Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Sorghum drummondii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6962 KB  
Article
Assessment of Alternative Warm-Season Annual Grasses for Forage Production in Water-Limited Environments
by Diego F. Aviles, Alondra Cruz, Caitlyn E. Cooper, Whitney L. Crossland, S. V. Krishna Jagadish and Aaron B. Norris
Grasses 2025, 4(3), 36; https://doi.org/10.3390/grasses4030036 - 10 Sep 2025
Viewed by 1015
Abstract
As traditional forage crops demand substantial water, exploring alternatives with lower water demands can mitigate the strain on water supplies. This pot study evaluated five annual warm-season forages (forage sorghum (FS) [Sorghum bicolor (L.) Moench], prussic acid-free forage sorghum (PF) [Sorghum [...] Read more.
As traditional forage crops demand substantial water, exploring alternatives with lower water demands can mitigate the strain on water supplies. This pot study evaluated five annual warm-season forages (forage sorghum (FS) [Sorghum bicolor (L.) Moench], prussic acid-free forage sorghum (PF) [Sorghum bicolor subsp. Drummondii], sorghum x sudangrass hybrid (SS) [Sorghum bicolor x drummondii], sudangrass (SU) [Sorghum sudanense (Piper) Stapf], and pearl millet (PM) [Pennisetum glaucum (L.) R. Br.]) under two different irrigation treatments (40% and 80% ETo). Morphological (leaf area, leaf count, plant height), biomass yield, nutritional content (nitrogen (N), acid detergent fiber, and in vitro true digestibility (IVTD)), and water use efficiency (WUE) parameters were assessed at 35 and 49 days after planting (DAP). Irrigation effects varied with time, more strongly influencing nutritive value at 35 DAP and morphological traits at 49 DAP. WUE was significantly affected by irrigation at both timepoints. No single forage consistently outperformed across all metrics. PF and SU had the most biomass (p < 0.01), while PM had the greatest N content (p < 0.01). However, PF and SU had the highest WUE for biomass and digestible dry matter (p < 0.01). These findings suggest PF and SU may improve forage system sustainability under limited water availability. Full article
Show Figures

Figure 1

21 pages, 8034 KB  
Article
Decoding Forage-Driven Microbial–Metabolite Patterns: A Multi-Omics Comparison of Eight Tropical Silage Crops
by Xianjun Lai, Siqi Liu, Yandan Zhang, Haiyan Wang and Lang Yan
Fermentation 2025, 11(8), 480; https://doi.org/10.3390/fermentation11080480 - 20 Aug 2025
Cited by 2 | Viewed by 1223
Abstract
Tropical forage crops vary widely in biochemical composition, resulting in inconsistent silage quality. Understanding how plant traits shape microbial and metabolic networks during ensiling is crucial for optimizing fermentation outcomes. Eight tropical forages—Sorghum bicolor (sweet sorghum), Sorghum × drummondii (sorghum–Sudangrass hybrid), Sorghum [...] Read more.
Tropical forage crops vary widely in biochemical composition, resulting in inconsistent silage quality. Understanding how plant traits shape microbial and metabolic networks during ensiling is crucial for optimizing fermentation outcomes. Eight tropical forages—Sorghum bicolor (sweet sorghum), Sorghum × drummondii (sorghum–Sudangrass hybrid), Sorghum sudanense (Sudangrass), Pennisetum giganteum (giant Napier grass), Pennisetum purpureum cv. Purple (purple elephant grass), Pennisetum sinese (king grass), Leymus chinensis (sheep grass), and Zea mexicana (Mexican teosinte)—were ensiled under uniform conditions. Fermentation quality, bacterial and fungal communities (16S rRNA and ITS sequencing), and metabolite profiles (untargeted liquid chromatography–mass spectrometry, LC-MS) were analyzed after 60 days. Sweet sorghum and giant Napier grass showed optimal fermentation, with high lactic acid levels (111.2 g/kg and 99.4 g/kg, respectively), low NH4+-N (2.4 g/kg and 3.1 g/kg), and dominant Lactiplantibacillus plantarum. In contrast, sheep grass and Mexican teosinte exhibited poor fermentation, with high NH4+-N (6.7 and 6.1 g/kg) and Clostridium dominance. Fungal communities were dominated by Kazachstania humilis (>95%), while spoilage-associated genera such as Cladosporium, Fusarium, and Termitomyces proliferated in poorly fermented silages. Metabolomic analysis identified 15,827 features, with >3000 significantly differential metabolites between silages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed divergence in flavonoid biosynthesis, lipid metabolism, and amino acid pathways. In the sweet sorghum vs. sheep grass comparison, oxidative stress markers ((±) 9-HODE, Agrimonolide) were elevated in sheep grass, while sweet sorghum accumulated antioxidants like Vitamin D3. Giant Napier grass exhibited higher levels of antimicrobial flavonoids (e.g., Apigenin) than king grass, despite both being dominated by lactic acid bacteria. Sorghum–Sudangrass hybrid silage showed enrichment of lignan and flavonoid derivatives, while Mexican teosinte accumulated hormone-like compounds (Gibberellin A53, Pterostilbene), suggesting microbial dysbiosis. These findings indicate that silage fermentation outcomes are primarily driven by forage-intrinsic traits. A “forage–microbiota–metabolite” framework was proposed to explain how plant-specific properties regulate microbial assembly and metabolic output. These insights can guide forage selection and development of precision inoculant for high-quality tropical silage. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

23 pages, 3493 KB  
Article
Tillage, Manure, and Biochar Short-Term Effects on Soil Characteristics in Forage Systems
by Katherine N. Hays, James P. Muir, Eunsung Kan, Paul B. DeLaune, Jeff A. Brady, Olabiyi Obayomi and Adam B. Mitchell
Agronomy 2023, 13(9), 2224; https://doi.org/10.3390/agronomy13092224 - 25 Aug 2023
Cited by 6 | Viewed by 2552
Abstract
Manure, a globally used soil amendment, can contribute to excessive N and P runoff, leading to water pollution. Biochar (BC) shows promise in mitigating nutrient loss by retaining soil nutrients. However, there is limited research exploring the combined effects of tillage practices, biochar, [...] Read more.
Manure, a globally used soil amendment, can contribute to excessive N and P runoff, leading to water pollution. Biochar (BC) shows promise in mitigating nutrient loss by retaining soil nutrients. However, there is limited research exploring the combined effects of tillage practices, biochar, manure, forage crops, and soil types on soil nutrient characteristics in a single field study. Our objectives are to determine if, in North Central Texas, differing soil types, soil amendments, forage crops, and tillage practices affect soil nutrients when applied short term, and whether correlations exist among soil nutrient characteristics as affected by soil amendments, tillage practices, and the presence of forage crops. The study encompasses three field sites with five factors, including soil types, manure rates, biochar rates, tillage practices, and forage crop types. Soil samples were assayed for pH, electrical conductivity (EC), macronutrients, and micronutrients. Data analyses involved variance analysis, Fisher’s tests, and Pearson’s correlations using R in Rstudio (the IDE). Microplots treated with manure (average 2.16 ppm) retained 60% greater average nitrate levels at the end of the growing season than those treated with a synthetic fertilizer (average 1.35 ppm) (p ≤ 0.05). Moderate and strong correlations were observed between EC and S (r (106) = 0.43, p < 0.001 in loamy sand soil; r (106) = 0.80, p < 0.001 in clay loam soil) and between nitrate and Zn, (r (106) = 0.36, p < 0.001 in loamy sand soil; r (106) = 0.44, p < 0.001 in sandy loam soil) across different soil types. Soil type (texture) emerged as the primary influencing factor on plant-available soil nutrients and characteristics, followed by manure application and tillage practices. The impact of BC and forage crop type varied depending on other experimental factors. Understanding the influence of soil type, amendment application, and tillage on soil nutrient characteristics can guide sustainable forage production practices and soil nutrient management strategies. Full article
(This article belongs to the Special Issue Effects of Arable Farming Measures on Nutrient Dynamics)
Show Figures

Figure 1

15 pages, 887 KB  
Article
Short-Term Biochar Impacts on Crop Performance and Soil Quality in Arid Sandy Loam Soil
by Lindsay Keller, Omololu John Idowu, April Ulery, Mohammed Omer and Catherine E. Brewer
Agriculture 2023, 13(4), 782; https://doi.org/10.3390/agriculture13040782 - 29 Mar 2023
Cited by 8 | Viewed by 3932
Abstract
A two-year field study was conducted in sandy loam soil to evaluate the impacts of biochar on soil quality and the growth and yields of pinto bean (Phaseolus vulgaris) and sorghum–Sudan (Sorghum × drummondii). A wood-derived commercial biochar was [...] Read more.
A two-year field study was conducted in sandy loam soil to evaluate the impacts of biochar on soil quality and the growth and yields of pinto bean (Phaseolus vulgaris) and sorghum–Sudan (Sorghum × drummondii). A wood-derived commercial biochar was applied at three rates to pinto bean (PB) and sorghum–Sudan (SS) plots. The biochar application rates applied annually for two years to PB plots were 0, 2.2, and 11.2 Mg ha−1, whereas the rates for SS plots were 0, 3.4, and 6.7 Mg ha−1. Crop growth and harvest parameters were evaluated. Assessed soil measurements included pH, electrical conductivity, available nutrients, soil organic matter (SOM), permanganate oxidizable carbon (POXC), soil aggregates, and volumetric soil moisture content. The results showed no significant differences in plant growth parameters and yields over the two growing seasons for both PB and SS. Compared to the control treatment, the biochar at 11.2 Mg ha−1 in PB plots improved soil moisture retention after irrigation by 19% in the first year and 25% in the second year. The SOM in the SS plot at 6.7 Mg ha−1 biochar rate was higher (1.02%) compared to the control plot (0.82%), whereas a similar increase was not observed in the PB plot. Although biochar rates did not affect most of the soil measurements, there were significant changes in soil properties over time, regardless of biochar treatments: POXC increased in the PB and SS plots; SOM increased in the SS plot; and electrical conductivity, sodium adsorption ratio, and most soil micronutrients decreased. This research was conducted over two years; the effects of biochar can persist for much longer, indicating the need for longer-term biochar field studies in arid agroecosystems. Full article
Show Figures

Figure 1

13 pages, 1068 KB  
Brief Report
Cascading Effects of Cover Crops on the Subsequent Cash Crop Defense against the Polyphagous Herbivore Fall Armyworm (Spodoptera frugiperda)
by Adegboyega Fajemisin, Alexis Racelis and Rupesh Kariyat
Insects 2023, 14(2), 177; https://doi.org/10.3390/insects14020177 - 10 Feb 2023
Cited by 4 | Viewed by 2321
Abstract
Recent studies have started to show that the benefits of cover crops can cascade to the cash crop growing seasons. However, the impact of cover crops on the subsequent cash crop defense against herbivores is not well understood. To test this, we conducted [...] Read more.
Recent studies have started to show that the benefits of cover crops can cascade to the cash crop growing seasons. However, the impact of cover crops on the subsequent cash crop defense against herbivores is not well understood. To test this, we conducted a field and laboratory study to assess the possible cascading effects of cover crops such as Vigna unguiculata, Sorghum drummondii, Raphanus sativus, and Crotalaria juncea on the subsequent cash crop (Sorghum bicolor) defense against the notorious polyphagous herbivore fall armyworm (Spodoptera frugiperda) across three farms in the Lower Rio Grande Valley. Our field and laboratory studies showed that the cash crop planted in the cover crop treatment differentially affected S. frugiperda. More specifically, we found that cover crops have positive effects on the growth and development of S. frugiperda on the subsequent cash crop, including both larval and pupal parameters. However, our experiments on physical and chemical defenses in cash crops failed to show any significant differences between cover and control. Collectively, our results add an additional line of evidence on the effects of cover crops on pest dynamics outside the cash crop season, a key consideration for the selection and management of cover crops and cash crops, whose underlying mechanisms need to be examined further. Full article
(This article belongs to the Special Issue Recent Advances in Fall Armyworm Research)
Show Figures

Figure 1

19 pages, 386 KB  
Review
Shattercane (Sorghum bicolor (L.) Moench Subsp. Drummondii) and Weedy Sunflower (Helianthus annuus L.)—Crop Wild Relatives (CWRs) as Weeds in Agriculture
by Panagiotis Kanatas, Ioannis Gazoulis, Stavros Zannopoulos, Alexandros Tataridas, Anastasia Tsekoura, Nikolaos Antonopoulos and Ilias Travlos
Diversity 2021, 13(10), 463; https://doi.org/10.3390/d13100463 - 25 Sep 2021
Cited by 8 | Viewed by 4980
Abstract
Shattercane (Sorghum bicolor (L.) Moench subsp. drummondii) and weedy sunflower (Helianthus annuus L.) are two examples of crop wild relatives (CWRs) that have become troublesome weeds in agriculture. Shattercane is a race belonging to a different subspecies than domesticated sorghum [...] Read more.
Shattercane (Sorghum bicolor (L.) Moench subsp. drummondii) and weedy sunflower (Helianthus annuus L.) are two examples of crop wild relatives (CWRs) that have become troublesome weeds in agriculture. Shattercane is a race belonging to a different subspecies than domesticated sorghum (Sorghum bicolor (L.) Moench subsp. bicolor). Weedy sunflower populations are natural hybrids between wild and domesticated sunflower (Helianthus annuus L.). Both species have key weedy characteristics, such as early seed shattering and seed dormancy, which play an important role in their success as agricultural weeds. They are widely reported as important agricultural weeds in the United States and have invaded various agricultural areas in Europe. Shattercane is very competitive to sorghum, maize (Zea mays L.), and soybean (Glycine max (L.) Merr.). Weedy sunflower causes severe yield losses in sunflower, maize, soybean, pulse crops, and industrial crops. Herbicide resistance was confirmed in populations of both species. The simultaneous presence of crops and their wild relatives in the field leads to crop–wild gene flow. Hybrids are fertile and competitive. Hybridization between herbicide-tolerant crops and wild populations creates herbicide-resistant hybrid populations. Crop rotation, false seedbed, cover crops, and competitive crop genotypes can suppress shattercane and weedy sunflower. Preventative measures are essential to avoid their spread on new agricultural lands. The development of effective weed management strategies is also essential to prevent hybridization between sorghum, sunflower, and their wild relatives and to mitigate its consequences. Full article
(This article belongs to the Special Issue 2021 Feature Papers by Diversity’s Editorial Board Members)
13 pages, 269 KB  
Article
Forage Yield and Nutritive Value of Cool-Season and Warm-Season Forages for Grazing Organic Dairy Cattle
by Kathryn E. Ritz, Bradley J. Heins, Roger Moon, Craig Sheaffer and Sharon L. Weyers
Agronomy 2020, 10(12), 1963; https://doi.org/10.3390/agronomy10121963 - 14 Dec 2020
Cited by 19 | Viewed by 4687
Abstract
The objective of this study was to compare the forage nutritive value of cool-season perennial grasses and legumes with that of warm-season annual grasses grazed by organic dairy cows. Two pasture systems were analyzed across the grazing season at an organic dairy in [...] Read more.
The objective of this study was to compare the forage nutritive value of cool-season perennial grasses and legumes with that of warm-season annual grasses grazed by organic dairy cows. Two pasture systems were analyzed across the grazing season at an organic dairy in Morris, Minnesota. Pasture system 1 included perennial ryegrass (Lolium perenne L.), orchardgrass (Dactylis glomerata L.), meadow bromegrass (Bromus riparius Rehmann), meadow fescue (Schedonorus pratensis (Huds.) P. Beauv), alfalfa (Medicago sativa L.), white clover (Trifolium repens L.), red clover (Trifolium pratense L.), and chicory (Cichorium intybus L.). Pasture system 2 was a combination of system 1 and monocultures of warm-season grasses (sorghum-sudangrass (Sorghum bicolor [L.] Moench subsp. drummondii [Steud.]) and teff (Eragrostis tef L.)). Across the grazing season, forage yield was 39% greater for system 2 than system 1 due to greater forage yield during the summer. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were similar for cool-season and warm-season grasses. Warm-season grasses had greater forage yield during the summer months compared with cool-season grasses and legumes. The total tract NDF digestibility (TTNDFD) varied by month and year across the study for both pasture systems. Overall, weather may affect the forage nutritive value for both cool-season perennial grasses and legumes and warm-season annual grasses. Full article
(This article belongs to the Special Issue Environmental Sustainability of Crop-Livestock Systems)
13 pages, 1545 KB  
Article
Harvesting Regimes Affect Brown Midrib Sorghum-Sudangrass and Brown Midrib Pearl Millet Forage Production and Quality
by Joshua A. Machicek, Brock C. Blaser, Murali Darapuneni and Marty B. Rhoades
Agronomy 2019, 9(8), 416; https://doi.org/10.3390/agronomy9080416 - 30 Jul 2019
Cited by 19 | Viewed by 3942
Abstract
As water levels in the Ogallala Aquifer continue to decline in the Texas High Plains, alternative forage crops that utilize less water must be identified to meet the forage demand of the livestock industry in this region. A two-year (2016 and 2017) study [...] Read more.
As water levels in the Ogallala Aquifer continue to decline in the Texas High Plains, alternative forage crops that utilize less water must be identified to meet the forage demand of the livestock industry in this region. A two-year (2016 and 2017) study was conducted at West Texas A&M University Nance Ranch near Canyon, TX to evaluate the forage production and quality of brown midrib (BMR) sorghum-sudangrass (SS) (Sorghum bicolor (L.) Moench ssp. Drummondii) and BMR pearl millet (PM) (Pennisetum glaucum (L.) Leeke)) harvested under three regimes (three 30-d, two 45-d, and one 90-d harvests). Sorghum-sudangrass consistently out yielded PM in total DM production in both tested years (yield range 3.96 to 6.28 Mg DM ha−1 vs. 5.38 to 11.19 Mg DM ha−1 in 2016 and 6.00 to 9.87 Mg DM ha−1 vs. 6.53 to 15.51 Mg DM ha−1 in 2017). Water use efficiency was higher in PM compared to SS. The 90-d harvesting regime maximized the water use efficiency and DM production compared to other regimes in both crops; however, some forage quality may be sacrificed. In general, the higher forage quality was achieved in shorter interval harvesting regimes (frequent cuttings). The selection of suitable forage crop and harvesting regime based on this research can be extremely beneficial to the producers of Texas High Plains to meet their individual forage needs and demand. Full article
(This article belongs to the Special Issue Sustainable Cropping Systems)
Show Figures

Figure 1

17 pages, 1442 KB  
Article
Living Mulch Performance in a Tropical Cotton System and Impact on Yield and Weed Control
by Vinay Bhaskar, Robin R. Bellinder, Antonio DiTommaso and Michael F. Walter
Agriculture 2018, 8(2), 19; https://doi.org/10.3390/agriculture8020019 - 31 Jan 2018
Cited by 13 | Viewed by 8901
Abstract
Cotton (Gossypium hirsutum L.) is a major crop in the Vidarbha region of central India. The vertisol soils on which much of the cotton is grown have been severely degraded by the tropical climate, excessive tillage and depletion of organic matter. Living [...] Read more.
Cotton (Gossypium hirsutum L.) is a major crop in the Vidarbha region of central India. The vertisol soils on which much of the cotton is grown have been severely degraded by the tropical climate, excessive tillage and depletion of organic matter. Living mulches have the ability to mitigate these problems but they can cause crop losses through direct competition with the cotton crop and unreliable weed control. Field experiments were conducted in 2012 and 2013 at four locations in Vidarbha to study the potential for growing living mulches in mono-cropped cotton. Living mulch species evaluated included gliricidia [Gliricidia sepium (Jacq.) Kunth ex Walp.], sesbania [Sesbania sesban (L.) Merr.], sorghum sudan grass [Sorghum bicolor (L.) Moench × Sorghum bicolor (L.) Moench ssp. Drummondii (Nees ex Steud.) de Wet & Harlan] and sunnhemp (Crotalaria juncea L.). Living mulch height was controlled through mowing and herbicides were not used. Living mulches generated 1 to 13 tons ha−1 of dry matter across sites and years. Weed cover was negatively correlated with both living mulch biomass and cover. Where living mulches were vigorous and established quickly, weed cover was as low as 7%, without the use of herbicides, or inter-row tillage. In a dry year, living mulch growth had a negative impact on cotton yield; however, in a year when soil moisture was not limiting, there was a positive relationship between cotton yield and living mulch biomass. Use of living mulches in cotton production in the Vidarbha region of India is feasible and can lead to both effective weed suppression and acceptable cotton yields. Full article
(This article belongs to the Special Issue Sustainable Crop Production Intensification)
Show Figures

Figure 1

Back to TopTop