Soil Mineral Composition and Salinity Are the Main Factors Regulating the Bacterial Community Associated with the Roots of Coastal Sand Dune Halophytes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. DNA Extraction and Sequencing
2.3. Bacterial Diversity Analysis
2.4. Soil pH, Salinity, Organic Carbon, Nitrogen, and Phosphate Measurement
2.5. Measurement of Soil Mineral Composition
2.6. Correlation Analysis between Bacterial and Soil Composition
3. Results
3.1. Taxonomic Composition of the Root-Associated Bacteria
3.2. Population-Specific OTUs and Core Microbiome
3.3. Diversity and Structure of Bacterial Community Associated with Halophyte Roots
3.4. The Effect of Soil Properties on the Bacterial Community Associated with the Roots of C. gigantea and S. littoreus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajendran, K.; Tester, M.; Roy, S.J. Quantifying the Three Main Components of Salinity Tolerance in Cereals. Plant Cell Environ. 2009, 32, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Subiramani, S.; Ramalingam, S.; Muthu, T.; Nile, S.H.; Venkidasamy, B. Development of Abiotic Stress Tolerance in Crops by Plant Growth-Promoting. In Phyto-Microbiome in Stress Regulation; Springer: Cham, Switzerland, 2020; pp. 125–145. [Google Scholar]
- Leogrande, R.; Vitti, C. Use of Organic Amendments to Reclaim Saline and Sodic Soils: A Review. Arid Land Res. Manag. 2019, 33, 1–21. [Google Scholar] [CrossRef]
- Deinlein, U.; Stephan, A.B.; Horie, T.; Luo, W.; Xu, G.; Schroeder, J.I. Plant Salt-Tolerance Mechanisms. Trends Plant Sci. 2014, 19, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Shaukat, M.; Ashraf, M.; Zhu, C.; Jin, Q.; Zhang, J. Salinity Stress in Arid and Semi-Arid Climates: Effects and Management in Field Crops. In Climate Change and Agriculture; IntechOpen: London, UK, 2019. [Google Scholar]
- Aftab, T.; Hakeem, K.R. Plant Micronutrients: Deficiency and Toxicity Management; Springer Nature: Cham, Switzerland, 2020; ISBN 9783030498566. [Google Scholar]
- Santos, J.; Al-Azzawi, M.; Aronson, J.; Flowers, T.J. eHALOPH a Database of Salt-Tolerant Plants: Helping Put Halophytes to Work. Plant Cell Physiol. 2016, 57, e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flowers, T.J.; Munns, R.; Colmer, T.D. Sodium Chloride Toxicity and the Cellular Basis of Salt Tolerance in Halophytes. Ann. Bot. 2015, 115, 419–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, F.; Leng, B.; Wang, B. Progress in Studying Salt Secretion from the Salt Glands in Recretohalophytes: How Do Plants Secrete Salt? Front. Plant Sci. 2016, 7, 977. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Guo, J.; Shabala, S.; Wang, B. Reproductive Physiology of Halophytes: Current Standing. Front. Plant Sci. 2018, 9, 1954. [Google Scholar] [CrossRef]
- Vorholt, J.A. Microbial Life in the Phyllosphere. Nat. Rev. Microbiol. 2012, 10, 828–840. [Google Scholar] [CrossRef]
- Sharma, S.; Kulkarni, J.; Jha, B. Halotolerant Rhizobacteria Promote Growth and Enhance Salinity Tolerance in Peanut. Front. Microbiol. 2016, 7, 1600. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Bano, A. Isolation of Plant-Growth-Promoting Rhizobacteria from Rhizospheric Soil of Halophytes and Their Impact on Maize (Zea mays L.) under Induced Soil Salinity. Can. J. Microbiol. 2015, 61, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.-W.; Gong, Y.; Li, X.-W.; Chen, P.; Ju, X.-Y.; Zhang, C.-M.; Yuan, B.; Lv, Z.-P.; Xing, K.; Qin, S. Enhancement of Growth and Salt Tolerance of Tomato Seedlings by a Natural Halotolerant Actinobacterium Glutamicibacter halophytocola KLBMP 5180 Isolated from a Coastal Halophyte. Plant Soil 2019, 445, 307–322. [Google Scholar] [CrossRef]
- Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions. Front. Plant Sci. 2017, 8, 1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dakora, F.D.; Phillips, D.A. Root Exudates as Mediators of Mineral Acquisition in Low-Nutrient Environments. In Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities; Adu-Gyamfi, J.J., Ed.; Springer: Dordrecht, The Netherlands, 2002; pp. 201–213. ISBN 9789401715706. [Google Scholar]
- Yuan, Z.; Druzhinina, I.S.; Labbé, J.; Redman, R.; Qin, Y.; Rodriguez, R.; Zhang, C.; Tuskan, G.A.; Lin, F. Specialized Microbiome of a Halophyte and Its Role in Helping Non-Host Plants to Withstand Salinity. Sci. Rep. 2016, 6, 32467. [Google Scholar] [CrossRef]
- Qin, W.; Liu, C.; Jiang, W.; Xue, Y.; Wang, G.; Liu, S. A Coumarin Analogue NFA from Endophytic Aspergillus fumigatus Improves Drought Resistance in Rice as an Antioxidant. BMC Microbiol. 2019, 19, 50. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Zhao, Y.; Xu, P.; Yu, D. Microbial Diversity of Upland Rice Roots and Their Influence on Rice Growth and Drought Tolerance. Microorganisms 2020, 8, 1329. [Google Scholar] [CrossRef]
- Afzal, I.; Iqrar, I.; Shinwari, Z.K.; Yasmin, A. Plant Growth-Promoting Potential of Endophytic Bacteria Isolated from Roots of Wild Dodonaea viscosa L. Plant Growth Regul. 2017, 81, 399–408. [Google Scholar] [CrossRef]
- del Carmen Orozco-Mosqueda, M.; Glick, B.R.; Santoyo, G. ACC Deaminase in Plant Growth-Promoting Bacteria (PGPB): An Efficient Mechanism to Counter Salt Stress in Crops. Microbiol. Res. 2020, 235, 126439. [Google Scholar] [CrossRef]
- Yura, H.; Ogura, A. Sandblasting as a Possible Factor Controlling the Distribution of Plants on a Coastal Dune System. Plant Ecol. 2006, 185, 199–208. [Google Scholar] [CrossRef]
- Anwar Maun, M. The Biology of Coastal Sand Dunes; Oxford University Press: Oxford, UK, 2009; ISBN 9780198570356. [Google Scholar]
- Du, J.; Hesp, P.A. Salt Spray Distribution and Its Impact on Vegetation Zonation on Coastal Dunes: A Review. Estuaries Coasts 2020, 43, 1885–1907. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Metsalu, T.; Vilo, J. ClustVis: A Web Tool for Visualizing Clustering of Multivariate Data Using Principal Component Analysis and Heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Caballero, G.; Caravaca, F.; Díaz, G.; Torres, P.; Roldán, A. The Invader Carpobrotus edulis Promotes a Specific Rhizosphere Microbiome across Globally Distributed Coastal Ecosystems. Sci. Total Environ. 2020, 719, 137347. [Google Scholar] [CrossRef]
- Araya, J.P.; González, M.; Cardinale, M.; Schnell, S.; Stoll, A. Microbiome Dynamics Associated with the Atacama Flowering Desert. Front. Microbiol. 2019, 10, 3160. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, T.; Tanida, S.; Hatano, K.; Higashide, E.; Yoneda, M. Motile Actinomycetes: Actinosynnema pretiosum Subsp. Pretiosum Sp. Nov., Subsp. Nov., and Actinosynnema pretiosum subsp. Auranticum subsp. nov. Int. J. Syst. Bacteriol. 1983, 33, 314–320. [Google Scholar] [CrossRef] [Green Version]
- Zhong, C.; Zong, G.; Qian, S.; Liu, M.; Fu, J.; Zhang, P.; Li, J.; Cao, G. Complete Genome Sequence of Actinosynnema pretiosum X47, An Industrial Strain That Produces the Antibiotic Ansamitocin AP-3. Curr. Microbiol. 2019, 76, 954–958. [Google Scholar] [CrossRef]
- Wings, S.; Müller, H.; Berg, G.; Lamshöft, M.; Leistner, E. A Study of the Bacterial Community in the Root System of the Maytansine Containing Plant Putterlickia verrucosa. Phytochemistry 2013, 91, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Yang, L.; Chen, J.; Hu, F.; Wei, L.-J.; Hua, Q. Metabolomic Change and Pathway Profiling Reveal Enhanced Ansamitocin P-3 Production in Actinosynnema Pretiosum with Low Organic Nitrogen Availability in Culture Medium. Appl. Microbiol. Biotechnol. 2020, 104, 3555–3568. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Fan, Y.; Nambou, K.; Wei, L.; Liu, Z.; Imanaka, T.; Hua, Q. Enhancement of Ansamitocin P-3 Production in Actinosynnema pretiosum by a Synergistic Effect of Glycerol and Glucose. J. Ind. Microbiol. Biotechnol. 2014, 41, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.-W.; Bai, L.; Clade, D.; Hoffmann, D.; Toelzer, S.; Trinh, K.Q.; Xu, J.; Moss, S.J.; Leistner, E.; Floss, H.G. The Biosynthetic Gene Cluster of the Maytansinoid Antitumor Agent Ansamitocin from Actinosynnema pretiosum. Proc. Natl. Acad. Sci. USA 2002, 99, 7968–7973. [Google Scholar] [CrossRef] [Green Version]
- Ning, X.; Wang, X.; Wu, Y.; Kang, Q.; Bai, L. Identification and Engineering of Post-PKS Modification Bottlenecks for Ansamitocin P-3 Titer Improvement in Actinosynnema pretiosum Subsp. Pretiosum ATCC 31280. Biotechnol. J. 2017, 12, 1700484. [Google Scholar] [CrossRef]
- Goh, S.; Camattari, A.; Ng, D.; Song, R.; Madden, K.; Westpheling, J.; Wong, V.V.T. An Integrative Expression Vector for Actinosynnema pretiosum. BMC Biotechnol. 2007, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sun, R.; Ning, X.; Wang, X.; Wang, Z. Genome-Scale Metabolic Model of Actinosynnema pretiosum ATCC 31280 and Its Application for Ansamitocin P-3 Production Improvement. Genes 2018, 9, 364. [Google Scholar] [CrossRef] [Green Version]
- Xing, K.; Bian, G.-K.; Qin, S.; Klenk, H.-P.; Yuan, B.; Zhang, Y.-J.; Li, W.-J.; Jiang, J.-H. Kibdelosporangium Phytohabitans Sp. Nov., a Novel Endophytic Actinomycete Isolated from Oil-Seed Plant Jatropha curcas L. Containing 1-Aminocyclopropane-1-Carboxylic Acid Deaminase. Antonie Van Leeuwenhoek 2012, 101, 433–441. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, C.; Wang, Y.; Xia, Y.; Xiao, W.; Cui, X. Salt-Tolerant and Plant-Growth-Promoting Bacteria Isolated from High-Yield Paddy Soil. Can. J. Microbiol. 2018, 64, 968–978. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, S.; Zhong, Q.; Gong, G.; Wang, G.; Guo, X.; Xu, X. Effects of Soil Chemical Properties and Fractions of Pb, Cd, and Zn on Bacterial and Fungal Communities. Sci. Total Environ. 2020, 715, 136904. [Google Scholar] [CrossRef]
- Berg, J.; Brandt, K.K.; Al-Soud, W.A.; Holm, P.E.; Hansen, L.H.; Sørensen, S.J.; Nybroe, O. Selection for Cu-Tolerant Bacterial Communities with Altered Composition, but Unaltered Richness, via Long-Term Cu Exposure. Appl. Environ. Microbiol. 2012, 78, 7438–7446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Hou, X.-Y.; Li, C.-X.; Wang, Y.; Ma, X.-R. Soil Microbial Communities Altered by Titanium Ions in Different Agroecosystems of Pitaya and Grape. Microbiol. Spectr. 2022, 10, e0090721. [Google Scholar] [CrossRef] [PubMed]
- Moll, J.; Klingenfuss, F.; Widmer, F.; Gogos, A.; van der Heijden, M.G.A. Effects of Titanium Dioxide Nanoparticles on Soil Microbial Communities and Wheat Biomass. Soil Biol. Biochem. 2017, 111, 85–93. [Google Scholar] [CrossRef]
- Dumon, J.C.; Ernst, W.H.O. Titanium in Plants. J. Plant Physiol. 1988, 133, 203–209. [Google Scholar] [CrossRef]
- Lin, W.; Lin, M.; Zhou, H.; Wu, H.; Li, Z.; Lin, W. The Effects of Chemical and Organic Fertilizer Usage on Rhizosphere Soil in Tea Orchards. PLoS ONE 2019, 14, e0217018. [Google Scholar] [CrossRef]
- Tambosi, R.; Liotenberg, S.; Bourbon, M.-L.; Steunou, A.-S.; Babot, M.; Durand, A.; Kebaili, N.; Ouchane, S. Silver and Copper Acute Effects on Membrane Proteins and Impact on Photosynthetic and Respiratory Complexes in Bacteria. MBio 2018, 9, e01535-18. [Google Scholar] [CrossRef] [Green Version]
- Guo, A.; Ding, L.; Tang, Z.; Zhao, Z.; Duan, G. Microbial Response to CaCO3 Application in an Acid Soil in Southern China. J. Environ. Sci. 2019, 79, 321–329. [Google Scholar] [CrossRef]
- Bossolani, J.W.; Crusciol, C.A.C.; Leite, M.F.A.; Merloti, L.F.; Moretti, L.G.; Pascoaloto, I.M.; Kuramae, E.E. Modulation of the Soil Microbiome by Long-Term Ca-Based Soil Amendments Boosts Soil Organic Carbon and Physicochemical Quality in a Tropical No-till Crop Rotation System. Soil Biol. Biochem. 2021, 156, 108188. [Google Scholar] [CrossRef]
- Sridevi, G.; Minocha, R.; Turlapati, S.A.; Goldfarb, K.C.; Brodie, E.L.; Tisa, L.S.; Minocha, S.C. Soil Bacterial Communities of a Calcium-Supplemented and a Reference Watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. FEMS Microbiol. Ecol. 2012, 79, 728–740. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.-G.; Mun, B.-G.; Kang, S.-M.; Hussain, A.; Shahzad, R.; Seo, C.-W.; Kim, A.-Y.; Lee, S.-U.; Oh, K.Y.; Lee, D.Y.; et al. Bacillus Aryabhattai SRB02 Tolerates Oxidative and Nitrosative Stress and Promotes the Growth of Soybean by Modulating the Production of Phytohormones. PLoS ONE 2017, 12, e0173203. [Google Scholar] [CrossRef] [Green Version]
- Finley, B.K.; Mau, R.L.; Hayer, M.; Stone, B.W.; Morrissey, E.M.; Koch, B.J.; Rasmussen, C.; Dijkstra, P.; Schwartz, E.; Hungate, B.A. Soil Minerals Affect Taxon-Specific Bacterial Growth. ISME J. 2021, 16, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Carson, J.K.; Campbell, L.; Rooney, D.; Clipson, N.; Gleeson, D.B. Minerals in Soil Select Distinct Bacterial Communities in Their Microhabitats. FEMS Microbiol. Ecol. 2009, 67, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Carson, J.K.; Rooney, D.; Gleeson, D.B.; Clipson, N. Altering the Mineral Composition of Soil Causes a Shift in Microbial Community Structure. FEMS Microbiol. Ecol. 2007, 61, 414–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Population | Shannon Index |
---|---|---|
C. gigantea | P1CG | 3.39 |
P2CG | 5.11 | |
P3CG | 5.27 | |
P4CG | 5.91 | |
P5CG | 4.14 | |
P6CG | 5.82 | |
S. littoreus | P1SL | 5.34 |
P2SL | 6.07 | |
P3SL | 5.99 | |
P4SL | 5.90 | |
P5SL | 5.91 | |
P6SL | 7.34 |
Soil Properties | Correlation C. gigantea (R) | Correlation S. littoreus (R) |
---|---|---|
pH | −0.305 | −0.588 |
Salinity | −0.704 | −0.613 |
Organic carbon | 0.394 | 0.118 |
Nitrogen | −0.0379 | 0.532 |
Phosphorus | −0.682 | −0.665 |
Calcium (Ca) | −0.792 | −0.907 * |
Titanium (Ti) | 0.759 | 0.829 * |
Cuprum (Cu) | −0.467 | −0.823 * |
Zinc (Zn) | 0.914 * | 0.881 * |
Species | Salinity (R) | Carbon (R) | Phosphorus (R) | Calcium (R) | Titanium (R) | Cuprum (R) | Zinc (R) |
---|---|---|---|---|---|---|---|
A._timorensis | −0.201 | −0.103 | −0.082 | −0.161 | 0.269 | 0.020 | 0.156 |
Actinosynnema_pretiosum | −0.273 | 0.206 | −0.393 | −0.157 | 0.143 | 0.009 | 0.146 |
B._idriensis | 0.962 * | −0.521 | 0.915 * | 0.571 | −0.420 | 0.433 | −0.685 |
Species | Salinity (R) | Carbon (R) | Phosphorus (R) | Ca (R) | Ti (R) | Cu (R) | Zn (R) |
---|---|---|---|---|---|---|---|
Rhizobium lusitanum | −0.062 | 0.873 * | 0.046 | 0.160 | −0.368 | 0.388 | −0.432 |
Pseudonocardia eucalypti | −0.310 | −0.181 | −0.387 | −0.868 * | 0.815 * | −0.943 * | 0.845 * |
Pseudolabrys taiwanensis | −0.871 * | 0.182 | −0.791 | −0.673 | 0.659 | −0.135 | 0.637 |
Mitsuaria chitosanitabida | 0.016 | 0.898 * | 0.098 | 0.202 | −0.408 | 0.404 | −0.490 |
Dongia mobilis | −0.776 | 0.097 | −0.850 * | −0.560 | 0.566 | −0.170 | 0.590 |
Actinophytocola timorensis | −0.321 | −0.175 | −0.396 | −0.878 * | 0.827 * | −0.937 * | 0.851 * |
Bacillus aryabhattai | −0.325 | −0.183 | −0.402 | −0.866 * | 0.809 * | −0.947 * | 0.851 * |
Pseudonocardia zijingensis | −0.311 | −0.181 | −0.388 | −0.870 * | 0.817 * | −0.942 * | 0.847 * |
TM7 phylum | 0.586 | −0.448 | 0.462 | 0.551 | −0.416 | 0.185 | −0.394 |
Amycolatopsis australiensis | −0.724 | −0.374 | −0.705 | −0.449 | 0.421 | −0.450 | 0.709 |
Ralstonia mannitolilytica | −0.346 | −0.049 | −0.267 | 0.321 | −0.439 | 0.160 | −0.079 |
Kibdelosporangium aridum | −0.384 | 0.205 | −0.418 | −0.811 * | 0.665 | −0.771 | 0.679 |
Actinosynnema pretiosum | 0.459 | 0.102 | 0.551 | 0.837 * | −0.723 * | 0.943 * | −0.857 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, M.T.; Geraldi, A.; Do, H.D.K.; Luqman, A.; Nguyen, H.D.; Fauzia, F.N.; Amalludin, F.I.; Sadila, A.Y.; Wijaya, N.H.; Santoso, H.; et al. Soil Mineral Composition and Salinity Are the Main Factors Regulating the Bacterial Community Associated with the Roots of Coastal Sand Dune Halophytes. Biology 2022, 11, 695. https://doi.org/10.3390/biology11050695
Vu MT, Geraldi A, Do HDK, Luqman A, Nguyen HD, Fauzia FN, Amalludin FI, Sadila AY, Wijaya NH, Santoso H, et al. Soil Mineral Composition and Salinity Are the Main Factors Regulating the Bacterial Community Associated with the Roots of Coastal Sand Dune Halophytes. Biology. 2022; 11(5):695. https://doi.org/10.3390/biology11050695
Chicago/Turabian StyleVu, Minh Thiet, Almando Geraldi, Hoang Dang Khoa Do, Arif Luqman, Hoang Danh Nguyen, Faiza Nur Fauzia, Fahmi Ikhlasul Amalludin, Aliffa Yusti Sadila, Nabilla Hapsari Wijaya, Heri Santoso, and et al. 2022. "Soil Mineral Composition and Salinity Are the Main Factors Regulating the Bacterial Community Associated with the Roots of Coastal Sand Dune Halophytes" Biology 11, no. 5: 695. https://doi.org/10.3390/biology11050695
APA StyleVu, M. T., Geraldi, A., Do, H. D. K., Luqman, A., Nguyen, H. D., Fauzia, F. N., Amalludin, F. I., Sadila, A. Y., Wijaya, N. H., Santoso, H., Manuhara, Y. S. W., Bui, L. M., Hariyanto, S., & Wibowo, A. T. (2022). Soil Mineral Composition and Salinity Are the Main Factors Regulating the Bacterial Community Associated with the Roots of Coastal Sand Dune Halophytes. Biology, 11(5), 695. https://doi.org/10.3390/biology11050695