts with Archean rocks. Its primary textures and magmatic parageneses are widely preserved. Fine-grained olivine varies continuously from Fo90.5 to Fo65.4. The whole-rock variations in MgO, Fe2O3, SiO2, and other geochemical data are also indicative of a significant extent of differentiation. Compositional variations were examined in the grains of calcic and Mg-Fe amphiboles, clinochlore, micas, plagioclase, members of the chromite–magnetite series, ilmenite, apatite, pentlandite, and a number of other minor mineral species. Low-sulfide disseminated Ni-Cu-Co mineralization occurred sporadically, with the presence of species enriched in As or Bi, submicrometric grains rich in Pt and Ir, or diffuse zones in pentlandite enriched in (Pd + Bi). We recognize two series: the pentlandite series (up to 2.5–3 wt.% Co) and the cobaltpentlandite series (~1 to ~8 apfu Co). The latter accompanied serpentinization. The two series display differences in their substitutions: Ni ↔ Fe and Co → (Ni + Fe), respectively. Relative enrichments in H2O, Cl, and F, observed in grains of apatite (plus high contents of Cl in hibbingite or parahibbingite), point to the abundance of volatiles accumulated during differentiation. We provide the first documentation of scheelite grains in ultrabasic rocks, found in evolved olivine-rich rocks (Fo77–72). We also describe unusual occurrences of hypermagnesian clinopyroxene associated with tremolite and serpentine. Abundant clusters of crystallites of diopside display a microspinifex texture. They likely predated serpentinization and formed owning to rapid crystallization in a differentiated portion of a supercooled oxidized melt or, less likely, fluid, after bulk crystallization of the olivine. We infer that the laccolithic Tepsi body crystallized rapidly, in a shallow setting, and could thus not form megacycles in a layered series or produce a well-organized structure. Our findings point to the existence of elevated PGE-Au-Ag potential in numerous ultrabasic–basic complexes of the SB–TB–LBB megastructure. Full article
Show Figures

Figure 1

15 pages, 6530 KB  
Article
Strength and Erosion Resistance of Spinifex Fibre Reinforced Mudbrick
by Dongxiu Guo, Ali Rajabipour, Milad Bazli, Cat Kutay, Varuna Sumanasena and Truong Nhat Phuong Pham
Fibers 2024, 12(5), 39; https://doi.org/10.3390/fib12050039 - 26 Apr 2024
Viewed by 3165
Abstract
This study assesses the usability of natural materials available in Australia’s remote communities for making fibre-reinforced mudbricks. The present construction cost for housing in remote areas is too high to maintain the level of housing required for the remote Australian population. As this [...] Read more.
This study assesses the usability of natural materials available in Australia’s remote communities for making fibre-reinforced mudbricks. The present construction cost for housing in remote areas is too high to maintain the level of housing required for the remote Australian population. As this includes mostly First Nations communities, more culturally appropriate housing materials and construction methods are being considered. This study looks at mudbricks made from laterite soil reinforced by spinifex fibre, both available in abundance in remote communities. Hence, this material is more acceptable to communities as it is more sustainable, and the construction methods are more suited for First Nations engagement. Various mixes were tested for compressive strength and erosion resistance. Results suggest that spinifex can significantly improve compressive strength and reduce erosion effects; however, spinifex showed adverse effects at the early stage of the spray test. The results satisfy the minimum strength and erosion resistance requirements for construction and suggest that spinifex-reinforced mudbricks could potentially be considered as an alternative material in remote housing. Full article
(This article belongs to the Collection Feature Papers in Fibers)
Show Figures

Figure 1

14 pages, 1791 KB  
Article
Soil Mineral Composition and Salinity Are the Main Factors Regulating the Bacterial Community Associated with the Roots of Coastal Sand Dune Halophytes
by Minh Thiet Vu, Almando Geraldi, Hoang Dang Khoa Do, Arif Luqman, Hoang Danh Nguyen, Faiza Nur Fauzia, Fahmi Ikhlasul Amalludin, Aliffa Yusti Sadila, Nabilla Hapsari Wijaya, Heri Santoso, Yosephine Sri Wulan Manuhara, Le Minh Bui, Sucipto Hariyanto and Anjar Tri Wibowo
Biology 2022, 11(5), 695; https://doi.org/10.3390/biology11050695 - 30 Apr 2022
Cited by 14 | Viewed by 4281
Abstract
Soil salinity and mineral deficiency are major problems in agriculture. Many studies have reported that plant-associated microbiota, particularly rhizosphere and root microbiota, play a crucial role in tolerance against salinity and mineral deficiency. Nevertheless, there are still many unknown parts of plant–microbe interaction, [...] Read more.
Soil salinity and mineral deficiency are major problems in agriculture. Many studies have reported that plant-associated microbiota, particularly rhizosphere and root microbiota, play a crucial role in tolerance against salinity and mineral deficiency. Nevertheless, there are still many unknown parts of plant–microbe interaction, especially regarding their role in halophyte adaptation to coastal ecosystems. Here, we report the bacterial community associated with the roots of coastal sand dune halophytes Spinifex littoreus and Calotropis gigantea, and the soil properties that affect their composition. Strong correlations were observed between root bacterial diversity and soil mineral composition, especially with soil Calcium (Ca), Titanium (Ti), Cuprum (Cu), and Zinc (Zn) content. Soil Ti and Zn content showed a positive correlation with bacterial diversity, while soil Ca and Cu had a negative effect on bacterial diversity. A strong correlation was also found between the abundance of several bacterial species with soil salinity and mineral content, suggesting that some bacteria are responsive to changes in soil salinity and mineral content. Some of the identified bacteria, such as Bacillus idriensis and Kibdelosporangium aridum, are known to have growth-promoting effects on plants. Together, the findings of this work provided valuable information regarding bacterial communities associated with the roots of sand dune halophytes and their interactions with soil properties. Furthermore, we also identified several bacterial species that might be involved in tolerance against stresses. Further work will be focused on isolation and transplantation of these potential microbes, to validate their role in plant tolerance against stresses, not only in their native hosts but also in crops. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

20 pages, 3740 KB  
Article
Sandbur Drought Tolerance Reflects Phenotypic Plasticity Based on the Accumulation of Sugars, Lipids, and Flavonoid Intermediates and the Scavenging of Reactive Oxygen Species in the Root
by Zhiyuan Yang, Chao Bai, Peng Wang, Weidong Fu, Le Wang, Zhen Song, Xin Xi, Hanwen Wu, Guoliang Zhang and Jiahe Wu
Int. J. Mol. Sci. 2021, 22(23), 12615; https://doi.org/10.3390/ijms222312615 - 23 Nov 2021
Cited by 8 | Viewed by 3044
Abstract
The perennial grass Cenchrus spinifex (common sandbur) is an invasive species that grows in arid and semi-arid regions due to its remarkable phenotypic plasticity, which confers the ability to withstand drought and other forms of abiotic stress. Exploring the molecular mechanisms of drought [...] Read more.
The perennial grass Cenchrus spinifex (common sandbur) is an invasive species that grows in arid and semi-arid regions due to its remarkable phenotypic plasticity, which confers the ability to withstand drought and other forms of abiotic stress. Exploring the molecular mechanisms of drought tolerance in common sandbur could lead to the development of new strategies for the protection of natural and agricultural environments from this weed. To determine the molecular basis of drought tolerance in C. spinifex, we used isobaric tags for relative and absolute quantitation (iTRAQ) to identify proteins differing in abundance between roots growing in normal soil and roots subjected to moderate or severe drought stress. The analysis of these proteins revealed that drought tolerance in C. spinifex primarily reflects the modulation of core physiological activities such as protein synthesis, transport and energy utilization as well as the accumulation of flavonoid intermediates and the scavenging of reactive oxygen species. Accordingly, plants subjected to drought stress accumulated sucrose, fatty acids, and ascorbate, shifted their redox potential (as determined by the NADH/NAD ratio), accumulated flavonoid intermediates at the expense of anthocyanins and lignin, and produced less actin, indicating fundamental reorganization of the cytoskeleton. Our results show that C. spinifex responds to drought stress by coordinating multiple metabolic pathways along with other adaptations. It is likely that the underlying metabolic plasticity of this species plays a key role in its invasive success, particularly in semi-arid and arid environments. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Effects on Plant Structure and Physiology)
Show Figures

Figure 1

21 pages, 4875 KB  
Article
Multi-Media Geochemical Exploration in the Critical Zone: A Case Study over the Prairie and Wolf Zn–Pb Deposits, Capricorn Orogen, Western Australia
by Anicia Henne, Nathan Reid, Robert L. Thorne, Samuel C. Spinks, Tenten Pinchand and Alistair White
Minerals 2021, 11(11), 1174; https://doi.org/10.3390/min11111174 - 22 Oct 2021
Cited by 2 | Viewed by 2834
Abstract
In this study, we compared traditional lithochemical sample media (soil) with hydrochemical (groundwater), biogeochemical (plant matter of mulga and spinifex), and other near-surface sample media (ferro-manganese crust), in a case study applied to mineral exploration in weathered terrain, through the critical zone at [...] Read more.
In this study, we compared traditional lithochemical sample media (soil) with hydrochemical (groundwater), biogeochemical (plant matter of mulga and spinifex), and other near-surface sample media (ferro-manganese crust), in a case study applied to mineral exploration in weathered terrain, through the critical zone at the fault-hosted Prairie and Wolf Zn–Pb (Ag) deposits in Western Australia. We used multi-element geochemistry analyses to spatially identify geochemical anomalies in samples over known mineralization, and investigated metal dispersion processes. In all near-surface sample media, high concentrations of the metals of interest (Zn, Pb, Ag) coincided with samples proximal to the mineralization at depth. However, the lateral dispersion of these elements differed from regional (several km; groundwater) to local (several 100′s of meters; solid sample media) scales. Zinc in spinifex leaves over the Prairie and Wolf deposits exceeded the total concentrations in all other sample media, while the metal concentrations in mulga phyllodes were not as pronounced, except for Ag, which exceeded the concentrations in all other sample media. These observations indicate potential preferential metal-specific uptake by different media. Pathfinder elements in vegetation and groundwater samples also indicated the Prairie Downs fault zone at the regional (groundwater) and local (vegetation) scale, and are, therefore, potentially useful tools to trace fault systems that host structurally controlled, hydrothermal Zn–Pb mineralization. Full article
(This article belongs to the Special Issue Mineral Exploration in Weathered and Covered Terrains)
Show Figures

Figure 1

15 pages, 3064 KB  
Article
Growth Characteristics and Anti-Wind Erosion Ability of Three Tropical Foredune Pioneer Species for Sand Dune Stabilization
by Jung-Tai Lee, Lin-Zhi Yen, Ming-Yang Chu, Yu-Syuan Lin, Chih-Chia Chang, Ru-Sen Lin, Kung-Hsing Chao and Ming-Jen Lee
Sustainability 2020, 12(8), 3353; https://doi.org/10.3390/su12083353 - 20 Apr 2020
Cited by 19 | Viewed by 5214
Abstract
Rainstorms frequently cause runoff and then the runoff carries large amounts of sediments (sand, clay, and silt) from upstream and deposit them on different landforms (coast, plain, lowland, piedmont, etc.). Afterwards, monsoons and tropical cyclones often induce severe coastal erosion and dust storms [...] Read more.
Rainstorms frequently cause runoff and then the runoff carries large amounts of sediments (sand, clay, and silt) from upstream and deposit them on different landforms (coast, plain, lowland, piedmont, etc.). Afterwards, monsoons and tropical cyclones often induce severe coastal erosion and dust storms in Taiwan. Ipomoea pes-caprae (a vine), Spinifex littoreus (a grass), and Vitex rotundifolia (a shrub) are indigenous foredune pioneer species. These species have the potential to restore coastal dune vegetation by controlling sand erosion and stabilizing sand dunes. However, their growth characteristics, root biomechanical traits, and anti-wind erosion abilities in sand dune environments have not been documented. In this study, the root growth characteristics of these species were examined by careful hand digging. Uprooting test and root tensile test were carried out to measure their mechanical strength, and wind tunnel (6 m × 1 m × 1.3 m, L × W × H) tests were executed to explore the anti-wind erosion ability using one-year-old seedlings. The results of root growth characteristics demonstrate that I. pes-caprae is superior to S. littoreus and V. rotundifolia. Moreover, uprooting resistance of V. rotundifolia seedlings (0.074 ± 0.032 kN) was significantly higher than that of I. pes-caprae (0.039 ± 0.015 kN) and S. littoreus (0.013 ± 0.005 kN). Root tensile strength of S. littoreus (16.68 ± 8.88 MPa) and V. rotundifolia (16.48 ± 4.37 MPa) were significantly higher than that of I. pes-caprae (6.65 ± 2.39 MPa). In addition, wind tunnel tests reveal that sand wind erosion rates for all three species decrease with increasing vegetation cover, but the anti-wind erosion ability of S. littoreus seedlings is significantly higher than I. pes-caprae and V. rotundifolia. Results of root tensile strength and anti-wind erosion ability clearly show that S. littoreus is superior to I. pes-caprae and V. rotundifolia. Taken together, our results suggest that I. pes-caprae and S. littoreus are beneficial for front line mixed planting, while V. rotundifolia is suitable for second line planting in foredune areas. These findings, along with the knowledge on adaption of foredune plants following sand accretion and erosion, provide us critical information for developing the planting strategy of foredune pioneer plants for the sustainable management of coastal foredune ecosystem. Full article
(This article belongs to the Special Issue Soil Erosion and the Sustainable Management of the Landscape)
Show Figures

Figure 1

18 pages, 2094 KB  
Article
A Cone Fishway Facilitates Lateral Migrations of Tropical River-Floodplain Fish Communities
by Lee J. Baumgartner, Craig Boys, Tim Marsden, Jarrod McPherson, Nathan Ning, Oudom Phonekhampheng, Wayne Robinson, Douangkham Singhanouvong, Ivor G. Stuart and Garry Thorncraft
Water 2020, 12(2), 513; https://doi.org/10.3390/w12020513 - 13 Feb 2020
Cited by 11 | Viewed by 3725
Abstract
Fisheries in many tropical river-floodplain systems are under threat from physical obstructions caused by ongoing river infrastructure development. There is a growing need for innovative, cost-effective technologies to mitigate the impacts of these obstructions. This study examined the effectiveness of a new cone [...] Read more.
Fisheries in many tropical river-floodplain systems are under threat from physical obstructions caused by ongoing river infrastructure development. There is a growing need for innovative, cost-effective technologies to mitigate the impacts of these obstructions. This study examined the effectiveness of a new cone fishway for facilitating lateral migrations of river-floodplain fish communities in the Lower Mekong Basin in Lao PDR. We assessed the species richness, size range, abundance and biomass of fish able to pass through a cone fishway, using paired entrance and exit sampling during both dawn/day and dusk/night. Overall, a diverse range of taxa (76 species) and size classes (25–370 mm) ascended the cone fishway. The total size range of fishes observed at the fishway entrance was similar to that at the exit, although the fish at the entrance were significantly smaller (in length) than those at the exit, during both diel periods. Additionally, there were significantly higher abundances of fish at the entrance than at the exit, but there was no difference in total biomass, again for both periods. These results suggest that, with further development, the cone fishway design has considerable potential for facilitating the lateral migrations of diverse tropical river-floodplain fish communities at low/medium head infrastructure. Full article
(This article belongs to the Special Issue Ecohydraulics of Pool-Type Fishways)
Show Figures

Figure 1

13 pages, 6114 KB  
Article
UAVs and Machine Learning Revolutionising Invasive Grass and Vegetation Surveys in Remote Arid Lands
by Juan Sandino, Felipe Gonzalez, Kerrie Mengersen and Kevin J. Gaston
Sensors 2018, 18(2), 605; https://doi.org/10.3390/s18020605 - 16 Feb 2018
Cited by 55 | Viewed by 9756
Abstract
The monitoring of invasive grasses and vegetation in remote areas is challenging, costly, and on the ground sometimes dangerous. Satellite and manned aircraft surveys can assist but their use may be limited due to the ground sampling resolution or cloud cover. Straightforward and [...] Read more.
The monitoring of invasive grasses and vegetation in remote areas is challenging, costly, and on the ground sometimes dangerous. Satellite and manned aircraft surveys can assist but their use may be limited due to the ground sampling resolution or cloud cover. Straightforward and accurate surveillance methods are needed to quantify rates of grass invasion, offer appropriate vegetation tracking reports, and apply optimal control methods. This paper presents a pipeline process to detect and generate a pixel-wise segmentation of invasive grasses, using buffel grass (Cenchrus ciliaris) and spinifex (Triodia sp.) as examples. The process integrates unmanned aerial vehicles (UAVs) also commonly known as drones, high-resolution red, green, blue colour model (RGB) cameras, and a data processing approach based on machine learning algorithms. The methods are illustrated with data acquired in Cape Range National Park, Western Australia (WA), Australia, orthorectified in Agisoft Photoscan Pro, and processed in Python programming language, scikit-learn, and eXtreme Gradient Boosting (XGBoost) libraries. In total, 342,626 samples were extracted from the obtained data set and labelled into six classes. Segmentation results provided an individual detection rate of 97% for buffel grass and 96% for spinifex, with a global multiclass pixel-wise detection rate of 97%. Obtained results were robust against illumination changes, object rotation, occlusion, background cluttering, and floral density variation. Full article
(This article belongs to the Special Issue UAV or Drones for Remote Sensing Applications)
Show Figures

Figure 1

25 pages, 864 KB  
Article
Construction of an Environmentally Sustainable Development on a Modified Coastal Sand Mined and Landfill Site—Part 2. Re-Establishing the Natural Ecosystems on the Reconstructed Beach Dunes
by AnneMarie Clements, Appollonia Simmonds, Pamela Hazelton, Catherine Inwood, Christy Woolcock, Anne-Laure Markovina and Pamela O’Sullivan
Sustainability 2010, 2(3), 717-741; https://doi.org/10.3390/su2030717 - 9 Mar 2010
Cited by 4 | Viewed by 14127
Abstract
Mimicking natural processes lead to progressive colonization and stabilization of the reconstructed beach dune ecosystem, as part of the ecologically sustainable development of Magenta Shores, on the central coast of New South Wales, Australia. The retained and enhanced incipient dune formed the first [...] Read more.
Mimicking natural processes lead to progressive colonization and stabilization of the reconstructed beach dune ecosystem, as part of the ecologically sustainable development of Magenta Shores, on the central coast of New South Wales, Australia. The retained and enhanced incipient dune formed the first line of storm defence. Placement of fibrous Leptospermum windrows allowed wind blown sand to form crests and swales parallel to the beach. Burial of Spinifex seed head in the moist sand layer achieved primary colonization of the reconstructed dune and development of a soil fungal hyphae network prior to introduction of secondary colonizing species. Monitoring stakes were used as roosts by birds, promoting re-introduction of native plant species requiring germination by digestive tract stimulation. Bush regeneration reduced competition from weeds, allowing native vegetation cover to succeed. On-going weeding and monitoring are essential at Magenta Shores until bitou bush is controlled for the entire length of beach. The reconstructed dunes provide enhanced protection from sand movement and storm bite, for built assets, remnant significant vegetation and sensitive estuarine ecosystems. Full article
(This article belongs to the Special Issue Environmental Sustainability and the Built Environment)
Show Figures

Graphical abstract

Back to TopTop