Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = SnO2-NiO composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10621 KB  
Article
Effect of Graphite Content on Mechanical Properties and High-Temperature Tribological Behavior of Cu-Ni-Sn-Mo-Gr Self-Lubricating Composites
by Zhen Li, Jingde Liu, Songlin Lu, Fuyan Liu, Guirong Yang and Jingbo Wang
Lubricants 2025, 13(10), 428; https://doi.org/10.3390/lubricants13100428 - 24 Sep 2025
Viewed by 786
Abstract
Copper matrix self-lubricating composites are critical for high-temperature industrial applications. In this study, Cu-Ni-Sn-Mo-Gr composites with 3–7 wt.% graphite were fabricated via spark plasma sintering (SPS). The influence of graphite content on microstructure, mechanical properties, and tribological behavior from room temperature (RT) to [...] Read more.
Copper matrix self-lubricating composites are critical for high-temperature industrial applications. In this study, Cu-Ni-Sn-Mo-Gr composites with 3–7 wt.% graphite were fabricated via spark plasma sintering (SPS). The influence of graphite content on microstructure, mechanical properties, and tribological behavior from room temperature (RT) to 500 °C were systematically investigated. The results demonstrate that increasing graphite content progressively reduces density, hardness, and yield strength, whereas it significantly enhances high-temperature tribological performance. The composites with 7 wt.% graphite addition achieve outstanding self-lubricity and wear resistance across the RT-500 °C, achieving an average friction coefficient of 0.09 to 0.21 and a wear rate of 1.32 × 10−6 to 7.52 × 10−5 mm3/N·m. Crucially, temperature-dependent lubrication mechanisms govern performance: graphite-dominated films enable friction reduction at RT, while synergistic hybrid films of graphite and in situ-formed metal oxides (Cu2O, CuO, NiO) sustain effective lubrication at 300–500 °C. Full article
Show Figures

Figure 1

24 pages, 3236 KB  
Article
PtNiSnO2 Nanoframes as Advanced Electrode Modifiers for Ultrasensitive Detection of Trazodone in Complex Matrices
by Małgorzata Suchanek, Agata Krakowska, Kamil Szmuc, Dariusz Łukowiec, Marcel Zambrzycki and Robert Piech
Int. J. Mol. Sci. 2025, 26(18), 8861; https://doi.org/10.3390/ijms26188861 - 11 Sep 2025
Viewed by 727
Abstract
A novel voltammetric sensor was constructed by modifying a glassy carbon electrode with a composite material consisting of platinum–nickel-doped tin oxide and carbon black (PtNiSnO2-CB/GCE), enabling highly sensitive differential pulse voltammetry (DPV) determination of trazodone HCl (TRZ). The DPV experimental parameters, [...] Read more.
A novel voltammetric sensor was constructed by modifying a glassy carbon electrode with a composite material consisting of platinum–nickel-doped tin oxide and carbon black (PtNiSnO2-CB/GCE), enabling highly sensitive differential pulse voltammetry (DPV) determination of trazodone HCl (TRZ). The DPV experimental parameters, including the composition of the supporting electrolyte and instrumental settings, were carefully optimized to achieve maximum analytical efficiency. Within the linear range of 1–10 µM, quantification of TRZ molecules could be performed without the preconcentration step. When applying a 60 s accumulation time (in the range 0.02–0.2 µM of TRZ), the detection limit reached 4.1 nM (1.67 mg L−1), indicating superior sensitivity compared to previously reported voltammetric techniques. The method demonstrated good reproducibility, with a relative standard deviation of 4.3% for 10 repeated measurements at 0.06 µM TRZ. The developed sensor exhibits excellent stability, simplicity of fabrication, and operational convenience. Its practical applicability was confirmed by the successful analysis of molecules of TRZ in diverse sample types, including pharmaceutical products, urine, plasma, river water, and artificial gastric and intestinal fluids, with recovery rates between 97.7% and 104.2%. Flow injection analysis (FIA) with amperometric detection was also performed for TRZ molecule determination. Full article
(This article belongs to the Special Issue Electrochemistry: Molecular Advances and Challenges)
Show Figures

Figure 1

16 pages, 4578 KB  
Article
Corrosion Behavior Analysis of Novel Sn-2.5Ag-1.0Bi-0.8Cu-0.05Ni and Sn-1.8Bi-0.75Cu-0.065Ni Pb-Free Solder Alloys via Potentiodynamic Polarization Test
by Sang Hoon Jung and Jong-Hyun Lee
Metals 2025, 15(6), 670; https://doi.org/10.3390/met15060670 - 17 Jun 2025
Viewed by 1321
Abstract
The corrosion behaviors of newly developed solder alloys with excellent mechanical properties, Sn-2.5 Ag-1.0 Bi-0.8 Cu-0.05 Ni (SABC25108N) and Sn-1.5 Bi-0.75 Cu-0.065 Ni (SBC15075N), are analyzed to supplement the corrosion behavior of the limited corrosion data in Pb- and Zn-free solder compositions. A [...] Read more.
The corrosion behaviors of newly developed solder alloys with excellent mechanical properties, Sn-2.5 Ag-1.0 Bi-0.8 Cu-0.05 Ni (SABC25108N) and Sn-1.5 Bi-0.75 Cu-0.065 Ni (SBC15075N), are analyzed to supplement the corrosion behavior of the limited corrosion data in Pb- and Zn-free solder compositions. A potentiodynamic polarization test is conducted on these compositions in a NaCl electrolyte solution, the results of which are compared with those of conventional Sn-3.0 (wt%) Ag-0.5Cu and Sn-1.2Ag-0.5Cu-0.05Ni alloys. The results indicate that SBC15075N exhibits the lowest corrosion potential and highest corrosion current density, thus signifying the lowest corrosion resistance. By contrast, SABC25108N exhibits the lowest corrosion current density and highest corrosion resistance. Notably, SABC25108N shows a slower corrosion progression in the active state and exhibits the longest passive state. The difference in corrosion resistance is affected more significantly by the formation and distribution of the Ag3Sn intermetallic compound phase owing to the high Ag content instead of by the presence of Bi or Ni. This uniform dispersion of Ag3Sn IMC phases in the SABC25108N alloy effectively suppressed corrosion propagation along the grain boundaries and reduced the formation of corrosion products, such as Sn3O(OH)2Cl2, thereby enhancing the overall corrosion resistance. These findings provide valuable insights into the optimal design of solder alloys and highlight the importance of incorporating sufficient Ag content into multicomponent compositions to improve corrosion resistance. Full article
(This article belongs to the Special Issue New Welding Materials and Green Joint Technology—2nd Edition)
Show Figures

Figure 1

23 pages, 8410 KB  
Article
Experimental Investigation and Optimization of the Electrodeposition Parameters of Ni-Al2O3 Composite Coating Using the Taguchi Method
by Ilias Reddah, Laala Ghelani, Sofiane Touati, Farid Lekmine, Pavol Hvizdoš, Susana Devesa and Haithem Boumediri
Coatings 2025, 15(4), 482; https://doi.org/10.3390/coatings15040482 - 18 Apr 2025
Cited by 5 | Viewed by 1689
Abstract
In this work, an experimental investigation is conducted with the aim of optimizing the electrodeposition parameters for Ni-Al2O3 composite coatings using the Taguchi method. The presented research is structured into two complementary sections. The first segment investigates the characteristics of [...] Read more.
In this work, an experimental investigation is conducted with the aim of optimizing the electrodeposition parameters for Ni-Al2O3 composite coatings using the Taguchi method. The presented research is structured into two complementary sections. The first segment investigates the characteristics of Ni and Ni-Al2O3 coatings, specifically Al2O3 particle incorporation and crystallinity variations, using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and hardness evaluation through micro-indentation testing. The second section uses statistical techniques, specifically Analysis of Variance (ANOVA) and signal-to-noise (S/N) ratio analysis, to determine which parameters have the most impact on the experimental results. ANOVA and the Response Surface Methodology (RSM) were used in a modeling technique to forecast and optimize the technical responses. Based on an L16 orthogonal design, sixteen tests were carried out to investigate the effects of several important variables, including agitation rate (200–350 rpm), deposition period (15–60 min), alumina concentration (10–25 g.L−1), and current density (2–5 A.dm−2). The conditions for optimizing microhardness (HV) and Al2O3 integration while limiting average crystallite size (ACS) were identified using the most suitable function. The obtained results reveal significant improvements in the composite coating’s properties, including a 164% increase in microhardness, a 400% rise in alumina incorporation, and a notable reduction in crystallite size, demonstrating the efficacy of the electrodeposition process and optimization strategy adopted. Full article
(This article belongs to the Special Issue Advances of Ceramic and Alloy Coatings, 2nd Edition)
Show Figures

Figure 1

29 pages, 8478 KB  
Article
Effects of Incorporating TiO2 Aggregates on the Growth, Anticorrosion, and Antibacterial Properties of Electrodeposited Multifunctional Coatings Based on Sn-Ni Materials
by Hanna Pianka, Valeria P. Boufal, Olga Alisiyonok, Maxim Vlasov, Alexander Chernik, Yanpeng Xue and Abdelhafed Taleb
Coatings 2024, 14(11), 1344; https://doi.org/10.3390/coatings14111344 - 22 Oct 2024
Viewed by 1421
Abstract
Multifunctional coatings based on Sn-Ni materials with and without titanium oxide nanoparticles (TiO2NPs) incorporation were prepared using the electrochemical deposition technique at 70 °C. TiO2NPs were dispersed in the electrolyte bath, and their influence on the surface texture, crystalline [...] Read more.
Multifunctional coatings based on Sn-Ni materials with and without titanium oxide nanoparticles (TiO2NPs) incorporation were prepared using the electrochemical deposition technique at 70 °C. TiO2NPs were dispersed in the electrolyte bath, and their influence on the surface texture, crystalline phase, and properties was investigated. Various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray microanalysis (EDX) were used to characterize the prepared coatings. The formation mechanism of the deposited coatings has been demonstrated to be consistent with the electrochemical behavior of instantaneous growth, and the three-dimensional growth is controlled by diffusion phenomena. The anticorrosion effectiveness of the coatings was assessed using potentiodynamic polarization curves and electrochemical impedance spectroscopy in an artificial sweat medium, while the bactericidal activity of the composite coatings (the ability to induce cell death) was evaluated in accordance with the ISO 27447:2019 test. The influence of TiO2NPs at a low concentration of 1 g/L on the composition, structure, and properties of the deposited coatings was demonstrated. Particular attention was paid to the relationship between the anticorrosive and bactericidal properties of the coatings and their structure composition and wetting properties. The synergistic effect of chemical composition and surface-wetting properties has been demonstrated to enhance the anticorrosive and bactericidal properties of the prepared coatings. Full article
Show Figures

Figure 1

31 pages, 12899 KB  
Review
Research Overview on the Electromigration Reliability of SnBi Solder Alloy
by Wenjie Li, Liwei Guo, Dan Li and Zhi-Quan Liu
Materials 2024, 17(12), 2848; https://doi.org/10.3390/ma17122848 - 11 Jun 2024
Cited by 11 | Viewed by 3636
Abstract
Due to the continuous miniaturization and high current-carrying demands in the field of integrated circuits, as well as the desire to save space and improve computational capabilities, there is a constant drive to reduce the size of integrated circuits. However, highly integrated circuits [...] Read more.
Due to the continuous miniaturization and high current-carrying demands in the field of integrated circuits, as well as the desire to save space and improve computational capabilities, there is a constant drive to reduce the size of integrated circuits. However, highly integrated circuits also bring about challenges such as high current density and excessive Joule heating, leading to a series of reliability issues caused by electromigration. Therefore, the service reliability of integrated circuits has always been a concern. Sn-based solders are widely recognized in the industry due to their availability, minimal technical issues during operation, and good compatibility with traditional solders. However, solders that are mostly Sn-based, such as SAC305 and SnZn, have a high melting point for sophisticated electronic circuits. When Bi is added, the melting point of the solder decreases but may also lead to problems related to electromigration reliability. This article reviews the general principles of electromigration in SnBi solder joints on Cu substrates with current flow, as well as the phenomena of whisker formation, voids/cracks, phase separation, and resistance increase caused by atomic migration due to electromigration. Furthermore, it explores methods to enhance the reliability of solder joint by additives including Fe, Ni, Ag, Zn, Co, RA (rare earth element), GNSs (graphene nanosheets), FNS (Fullerene) and Al2O3. Additionally, modifying the crystal orientation within the solder joint or introducing stress to the joint can also improve its reliability to some extent without changing the composition conditions. The corresponding mechanisms of reliability enhancement are also compared and discussed among the literature. Full article
Show Figures

Figure 1

23 pages, 15684 KB  
Article
Effects of Direct and Pulse Plating on the Co-Deposition of Sn–Ni/TiO2 Composite Coatings
by Eleni Rosolymou, Antonis Karantonis and Evangelia A. Pavlatou
Materials 2024, 17(2), 392; https://doi.org/10.3390/ma17020392 - 12 Jan 2024
Cited by 2 | Viewed by 2007
Abstract
Sn–Ni alloy matrix coatings co-deposited with TiO2 nanoparticles (Evonik P25) were produced utilizing direct (DC) and pulse electrodeposition (PC) from a tin–nickel chloride-fluoride electrolyte with a loading of TiO2 nanoparticles equal to 20 g/L. The structural and morphological characteristics of the [...] Read more.
Sn–Ni alloy matrix coatings co-deposited with TiO2 nanoparticles (Evonik P25) were produced utilizing direct (DC) and pulse electrodeposition (PC) from a tin–nickel chloride-fluoride electrolyte with a loading of TiO2 nanoparticles equal to 20 g/L. The structural and morphological characteristics of the resultant composite coatings were correlated with the compositional modifications that occurred within the alloy matrix and expressed via a) TiO2 co-deposition rate and b) composition of the matrix; this was due to the application of different current types (DC or PC electrodeposition), and different current density values. The results demonstrated that under DC electrodeposition, the current density exhibited a more significant impact on the composition of the alloy matrix than on the incorporation rate of the TiO2 nanoparticles. Additionally, PC electrodeposition favored the incorporation rate of TiO2 nanoparticles only when applying a low peak current density (Jp = 1 Adm−2). All of the composite coatings exhibited the characteristic cauliflower-like structure, and were characterized as nano-crystalline. The composites’ surface roughness demonstrated a significant influence from the TiO2 incorporation rate. However, in terms of microhardness, higher co-deposition rates of embedded TiO2 nanoparticles within the alloy matrix were associated with decreased microhardness values. The best wear performance was achieved for the composite produced utilizing DC electrodeposition at J = 1 Adm−2, which also demonstrated the best photocatalytic behavior under UV irradiation. The corrosion study of the composite coatings revealed that they exhibit passivation, even at elevated anodic potentials. Full article
Show Figures

Figure 1

14 pages, 5292 KB  
Article
A Layered Hybrid Oxide–Sulfide All-Solid-State Battery with Lithium Metal Anode
by Juliane Hüttl, Nicolas Zapp, Saoto Tanikawa, Kristian Nikolowski, Alexander Michaelis and Henry Auer
Batteries 2023, 9(10), 507; https://doi.org/10.3390/batteries9100507 - 10 Oct 2023
Cited by 5 | Viewed by 4885
Abstract
Different classes of solid electrolytes for all-solid-state batteries (ASSB) are currently being investigated, with each of them suitable for a different ASSB concept. Their combination in hybrid battery cells enables the use of their individual benefits while mitigating their disadvantages. The cubic stuffed [...] Read more.
Different classes of solid electrolytes for all-solid-state batteries (ASSB) are currently being investigated, with each of them suitable for a different ASSB concept. Their combination in hybrid battery cells enables the use of their individual benefits while mitigating their disadvantages. The cubic stuffed garnet Li7La3Zr2O12 (LLZO), for example, is stable in contact with metallic lithium but has only moderate ionic conductivity, whereas the thiophosphate Li10SnP2S12 (LSPS) is processable using conventional battery manufacturing technologies and has an excellent lithium-ion conductivity but an inferior electrochemical stability. In this work, we, therefore, present a layered hybrid all-solid-state full-cell concept that accommodates a lithium metal anode, a LiNi0.8Co0.1Mn0.1O2-based composite cathode with an LSPS catholyte (LSPS/NCM811) and a sintered monolithic LLZO separator. The electrochemical stability of LLZO and LSPS at cathodic potentials (up to 4.2 V) was investigated via cyclic voltammetry in test cells, as well as by cycling half cells with LSPS or a mixed LSPS/LLZO catholyte. Furthermore, the pressure-dependency of the galvanostatic cycling of a Li | LLZO | LSPS/NCM811 full cell was investigated, as well as the according effect of the Li | LLZO interface in symmetric test cells. An operation pressure of 12.5 MPa was identified as the optimal value, which assures both sufficient inter-layer contact and impeded lithium penetration through the separator and cell short-circuiting. Full article
Show Figures

Figure 1

31 pages, 14488 KB  
Review
Metal Oxide Nanowires Grown by a Vapor–Liquid–Solid Growth Mechanism for Resistive Gas-Sensing Applications: An Overview
by Ali Mirzaei, Myoung Hoon Lee, Krishna K. Pawar, Somalapura Prakasha Bharath, Tae-Un Kim, Jin-Young Kim, Sang Sub Kim and Hyoun Woo Kim
Materials 2023, 16(18), 6233; https://doi.org/10.3390/ma16186233 - 15 Sep 2023
Cited by 23 | Viewed by 4640
Abstract
Metal oxide nanowires (NWs) with a high surface area, ease of fabrication, and precise control over diameter and chemical composition are among the best candidates for the realization of resistive gas sensors. Among the different techniques used for the synthesis of materials with [...] Read more.
Metal oxide nanowires (NWs) with a high surface area, ease of fabrication, and precise control over diameter and chemical composition are among the best candidates for the realization of resistive gas sensors. Among the different techniques used for the synthesis of materials with NW morphology, approaches based on the vapor–liquid–solid (VLS) mechanism are very popular due to the ease of synthesis, low price of starting materials, and possibility of branching. In this review article, we discuss the gas-sensing features of metal oxide NWs grown by the VLS mechanism, with emphasis on the growth conditions and sensing mechanism. The growth and sensing performance of SnO2, ZnO, In2O3, NiO, CuO, and WO3 materials with NW morphology are discussed. The effects of the catalyst type, growth temperature, and other variables on the morphology and gas-sensing performance of NWs are discussed. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Semiconductor Nanomaterials)
Show Figures

Figure 1

21 pages, 7286 KB  
Article
Sphalerite and Pyrite Geochemistry from the Pusangguo Co-Rich Cu–Zn–Pb Skarn Deposit, Tibet: Implications for Element Occurrence and Mineralization
by Zhuang Li, Hao Tan, Feng Zhao, Zuopeng Xiang, Han Wu and Peng Zhang
Minerals 2023, 13(9), 1165; https://doi.org/10.3390/min13091165 - 1 Sep 2023
Cited by 5 | Viewed by 3480
Abstract
The Pusangguo deposit (1.42 Mt @ 1.42% Cu, 0.14 Mt @ 1.82% Zn, 0.08 Mt @ 1.01% Pb, and 285.8 t Co @ 140 g/t Co) is the first Co-rich Cu-Zn-Pb skarn deposit discovered in the Gangdese metallogenic belt. However, the trace and [...] Read more.
The Pusangguo deposit (1.42 Mt @ 1.42% Cu, 0.14 Mt @ 1.82% Zn, 0.08 Mt @ 1.01% Pb, and 285.8 t Co @ 140 g/t Co) is the first Co-rich Cu-Zn-Pb skarn deposit discovered in the Gangdese metallogenic belt. However, the trace and minor element geochemistry of the sulfides in this deposit has not been studied, limiting further understanding of elements’ occurrence and mineralization. Here, we identified four ore stages, and two types of sphalerites (SpI and SpII) and pyrites (PyI and PyII), in this deposit. In this study, LA-ICP-MS in-situ trace element analyses were conducted on sphalerite and pyrite, to obtain their chemical compositions, elemental substitution mechanisms, and mineralization physicochemical conditions. The results indicate that two types of sphalerites are generally more enriched with Co than pyrite. SpI has higher concentrations of Co, Cr, Cu, Ag, and As compared to SpII. Both types of sphalerite have very low contents of Sn, Ge, and Ga. PyII has higher contents of most trace elements, such as Co, Ni, Mn, Zn, Cu, As, Sn, Se, Pb, Ag, and Bi, compared to PyI. Both types of pyrite are poor in Mn, Ga, Ge, and Cd, but enriched in As, Co, and Ni. The Mn, Fe, Co, and Cd in sphalerite, and Co, Ni, and Mn in pyrite are generally lattice-bound, while Cu, As, Ag, and Sb are usually present in both micro-inclusions and coupled substitution. Significant elemental correlations in sphalerite indicate the possible substitution mechanisms 2Fe2+ + Ga2+ ↔ 3Zn2+, 2Fe2+ + Ge4+ ↔ 4Zn2+, and (Sb3+, Sn3+) + (Cu+, Ag+) ↔ 2Zn2+. The correlation trends between trace elements in pyrite suggest the coupled substitution mechanisms of (Tl+ + Cu+ + Ag+) + (As3+ + Sb3+) ↔ 2Zn2+ and As3+ + Cu+ ↔ 2Zn2+. The mineralization temperature at Pusangguo, as determined by the GGIMFis sphalerite geothermometer, is 237–345 °C (avg. 307 °C), consistent with the high Zn/Cd ratio (avg. 203), low Ga/In (avg. 0.06), and high In/Ge (avg. 15.9) in sphalerite, and high Co/Ni ratio (avg. 24) in pyrite. These results indicate that the ore-forming fluid was high-temperature, with a low sulfur fugacity (fS2) (10−13.4 to 10−8.3) and low oxygen fugacity (fO2). The high temperature, and low sulfur fugacity and oxygen fugacity of the ore-forming fluid, and the fluid-mixing process, jointly controlled the sulfide precipitation, which caused the formation of the Pusangguo deposit. Full article
(This article belongs to the Special Issue Sulfide Mineralogy and Geochemistry)
Show Figures

Figure 1

28 pages, 8500 KB  
Review
Metallogenic Model and Prospecting Progress of the Qiandongshan–Dongtangzi Large Pb-Zn Deposit, Fengtai Orefield, West Qinling Orogeny
by Ruiting Wang, Zhenjia Pang, Qingfeng Li, Geli Zhang, Jiafeng Zhang, Huan Cheng, Wentang Wu and Hongbo Yang
Minerals 2023, 13(9), 1163; https://doi.org/10.3390/min13091163 - 31 Aug 2023
Cited by 3 | Viewed by 1870
Abstract
The Qiandongshan–Dongtangzi large Pb-Zn deposit is located in the Fengxian–Taibai (abbr. Fengtai) polymetallic orefield. The ore bodies primarily occur within and around the contact surface between the limestone of the Gudaoling Formation and the phyllite of the Xinghongpu Formation, which are clearly controlled [...] Read more.
The Qiandongshan–Dongtangzi large Pb-Zn deposit is located in the Fengxian–Taibai (abbr. Fengtai) polymetallic orefield. The ore bodies primarily occur within and around the contact surface between the limestone of the Gudaoling Formation and the phyllite of the Xinghongpu Formation, which are clearly controlled by anticline and specific lithohorizon. Magmatic rocks are well developed in the mining area, consisting mainly of granitoid plutons and mafic–felsic dikes. Previous metallogenic geochronology studies have yielded a narrow range of ages between 226 and 211 Ma, overlapped by the extensive magmatism during the Late Triassic period in this region. The ω(Co)/ω(Ni) ratio of pyrite in lead–zinc ore ranges from 4.44 to 15.57 (avg. 8.56), implying that its genesis is probably related to volcanic and magmatic-hydrothermal fluids. The δD and δ18O values (ranging from −94.2‰ to −82‰, and 18.89‰ to 20.72‰, respectively,) of the ore-bearing quartz indicate that the fluids were perhaps derived from a magmatic source. The δ34S values of ore-related sulfides display a relatively narrow range of 4.29‰ to 9.63‰ and less than 10‰, resembling those of magmatic-hydrothermal origin Pb-Zn deposits. The Pb isotopic composition of the sulfides from the Qiandongshan–Dongtangzi Pb-Zn deposit (with 206Pb/204Pb ratios of 18.06 to 18.14, the 207Pb/204Pb ratios of 15.61 to 15.71, and 208Pb/204Pb ratios of 38.15 to 38.50) is similar to that of the Late Triassic Xiba granite pluton, suggesting that they share the same Pb source. The contents of W, Mo, As, Sb, Hg, Bi, Cd, and other elements associated with magmatic-hydrothermal fluids are high in lead–zinc ores, and the contents of Sn, W, Co, and Ni are also enriched in sphalerite. The contents of trace elements and rare earth elements in the ore are similar to those in the Xiba granite pluton, and they maybe propose a magmatic-hydrothermal origin as well. As a result of this information, the Qiandongshan–Dongtangzi large Pb-Zn deposit may be classified as a magmatic hydrothermal stratabound type, with the Si/Ca contact area being the ore-forming structural plane. Thus, a mineralization model has been proposed based on a comparative analysis of the geological and geochemical properties of the lead–zinc deposit in the Fengtai orefield. It is considered that the secondary anticlines developed on both wings of the Qiandongshan–Dongtangzi composite anticline are the favorable sites for Pb-Zn deposition. Accordingly, the Si/Ca plane and secondary anticline are the major ore-controlling factors and prospecting targets. The verification project was first set up on the north wing of the composite anticline, and thick lead–zinc ore bodies were found in all verification boreholes, accumulating successful experience for deep exploration of lead–zinc deposits in this region. Full article
(This article belongs to the Special Issue Genesis and Evolution of Pb-Zn-Ag Polymetallic Deposits)
Show Figures

Figure 1

27 pages, 3869 KB  
Review
Various Applications of ZnO Thin Films Obtained by Chemical Routes in the Last Decade
by Mariuca Gartner, Hermine Stroescu, Daiana Mitrea and Madalina Nicolescu
Molecules 2023, 28(12), 4674; https://doi.org/10.3390/molecules28124674 - 9 Jun 2023
Cited by 53 | Viewed by 9328
Abstract
This review addresses the importance of Zn for obtaining multifunctional materials with interesting properties by following certain preparation strategies: choosing the appropriate synthesis route, doping and co-doping of ZnO films to achieve conductive oxide materials with p- or n-type conductivity, and finally adding [...] Read more.
This review addresses the importance of Zn for obtaining multifunctional materials with interesting properties by following certain preparation strategies: choosing the appropriate synthesis route, doping and co-doping of ZnO films to achieve conductive oxide materials with p- or n-type conductivity, and finally adding polymers in the oxide systems for piezoelectricity enhancement. We mainly followed the results of studies of the last ten years through chemical routes, especially by sol-gel and hydrothermal synthesis. Zinc is an essential element that has a special importance for developing multifunctional materials with various applications. ZnO can be used for the deposition of thin films or for obtaining mixed layers by combining ZnO with other oxides (ZnO-SnO2, ZnO-CuO). Also, composite films can be achieved by mixing ZnO with polymers. It can be doped with metals (Li, Na, Mg, Al) or non-metals (B, N, P). Zn is easily incorporated in a matrix and therefore it can be used as a dopant for other oxidic materials, such as: ITO, CuO, BiFeO3, and NiO. ZnO can be very useful as a seed layer, for good adherence of the main layer to the substrate, generating nucleation sites for nanowires growth. Thanks to its interesting properties, ZnO is a material with multiple applications in various fields: sensing technology, piezoelectric devices, transparent conductive oxides, solar cells, and photoluminescence applications. Its versatility is the main message of this review. Full article
Show Figures

Figure 1

17 pages, 11203 KB  
Article
Tribological Behavior and Self-Healing Properties of Ni3Al Matrix Self-Lubricating Composites Containing Sn-Ag-Cu and Ti3SiC2 from 20 to 800 °C
by Yuchun Huang, Haishu Ma, Yubo Meng and Xiyao Liu
Coatings 2023, 13(4), 711; https://doi.org/10.3390/coatings13040711 - 31 Mar 2023
Cited by 8 | Viewed by 2394
Abstract
As a high-temperature structural material, Ni3Al matrix composites are often used to manufacture basic mechanical components that need to be used in high-temperature conditions. To meet the increasing demand for metal matrix composites with an excellent tribological performance over a wide [...] Read more.
As a high-temperature structural material, Ni3Al matrix composites are often used to manufacture basic mechanical components that need to be used in high-temperature conditions. To meet the increasing demand for metal matrix composites with an excellent tribological performance over a wide temperature range, Ni3Al matrix self-lubricating composites containing Sn-Ag-Cu and Ti3SiC2 (NST) were synthesized via laser-melting deposition. Dry sliding friction tests of NST against Si3N4 ball were undertaken from 20 to 800 °C to investigate the tribological behavior and wear-triggered self-healing properties. The results show that the tribological behaviors of NST are strongly dependent on the testing temperature and self-healing properties. At low and moderate temperatures from 20 to 400 °C, as the Sn-Ag-Cu flows into the cracks and is oxidized during sliding friction, while the cracks on the worn surface are filled with oxides consisting mainly of Al2O3, SnO2 and CuO. At higher temperatures of 600 and 800 °C, the cracks are filled by the principal oxides of Al2O3, TiO2 and SiO2 due to the partial decomposition and oxidation of Ti3SiC2. Compared with other testing temperatures, the recovery ratio relative to the Ni3Al base alloy of the cracks on the worn surface of NST is the highest at 400 °C, which is about 76.4%. The synergistic action mechanisms of Sn-Ag-Cu and Ti3SiC2 on the crack self-healing from 20 to 800 °C play a significant role in forming a stable solid lubricating film, improving the anti-friction and wear resistance of NST. The results provide a solution allowing for metal matrix composites to achieve excellent lubrication stability over a wide temperature range by virtue of the crack self-healing properties. Full article
(This article belongs to the Special Issue Tribology and Wear Properties of Self-Lubricating Materials)
Show Figures

Figure 1

12 pages, 487 KB  
Article
Syngas Quality in Fluidized Bed Gasification of Biomass: Comparison between Olivine and K-Feldspar as Bed Materials
by Beatrice Vincenti, Francesco Gallucci, Enrico Paris, Monica Carnevale, Adriano Palma, Mariangela Salerno, Carmine Cava, Orlando Palone, Giuliano Agati, Michele Vincenzo Migliarese Caputi and Domenico Borello
Sustainability 2023, 15(3), 2600; https://doi.org/10.3390/su15032600 - 1 Feb 2023
Cited by 13 | Viewed by 4213
Abstract
The relevance of selecting an appropriate bed material in fluidized bed gasification is a crucial aspect that is often underestimated. The ideal material should be economical, resistant to high temperatures and have small chemical interaction with biomass. However, often only the first of [...] Read more.
The relevance of selecting an appropriate bed material in fluidized bed gasification is a crucial aspect that is often underestimated. The ideal material should be economical, resistant to high temperatures and have small chemical interaction with biomass. However, often only the first of such three aspects is considered, neglecting the biomass–bed interaction effects that develop at high temperatures. In this work, olivine and K-feldspar were upscale-tested in a prototype fluidized bed gasifier (FBG) using arboreal biomass (almond shells). The produced syngas in the two different tests was characterized and compared in terms of composition (H2, CH4, CO, CO2, O2) and fate of contaminants such as volatile organic compounds (VOCs), tar and metals.. Moreover, the composition of olivine and K-feldspar before and after the biomass gasification process has been characterized. The aim of this work is to show which advantages and disadvantages there are in choosing the most suitable material and to optimize the biomass gasification process by reducing the undesirable effects, such as heavy metal production, bed agglomeration and tar production, which are harmful when syngas is used in internal combustion engines (ICE). It has been observed that metals, such as Ni, Cu, Zn, Cd, Sn, Ba and Pb, have higher concentrations in the syngas produced by using olivine as bed material rather than K-feldspar. In particular, heavy metals, such as Pb, Cu, Cd, Ni and Zn, show concentrations of 61.06 mg/Nm3, 15.29 mg/Nm3, 17.97 mg/Nm3, 37.29 mg/Nm3 and 116.39 mg/Nm3, respectively, compared to 23.26 mg/Nm3, 11.82 mg/Nm3, 2.76 mg/Nm3, 24.46 mg/Nm3 and 53.07 mg/Nm3 detected with K-feldspar. Moreover, a more hydrogen-rich syngas when using K-feldspar was produced (46% compared to 39% with olivine). Full article
Show Figures

Figure 1

17 pages, 5821 KB  
Article
Effect of Al2O3 and NiO Nanoparticle Additions on the Structure and Corrosion Behavior of Sn—4% Zn Alloy Coating Carbon Steel
by Ghada A. Alshammri, Naglaa Fathy, Shereen Mohammed Al-Shomar, Alhulw H. Alshammari, El-Sayed M. Sherif and Mohamed Ramadan
Sustainability 2023, 15(3), 2511; https://doi.org/10.3390/su15032511 - 31 Jan 2023
Cited by 9 | Viewed by 3030
Abstract
The application of a higher corrosion resistance coating modified with nano additions can effectively decrease or prevent corrosion from occurring. In the present work, a novel method is successfully developed for the modification of carbon steel surfaces aiming for high corrosion resistance using [...] Read more.
The application of a higher corrosion resistance coating modified with nano additions can effectively decrease or prevent corrosion from occurring. In the present work, a novel method is successfully developed for the modification of carbon steel surfaces aiming for high corrosion resistance using Sn—4% Zn alloy/nanoparticle composite (NiO+ Al2O3) coating. Sn—4% Zn alloy/nanoparticle composite (NiO+ Al2O3) coatings were deposed on carbon steel using a direct tinning process that involved a power mixture of Sn—4% Zn alloy along with a flux mixture. Regular coating and interface structures were achieved by individual Al2O3 and both NiO and Al2O3 nanoparticle combined additions in the Sn-Zn coating. The maximum coating thickness of 70 ± 1.8 µm was achieved for Al2O3 nanoparticles in the Sn-Zn coating. Interfacial intermetallic layer thickness decreased with all used nanoparticle additions in individual and hybrid conditions. The minimum intermetallic layer thickness of about 2.29 ± 0.28 µm was achieved for Al2O3 nanoparticles in the Sn—Zn coating. Polarization and impedance measurements were used to investigate the influence of the incorporated Al2O3, NiO, and hybrid Al2O3/NiO nanoparticles on the passivation of the low-carbon steel (LCS) corrosion and the coated Sn—Zn LCS in sodium chloride solution. It was found that the presence of Al2O3, NiO, and Al2O3/NiO nanoparticles remarkably improved the corrosion resistance. The corrosion measurements confirmed that the corrosion resistance of the coated Sn-Zn carbon steel was increased in the presence of these nanoparticles in the following order: Al2O3/NiO > NiO > Al2O3. Full article
Show Figures

Figure 1

Back to TopTop