Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (400)

Search Parameters:
Keywords = Spectral-SAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6007 KB  
Article
Research on Rice Field Identification Methods in Mountainous Regions
by Yuyao Wang, Jiehai Cheng, Zhanliang Yuan and Wenqian Zang
Remote Sens. 2025, 17(19), 3356; https://doi.org/10.3390/rs17193356 - 2 Oct 2025
Abstract
Rice is one of the most important staple crops in China, and the rapid and accurate extraction of rice planting areas plays a crucial role in the agricultural management and food security assessment. However, the existing rice field identification methods faced the significant [...] Read more.
Rice is one of the most important staple crops in China, and the rapid and accurate extraction of rice planting areas plays a crucial role in the agricultural management and food security assessment. However, the existing rice field identification methods faced the significant challenges in mountainous regions due to the severe cloud contamination, insufficient utilization of multi-dimensional features, and limited classification accuracy. This study presented a novel rice field identification method based on the Graph Convolutional Networks (GCN) that effectively integrated multi-source remote sensing data tailored for the complex mountainous terrain. A coarse-to-fine cloud removal strategy was developed by fusing the synthetic aperture radar (SAR) imagery with temporally adjacent optical remote sensing imagery, achieving high cloud removal accuracy, thereby providing reliable and clear optical data for the subsequent rice mapping. A comprehensive multi-feature library comprising spectral, texture, polarization, and terrain attributes was constructed and optimized via a stepwise selection process. Furthermore, the 19 key features were established to enhance the classification performance. The proposed method achieved an overall accuracy of 98.3% for the rice field identification in Huoshan County of the Dabie Mountains, and a 96.8% consistency compared to statistical yearbook data. The ablation experiments demonstrated that incorporating terrain features substantially improved the rice field identification accuracy under the complex topographic conditions. The comparative evaluations against support vector machine (SVM), random forest (RF), and U-Net models confirmed the superiority of the proposed method in terms of accuracy, local performance, terrain adaptability, training sample requirement, and computational cost, and demonstrated its effectiveness and applicability for the high-precision rice field distribution mapping in mountainous environments. Full article
Show Figures

Figure 1

33 pages, 10753 KB  
Article
Spectral Analysis of Snow in Bansko, Pirin Mountain, in Different Ranges of the Electromagnetic Spectrum
by Temenuzhka Spasova, Andrey Stoyanov, Adlin Dancheva and Daniela Avetisyan
Remote Sens. 2025, 17(19), 3326; https://doi.org/10.3390/rs17193326 - 28 Sep 2025
Abstract
The study presents a spectral assessment and analysis of various data and methods for snow cover analysis in different ranges of the electromagnetic spectrum through a differentiated approach applied to the territory of Bansko, Pirin Mountain. The aim of the presented research is [...] Read more.
The study presents a spectral assessment and analysis of various data and methods for snow cover analysis in different ranges of the electromagnetic spectrum through a differentiated approach applied to the territory of Bansko, Pirin Mountain. The aim of the presented research is to assess the effectiveness and accuracy of satellite observations together with field (in situ) measurements and to create a model of an integrated methodology. To achieve this goal, several indices, such as land surface temperature (LST), optical indices, Tasseled Cap Transformation (TCT) with wetness component (TCW), High-Resolution (HR) imagery, and Synthetic Aperture Radar (SAR) measurements, were analyzed. The results of the analysis proved that combining satellite and field data through a mobile thermal camera provides an accurate and comprehensive picture of snow conditions in high mountain regions for powder, hard-packed and wet snow. As the most important, there is the verification and validation of the results through the so-called regression analysis of the different data types, through which multiple correlations (over 10) were established, both in data from Sentinel 1SAR, Sentinel 2MSI, Sentinel 3 SLSTR, and PlanetScope. The results showed the effectiveness of optical indices for hard and fresh snow and radar and LST data for wet snow. The results can be used to improve snow surveys, event prediction (e.g., avalanches), and the interpretation of spectral analysis of snow. The study does not aim to perform a temporal analysis; all satellite data is from the temporal period 30 December 2024–5 January 2025. Full article
Show Figures

Figure 1

23 pages, 17838 KB  
Article
Integrating Multi-Temporal Sentinel-1/2 Vegetation Signatures with Machine Learning for Enhanced Soil Salinity Mapping Accuracy in Coastal Irrigation Zones: A Case Study of the Yellow River Delta
by Junyong Zhang, Tao Liu, Wenjie Feng, Lijing Han, Rui Gao, Fei Wang, Shuang Ma, Dongrui Han, Zhuoran Zhang, Shuai Yan, Jie Yang, Jianfei Wang and Meng Wang
Agronomy 2025, 15(10), 2292; https://doi.org/10.3390/agronomy15102292 - 27 Sep 2025
Abstract
Soil salinization poses a severe threat to agricultural sustainability in the Yellow River Delta, where conventional spectral indices are limited by vegetation interference and seasonal dynamics in coastal saline-alkali landscapes. To address this, we developed an inversion framework integrating spectral indices and vegetation [...] Read more.
Soil salinization poses a severe threat to agricultural sustainability in the Yellow River Delta, where conventional spectral indices are limited by vegetation interference and seasonal dynamics in coastal saline-alkali landscapes. To address this, we developed an inversion framework integrating spectral indices and vegetation temporal features, combining multi-temporal Sentinel-2 optical data (January 2024–March 2025), Sentinel-1 SAR data, and terrain covariates. The framework employs Savitzky–Golay (SG) filtering to extract vegetation temporal indices—including NDVI temporal extremum and principal component features, capturing salt stress response mechanisms beyond single-temporal spectral indices. Based on 119 field samples and Variable Importance in Projection (VIP) feature selection, three ensemble models (XGBoost, CatBoost, LightGBM) were constructed under two strategies: single spectral features versus fused spectral and vegetation temporal features. The key results demonstrate the following: (1) The LightGBM model with fused features achieved optimal validation accuracy (R2 = 0.77, RMSE = 0.26 g/kg), outperforming single-feature models by 13% in R2. (2) SHAP analysis identified vegetation-related factors as key predictors, revealing a negative correlation between peak biomass and salinity accumulation, and the summer crop growth process affects soil salinization in the following spring. (3) The fused strategy reduced overestimation in low-salinity zones, enhanced model robustness, and significantly improved spatial gradient continuity. This study confirms that vegetation phenological features effectively mitigate agricultural interference (e.g., tillage-induced signal noise) and achieve high-resolution salinity mapping in areas where traditional spectral indices fail. The multi-temporal integration framework provides a replicable methodology for monitoring coastal salinization under complex land cover conditions. Full article
Show Figures

Figure 1

25 pages, 5278 KB  
Article
Developing a Quality Flag for SAR Ocean Wave Spectrum Partitioning with Machine Learning
by Amine Benchaabane, Romain Husson, Muriel Pinheiro and Guillaume Hajduch
Remote Sens. 2025, 17(18), 3191; https://doi.org/10.3390/rs17183191 - 15 Sep 2025
Viewed by 273
Abstract
Synthetic Aperture Radar (SAR) is one of the few instruments capable of providing high-resolution global two-dimensional (2D) measurements of ocean waves. Since 2014 and then 2016, the Sentinel-1A/B satellites, whenever operating in a specific wave mode (WV), have been providing ocean swell spectrum [...] Read more.
Synthetic Aperture Radar (SAR) is one of the few instruments capable of providing high-resolution global two-dimensional (2D) measurements of ocean waves. Since 2014 and then 2016, the Sentinel-1A/B satellites, whenever operating in a specific wave mode (WV), have been providing ocean swell spectrum data as Level-2 (L2) OCeaN products (OCN), derived through a quasi-linear inversion process. This WV acquires small SAR images of 20 × 20 km footprints alternating between two sub-beams, WV1 and WV2, with incidence angles of approximately 23° and 36°, respectively, to capture ocean surface dynamics. The SAR imaging process is influenced by various modulations, including hydrodynamic, tilt, and velocity bunching. While hydrodynamic and tilt modulations can be approximated as linear processes, velocity bunching introduces significant distortion due to the satellite’s relative motion with respect to the ocean surface and leads to constructive but also destructive effects on the wave imaging process. Due to the associated azimuth cut-off, the quasi-linear inversion primarily detects ocean swells with, on average, wavelengths longer than 200 m in the SAR azimuth direction, limiting the resolution of smaller-scale wave features in azimuth but reaching 10 m resolution along range. The 2D spectral partitioning technique used in the Sentinel-1 WV OCN product separates different swell systems, known as partitions, based on their frequency, directional, and spectral characteristics. The accuracy of these partitions can be affected by several factors, including non-linear effects, large-scale surface features, and the relative direction of the swell peak to the satellite’s flight path. To address these challenges, this study proposes a novel quality control framework using a machine learning (ML) approach to develop a quality flag (QF) parameter associated with each swell partition provided in the OCN products. By pairing collocated data from Sentinel-1 (S1) and WaveWatch III (WW3) partitions, the QF parameter assigns each SAR-derived swell partition one of five quality levels: “very good,” “good,” “medium,” “low,” or “poor”. This ML-based method enhances the accuracy of wave partitions, especially in cases where non-linear effects or large-scale oceanic features distort the data. The proposed algorithm provides a robust tool for filtering out problematic partitions, improving the overall quality of ocean wave measurements obtained from SAR. Moreover, the variability in the accuracy of swell partitions, depending on the swell direction relative to the satellite’s flight heading, is effectively addressed, enabling more reliable data for oceanographic studies. This work contributes to a better understanding of ocean swell dynamics derived from SAR observations and supports the numerical swell modeling community by aiding in the refinement of models and their integration into operational systems, thereby advancing both theoretical and practical aspects of ocean wave forecasting. Full article
(This article belongs to the Special Issue Calibration and Validation of SAR Data and Derived Products)
Show Figures

Figure 1

19 pages, 5858 KB  
Article
An Improved Extended Wavenumber Domain Imaging Algorithm for Ultra-High-Resolution Spotlight SAR
by Gui Wang, Yao Gao and Weidong Yu
Sensors 2025, 25(17), 5599; https://doi.org/10.3390/s25175599 - 8 Sep 2025
Viewed by 610
Abstract
Ultra-high-resolution synthetic aperture radar (SAR) has important applications in military and civilian fields. However, the acquisition of high-resolution SAR imagery poses considerable processing challenges, including limitations in traditional slant range model precision, the spatial variation in equivalent velocity, spectral aliasing, and non-negligible error [...] Read more.
Ultra-high-resolution synthetic aperture radar (SAR) has important applications in military and civilian fields. However, the acquisition of high-resolution SAR imagery poses considerable processing challenges, including limitations in traditional slant range model precision, the spatial variation in equivalent velocity, spectral aliasing, and non-negligible error introduced by stop-and-go assumption. To this end, this paper proposes an improved extended wavenumber domain imaging algorithm for ultra-high-resolution SAR to systematically address the imaging quality degradation caused by these challenges. In the proposed algorithm, the one-step motion compensation method is employed to compensate for the errors caused by orbital curvature through range-dependent envelope shift interpolation and phase function correction. Then, the interpolation based on modified Stolt mapping is performed, thereby facilitating effective separation of the range and azimuth focusing. Finally, the residual range cell migration correction is applied to eliminate range position errors, followed by azimuth compression to achieve high-precision focusing. Both simulation and spaceborne data experiments are performed to verify the effectiveness of the proposed algorithm. Full article
Show Figures

Figure 1

47 pages, 13862 KB  
Review
Land Use/Land Cover Remote Sensing Classification in Complex Subtropical Karst Environments: Challenges, Methodological Review, and Research Frontiers
by Denghong Huang, Zhongfa Zhou, Zhenzhen Zhang, Qingqing Dai, Huanhuan Lu, Ya Li and Youyan Huang
Appl. Sci. 2025, 15(17), 9641; https://doi.org/10.3390/app15179641 - 2 Sep 2025
Viewed by 473
Abstract
Land use/land cover (LULC) data serve as a critical information source for understanding the complex interactions between human activities and global environmental change. The subtropical karst region, characterized by fragmented terrain, spectral confusion, topographic shadowing, and frequent cloud cover, represents one of the [...] Read more.
Land use/land cover (LULC) data serve as a critical information source for understanding the complex interactions between human activities and global environmental change. The subtropical karst region, characterized by fragmented terrain, spectral confusion, topographic shadowing, and frequent cloud cover, represents one of the most challenging natural scenes for remote sensing classification. This study reviews the evolution of multi-source data acquisition (optical, SAR, LiDAR, UAV) and preprocessing strategies tailored for subtropical regions. It evaluates the applicability and limitations of various methodological frameworks, ranging from traditional approaches and GEOBIA to machine learning and deep learning. The importance of uncertainty modeling and robust accuracy assessment systems is emphasized. The study identifies four major bottlenecks: scarcity of high-quality samples, lack of scale awareness, poor model generalization, and insufficient integration of geoscientific knowledge. It suggests that future breakthroughs lie in developing remote sensing intelligent models that are driven by few samples, integrate multi-modal data, and possess strong geoscientific interpretability. The findings provide a theoretical reference for LULC information extraction and ecological monitoring in heterogeneous geomorphic regions. Full article
Show Figures

Figure 1

18 pages, 8631 KB  
Article
Forest Biomass Estimation of Linpan in Western Sichuan Using Multi-Source Remote Sensing
by Jiaming Lai, Yuxuan Lin, Yan Lu, Mingdi Yue and Gang Chen
Sustainability 2025, 17(17), 7855; https://doi.org/10.3390/su17177855 - 31 Aug 2025
Viewed by 541
Abstract
Linpan ecosystems, distinct to western Sichuan, China, are integral to regional biodiversity and carbon cycling. However, comprehensive biomass estimation for these systems has not been thoroughly investigated. This study seeks to fill this gap by enhancing the accuracy and precision of biomass estimation [...] Read more.
Linpan ecosystems, distinct to western Sichuan, China, are integral to regional biodiversity and carbon cycling. However, comprehensive biomass estimation for these systems has not been thoroughly investigated. This study seeks to fill this gap by enhancing the accuracy and precision of biomass estimation in these ecologically vital landscapes through the application of multi-source remote sensing techniques, specifically by integrating the strengths of optical and radar remote sensing data. The focus of this research is on the forest biomass of Linpan, encompassing the tree layer, which includes the trunk, branches, leaves, and underground roots. Specifically, the research focused on the Linpan ecosystems in the Wenjiang District of western Sichuan, utilizing an integration of Sentinel-1 SAR, Sentinel-2 multispectral, and GF-2 high-resolution data for multi-source remote sensing-based biomass estimation. Through the preprocessing of these data, Pearson correlation analysis was conducted to identify variables significantly correlated with the forest biomass as determined by field surveys. Ultimately, 19 key modeling factors were selected, including band information, vegetation indices, texture features, and phenological characteristics. Subsequently, three algorithms—multiple stepwise regression (MSR), support vector machine (SVM), and random forest (RF)—were employed to model biomass across mixed-type, deciduous broadleaved, evergreen broadleaved, and bamboo Linpan. The key findings include the following: (1) Sentinel-2 spectral data and Sentinel-1 VH backscatter coefficients during the summer, combined with vegetation indices and texture features, were critical predictors, while phenological indices exhibited unique correlations with biomass. (2) Biomass displayed a marked north–south gradient, characterized by higher values in the south and lower values in the north, with a mean value of 161.97 t ha−1, driven by dominant tree species distribution and management intensity. (3) The RF model demonstrated optimal performance in mixed-type Linpan (R2 = 0.768), whereas the SVM was more suitable for bamboo Linpan (R2 = 0.892). The research suggests that integrating multi-source remote sensing data significantly enhances Linpan biomass estimation accuracy, offering a robust framework to improve estimation precision. Full article
Show Figures

Figure 1

19 pages, 2304 KB  
Article
DFT Structural and UV–Vis Spectral Insights into Photosensitivity of Vandetanib: A Dual EGFR/SARS-CoV-2 Mpro Inhibitor
by Feng Wang and Vladislav Vasilyev
Pharmaceuticals 2025, 18(9), 1297; https://doi.org/10.3390/ph18091297 - 29 Aug 2025
Viewed by 525
Abstract
Background: Vandetanib is a clinically approved epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) used in the treatment of medullary thyroid cancer. Recent studies have also suggested potential activity against the SARS-CoV-2 main protease (Mpro), indicating dual therapeutic relevance. However, its [...] Read more.
Background: Vandetanib is a clinically approved epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) used in the treatment of medullary thyroid cancer. Recent studies have also suggested potential activity against the SARS-CoV-2 main protease (Mpro), indicating dual therapeutic relevance. However, its clinical use is limited by photosensitivity side effects, the molecular basis of which remains poorly understood. This study aims to elucidate the conformational, spectroscopic, and electronic properties of vandetanib underlying its photoreactivity. Methods: Density functional theory (DFT) was employed to explore vandetanib’s conformational landscape, electronic structure, and spectroscopic behavior. Low-energy conformers were identified and compared with experimental crystal and NMR data. Time-dependent DFT (TD-DFT) calculations were used to simulate UV–Vis absorption spectra and assign key electronic transitions. Results: Eight low-energy conformer clusters, including the global minimum structure, were identified. The global minimum was validated by consistency with crystal and experimental NMR data, emphasizing the role of conformational averaging. TD-DFT simulations successfully reproduced the two main UV–Vis absorption bands, with the primary band (~339 nm) assigned to a HOMO–1 → LUMO charge-transfer excitation between the N-methyl piperidine and quinazoline rings, pinpointing a structural contributor to photoreactivity. Additionally, the N-methyl piperidine ring was identified as a major metabolic hotspot, undergoing multiple biotransformations potentially linked to phototoxicity. Conclusions: This study provides molecular-level insights into the structural and photophysical origins of vandetanib’s photosensitivity. The findings improve understanding of its adverse effects and can inform the safer design of EGFR-targeting drugs with reduced phototoxic risks. Full article
(This article belongs to the Special Issue Small Molecules in Targeted Cancer Therapy and Diagnosis)
Show Figures

Graphical abstract

26 pages, 30091 KB  
Article
Crop Mapping Using kNDVI-Enhanced Features from Sentinel Imagery and Hierarchical Feature Optimization Approach in GEE
by Yanan Liu, Ai Zhang, Xingtao Zhao, Yichen Wang, Yuetong Hao and Pingbo Hu
Remote Sens. 2025, 17(17), 3003; https://doi.org/10.3390/rs17173003 - 29 Aug 2025
Viewed by 651
Abstract
Accurate crop mapping is vital for monitoring agricultural resources, food security, and ecosystem sustainability. Advances in high-resolution sensing technologies now enable precise, large-scale crop mapping, improving agricultural management and decision-making. However, in scenarios where balancing precision and computational resources is important, obtaining the [...] Read more.
Accurate crop mapping is vital for monitoring agricultural resources, food security, and ecosystem sustainability. Advances in high-resolution sensing technologies now enable precise, large-scale crop mapping, improving agricultural management and decision-making. However, in scenarios where balancing precision and computational resources is important, obtaining the optimal feature combination (especially newly proposed features) and strategies from the rich feature sets contained in multi-source remote sensing imagery remains one of the challenges. In this paper, we propose a hierarchical feature optimization method, incorporating a newly reported vegetation feature, for mapping crop types by combining the Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 optical imagery within the Google Earth Engine (GEE) platform. The method first calculates spectral features, texture features, polarization features, vegetation index features, and crop phenological features, with a particular focus on infrared band features and the newly developed Kernel Normalized Difference Vegetation Index (kNDVI). These 126 features are then selected to construct 15 crop type mapping models based on different feature combinations and a random forest (RF) classifier. Feature selection was performed using the feature correlation analysis and random forest recursive feature elimination (RF-RFE) to identify the optimal subset. The experiment was conducted in the Linhe region, covering an area of 2333 km2. The resulting 10 m crop map, generated by the optimal model (Model 15) with 34 key features, demonstrated that integrating multi-source features significantly enhances mapping accuracy. The model achieved an overall accuracy of 90.10% across five crop types (corn, wheat, sunflower, soybean, and beet), outperforming other representative feature optimization methods, Relief-F (87.50%) and CFS (89.60%). The study underscores the importance of feature optimization and reduction of redundant features while also showcasing the effectiveness of red edge and infrared features, as well as the kNDVI, in mapping crop type. Full article
(This article belongs to the Special Issue GeoAI and EO Big Data Driven Advances in Earth Environmental Science)
Show Figures

Graphical abstract

21 pages, 17026 KB  
Article
Multi-Scale Time-Frequency Representation Fusion Network for Target Recognition in SAR Imagery
by Huiping Lin, Zixuan Xie, Liang Zeng and Junjun Yin
Remote Sens. 2025, 17(16), 2786; https://doi.org/10.3390/rs17162786 - 11 Aug 2025
Viewed by 621
Abstract
This paper proposes a multi-scale time-frequency representation fusion network (MTRFN) for target recognition in synthetic aperture radar (SAR) imagery. Leveraging the spectral characteristics of six radar sub-views, the model incorporates a multi-scale representation fusion (MRF) module to extract discriminative frequency-domain features from two [...] Read more.
This paper proposes a multi-scale time-frequency representation fusion network (MTRFN) for target recognition in synthetic aperture radar (SAR) imagery. Leveraging the spectral characteristics of six radar sub-views, the model incorporates a multi-scale representation fusion (MRF) module to extract discriminative frequency-domain features from two types of radar sub-views with high learnability. Additionally, physical scattering characteristics in SAR images are captured via time-frequency domain analysis. To enhance feature integration, a gated fusion network performs adaptive feature concatenation. The MRF module integrates a lightweight residual block to reduce network complexity and employs a coordinate attention mechanism to prioritize salient targets in the frequency spectrum over background noise, aligning the model’s focus with physical scattering principles. Furthermore, the model introduces an angular additive margin loss function during classification to enhance intra-class compactness and inter-class separability while reducing computational overhead. Compared with existing interpretable methods, the proposed approach combines architectural transparency with physical interpretability, thereby lowering the risk of recognition errors. Extensive experiments conducted on four public datasets demonstrate that the proposed MTRFN significantly outperforms existing benchmark methods. Comparative experiments using heat maps further confirm that the proposed physical feature-guided module effectively directs the model’s attention toward the target rather than the background. Full article
Show Figures

Figure 1

22 pages, 3460 KB  
Article
Investigating the Earliest Identifiable Timing of Sugarcane at Early Season Based on Optical and SAR Time-Series Data
by Yingpin Yang, Jiajun Zou, Yu Huang, Zhifeng Wu, Ting Fang, Jia Xue, Dakang Wang, Yibo Wang, Jinnian Wang, Xiankun Yang and Qiting Huang
Remote Sens. 2025, 17(16), 2773; https://doi.org/10.3390/rs17162773 - 10 Aug 2025
Cited by 1 | Viewed by 1423
Abstract
Early-season sugarcane identification plays a pivotal role in precision agriculture, enabling timely yield forecasting and informed policy-making. Compared to post-season crop identification, early-season identification faces unique challenges, including incomplete temporal observations and spectral ambiguity among crop types in early seasons. Previous studies have [...] Read more.
Early-season sugarcane identification plays a pivotal role in precision agriculture, enabling timely yield forecasting and informed policy-making. Compared to post-season crop identification, early-season identification faces unique challenges, including incomplete temporal observations and spectral ambiguity among crop types in early seasons. Previous studies have not systematically investigated the capability of optical and synthetic aperture radar (SAR) data for early-season sugarcane identification, which may result in suboptimal accuracy and delayed identification timelines. Both the timing for reliable identification (≥90% accuracy) and the earliest achievable timepoint matching post-season level remain undetermined, and which features are effective in the early-season identification is still unknown. To address these questions, this study integrated Sentinel-1 and Sentinel-2 data, extracted 10 spectral indices and 8 SAR features, and employed a random forest classifier for early-season sugarcane identification by means of progressive temporal analysis. It was found that LSWI (Land Surface Water Index) performed best among 18 individual features. Through the feature set accumulation, the seven-dimensional feature set (LSWI, IRECI (Inverted Red-Edge Chlorophyll Index), EVI (Enhanced Vegetation Index), PSSRa (Pigment Specific Simple Ratio a), NDVI (Normalized Difference Vegetation Index), VH backscatter coefficient, and REIP (Red-Edge Inflection Point Index)) achieved the earliest attainment of 90% accuracy by 30 June (early-elongation stage), with peak accuracy (92.80% F1-score) comparable to post-season accuracy reached by 19 August (mid-elongation stage). The early-season sugarcane maps demonstrated high agreement with post-season maps. The 30 June map achieved 88.01% field-level and 90.22% area-level consistency, while the 19 August map reached 91.58% and 93.11%, respectively. The results demonstrate that sugarcane can be reliably identified with accuracy comparable to post-season mapping as early as six months prior to harvest through the integration of optical and SAR data. This study develops a robust approach for early-season sugarcane identification, which could fundamentally enhance precision agriculture operations through timely crop status assessment. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Crop Monitoring and Food Security)
Show Figures

Figure 1

23 pages, 6600 KB  
Article
Research Analysis of the Joint Use of Sentinel-2 and ALOS-2 Data in Fine Classification of Tropical Natural Forests
by Qingyuan Xie, Wenxue Fu, Weijun Yan, Jiankang Shi, Chengzhi Hao, Hui Li, Sheng Xu and Xinwu Li
Forests 2025, 16(8), 1302; https://doi.org/10.3390/f16081302 - 10 Aug 2025
Viewed by 1323
Abstract
Tropical natural forests play a crucial role in regulating the climate and maintaining global ecosystem functions. However, they face significant challenges due to human activities and climate change. Accurate classification of these forests can help reveal their spatial distribution patterns and support conservation [...] Read more.
Tropical natural forests play a crucial role in regulating the climate and maintaining global ecosystem functions. However, they face significant challenges due to human activities and climate change. Accurate classification of these forests can help reveal their spatial distribution patterns and support conservation efforts. This study employed four machine learning algorithms—random forest (RF), support vector machine (SVM), Logistic Regression (LR), and Extreme Gradient Boosting (XGBoost)—to classify tropical rainforests, tropical monsoon rainforests, tropical coniferous forests, broadleaf evergreen forests, and mangrove forests on Hainan Island using optical and synthetic aperture radar (SAR) multi-source remote sensing data. Among these, the XGBoost model achieved the best performance, with an overall accuracy of 0.89 and a Kappa coefficient of 0.82. Elevation and red-edge spectral bands were identified as the most important features for classification. Spatial distribution analysis revealed distinct patterns, such as mangrove forests occurring at the lowest elevations and tropical rainforests occupying middle and low elevations. The integration of optical and SAR data significantly enhanced classification accuracy and boundary recognition compared to using optical data alone. These findings underscore the effectiveness of machine learning and multi-source data for tropical forest classification, providing a valuable reference for ecological monitoring and sustainable management. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

36 pages, 9354 KB  
Article
Effects of Clouds and Shadows on the Use of Independent Component Analysis for Feature Extraction
by Marcos A. Bosques-Perez, Naphtali Rishe, Thony Yan, Liangdong Deng and Malek Adjouadi
Remote Sens. 2025, 17(15), 2632; https://doi.org/10.3390/rs17152632 - 29 Jul 2025
Viewed by 348
Abstract
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such [...] Read more.
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such as from Landsat-8. In this study, rather than simply masking visual obstructions, we aimed to investigate the role and influence of clouds within the spectral data itself. To achieve this, we employed Independent Component Analysis (ICA), a statistical method capable of decomposing mixed signals into independent source components. By applying ICA to selected Landsat-8 bands and analyzing each component individually, we assessed the extent to which cloud signatures are entangled with surface data. This process revealed that clouds contribute to multiple ICA components simultaneously, indicating their broad spectral influence. With this influence on multiple wavebands, we managed to configure a set of components that could perfectly delineate the extent and location of clouds. Moreover, because Landsat-8 lacks cloud-penetrating wavebands, such as those in the microwave range (e.g., SAR), the surface information beneath dense cloud cover is not captured at all, making it physically impossible for ICA to recover what is not sensed in the first place. Despite these limitations, ICA proved effective in isolating and delineating cloud structures, allowing us to selectively suppress them in reconstructed images. Additionally, the technique successfully highlighted features such as water bodies, vegetation, and color-based land cover differences. These findings suggest that while ICA is a powerful tool for signal separation and cloud-related artifact suppression, its performance is ultimately constrained by the spectral and spatial properties of the input data. Future improvements could be realized by integrating data from complementary sensors—especially those operating in cloud-penetrating wavelengths—or by using higher spectral resolution imagery with narrower bands. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

22 pages, 1954 KB  
Article
Pre-Evaluation of Wave Energy Converter Deployment in the Baltic Sea Through Site Limitations Using CMEMS Hindcast, Sentinel-1, and Wave Buoy Data
by Nikon Vidjajev, Sander Rikka and Victor Alari
Energies 2025, 18(14), 3843; https://doi.org/10.3390/en18143843 - 19 Jul 2025
Viewed by 1368
Abstract
This study assesses the wave energy potential and spectral variability in the Väinameri—a semi-sheltered, island-filtered basin on Estonia’s west coast—by combining six months of high-resolution in situ wave spectra with deep learning-enhanced satellite retrievals. Directional spectra were recorded at Rohuküla Harbor using a [...] Read more.
This study assesses the wave energy potential and spectral variability in the Väinameri—a semi-sheltered, island-filtered basin on Estonia’s west coast—by combining six months of high-resolution in situ wave spectra with deep learning-enhanced satellite retrievals. Directional spectra were recorded at Rohuküla Harbor using a wave-following LainePoiss buoy from June to December 2024. In parallel, one-dimensional wave spectra were reconstructed from Sentinel-1 SAR imagery using a long short-term memory (LSTM) neural network trained on more than 71,000 collocations with NORA3 WAM hindcasts. Spectral pairs matched within a ±1 h window exhibited strong agreement in the dominant 0.2–0.4 Hz frequency band, while systematic underestimation at higher frequencies reflected both the radar resolution limits and the short-period, wind–sea-dominated nature of the Baltic Sea. Our results confirm that LSTM-enhanced SAR retrievals enable robust bulk and spectral wave characterizations in data-sparse nearshore regions, and offer a practical basis for the site evaluation, device tuning, and survivability testing of pilot-scale wave energy converters under both typical and storm-driven forcing conditions. Full article
(This article belongs to the Special Issue New Advances in Wave Energy Conversion)
Show Figures

Figure 1

23 pages, 2695 KB  
Article
Estimation of Subtropical Forest Aboveground Biomass Using Active and Passive Sentinel Data with Canopy Height
by Yi Wu, Yu Chen, Chunhong Tian, Ting Yun and Mingyang Li
Remote Sens. 2025, 17(14), 2509; https://doi.org/10.3390/rs17142509 - 18 Jul 2025
Cited by 1 | Viewed by 721
Abstract
Forest biomass is closely related to carbon sequestration capacity and can reflect the level of forest management. This study utilizes four machine learning algorithms, namely Multivariate Stepwise Regression (MSR), K-Nearest Neighbors (k-NN), Artificial Neural Network (ANN), and Random Forest (RF), to estimate forest [...] Read more.
Forest biomass is closely related to carbon sequestration capacity and can reflect the level of forest management. This study utilizes four machine learning algorithms, namely Multivariate Stepwise Regression (MSR), K-Nearest Neighbors (k-NN), Artificial Neural Network (ANN), and Random Forest (RF), to estimate forest aboveground biomass (AGB) in Chenzhou City, Hunan Province, China. In addition, a canopy height model, constructed from a digital surface model (DSM) derived from Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and an ICESat-2-corrected SRTM DEM, is incorporated to quantify its impact on the accuracy of AGB estimation. The results indicate the following: (1) The incorporation of multi-source remote sensing data significantly improves the accuracy of AGB estimation, among which the RF model performs the best (R2 = 0.69, RMSE = 24.26 t·ha−1) compared with the single-source model. (2) The canopy height model (CHM) obtained from InSAR-LiDAR effectively alleviates the signal saturation effect of optical and SAR data in high-biomass areas (>200 t·ha−1). When FCH is added to the RF model combined with multi-source remote sensing data, the R2 of the AGB estimation model is improved to 0.74. (3) In 2018, AGB in Chenzhou City shows clear spatial heterogeneity, with a mean of 51.87 t·ha−1. Biomass increases from the western hilly part (32.15–68.43 t·ha−1) to the eastern mountainous area (89.72–256.41 t·ha−1), peaking in Dongjiang Lake National Forest Park (256.41 t·ha−1). This study proposes a comprehensive feature integration framework that combines red-edge spectral indices for capturing vegetation physiological status, SAR-derived texture metrics for assessing canopy structural heterogeneity, and canopy height metrics to characterize forest three-dimensional structure. This integrated approach enables the robust and accurate monitoring of carbon storage in subtropical forests. Full article
(This article belongs to the Collection Feature Paper Special Issue on Forest Remote Sensing)
Show Figures

Figure 1

Back to TopTop