Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = Si nanocrystal (Si-nc)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4983 KiB  
Article
Thin Hydrogenated Amorphous Silicon Carbide Layers with Embedded Ge Nanocrystals
by Zdeněk Remeš, Jiří Stuchlík, Jaroslav Kupčík and Oleg Babčenko
Nanomaterials 2025, 15(3), 176; https://doi.org/10.3390/nano15030176 - 23 Jan 2025
Cited by 2 | Viewed by 1056
Abstract
The in situ combination of plasma-enhanced chemical vapor deposition (PECVD) and vacuum evaporation in the same vacuum chamber allowed us to integrate germanium nanocrystals (Ge NCs) into hydrogenated amorphous silicon carbide (a-SiC:H) thin films deposited from monomethyl silane diluted with hydrogen. Transmission electron [...] Read more.
The in situ combination of plasma-enhanced chemical vapor deposition (PECVD) and vacuum evaporation in the same vacuum chamber allowed us to integrate germanium nanocrystals (Ge NCs) into hydrogenated amorphous silicon carbide (a-SiC:H) thin films deposited from monomethyl silane diluted with hydrogen. Transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) spectroscopy were used for the microscopic characterization, while photothermal deflection spectroscopy (PDS) and near-infrared photoluminescence spectroscopy (NIR PL) were for optical characterization. The presence of Ge NCs embedded in the amorphous a-Si:C:H thin films was confirmed by TEM and EDX. The embedded Ge NCs increased optical absorption in the NIR spectral region. The quenching of a-SiC:H NIR PL due to the presence of Ge indicates that the diffusion length of free charge carriers in a-SiC:H is in the range of a few tens of nm, an order of magnitude less than in a-Si:H. The optical properties of a-SiC:H films were degraded after vacuum annealing at 550 °C. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

15 pages, 7639 KiB  
Article
Superhydrophobic Surfaces as a Potential Skin Coating to Prevent Jellyfish Stings: Inhibition and Anti-Tentacle Adhesion in Nematocysts of Jellyfish Nemopilema nomurai
by Yichen Xie, Yuanyuan Sun, Rongfeng Li, Song Liu, Ronge Xing, Pengcheng Li and Huahua Yu
Materials 2024, 17(23), 5983; https://doi.org/10.3390/ma17235983 - 6 Dec 2024
Viewed by 1136
Abstract
The development of skin-protective materials that prevent the adhesion of cnidarian nematocysts and enhance the mechanical strength of these materials is crucial for addressing the issue of jellyfish stings. This study aimed to construct superhydrophobic nanomaterials capable of creating a surface that inhibits [...] Read more.
The development of skin-protective materials that prevent the adhesion of cnidarian nematocysts and enhance the mechanical strength of these materials is crucial for addressing the issue of jellyfish stings. This study aimed to construct superhydrophobic nanomaterials capable of creating a surface that inhibits nematocyst adhesion, therefore preventing jellyfish stings. We investigated wettability and nematocyst adhesion on four different surfaces: gelatin, polydimethylsiloxane (PDMS), dodecyl trichlorosilane (DTS)-modified SiO2, and perfluorooctane triethoxysilane (PFOTS)-modified TiO2. Our findings revealed that an increase in hydrophobicity significantly inhibited nematocyst adhesion. Furthermore, DTS-modified sprayed SiO2 and PFOTS-modified sprated TiO2 were further enhanced with low-surface-energy substances—cellulose nanofibers (CNF) and chitin nanocrystals (ChNCs)—to improve both hydrophobicity and mechanical strength. After incorporating CNF and ChNCs, the surface of s-TiO2-ChNCs exhibited a contact angle of 153.49° even after undergoing abrasion and impact tests, and it maintained its hydrophobic properties with a contact angle of 115.21°. These results indicate that s-TiO2-ChNCs can serve as an effective skin coating to resist tentacle friction. In conclusion, this study underscores the importance of utilizing hydrophobic skin materials to inhibit the adhesion of tentacle nematocysts, providing a novel perspective for protection against jellyfish stings. Full article
Show Figures

Figure 1

9 pages, 2570 KiB  
Article
Analysis of Oxide Capacitance Changes Based on the Formation–Annihilation of Conductive Filaments in a SiO2/Si-NCs/SiO2 Stack Layer-Based MIS-like Capacitor
by J. Miguel Germán-Martínez, K. E. González-Flores, B. Palacios-Márquez, C. Mendoza-Ramírez, M. Moreno, L. Hernández-Martínez and A. Morales-Sánchez
J. Compos. Sci. 2024, 8(12), 487; https://doi.org/10.3390/jcs8120487 - 22 Nov 2024
Viewed by 864
Abstract
This work reports on the correlation between resistive switching (RS) with capacitance switching (CS) states observed in SiO2/Si-nanocrystals (Si-NCs)/SiO2 stack layers using a metal-insulating semiconductor (MIS)-like device. The formation of Si-NCs, which act as conductive nodes, of about 6.7 nm [...] Read more.
This work reports on the correlation between resistive switching (RS) with capacitance switching (CS) states observed in SiO2/Si-nanocrystals (Si-NCs)/SiO2 stack layers using a metal-insulating semiconductor (MIS)-like device. The formation of Si-NCs, which act as conductive nodes, of about 6.7 nm in size was confirmed using a transmission electron microscope. These devices exhibit bipolar RS properties with an intermediate resistive state (IRS), which is a self-compliance behavior related to the presence of the Si-NCs layer. The current value changes from 40 nA to 550 µA, indicating RS from a high resistance state (HRS) to a low resistance state (LRS) with the IRS at 100 µA. The accumulation (CA) and inversion capacitance (CI) also change when these RS events occur. The CA switches from 2.52 nF to 3 nF with an intermediate CS of 2.7 nF for the HRS, LRS, and IRS, respectively. The CI also switches from 0.23 nF to 0.6 nF for the HRS and LRS, respectively. These devices show an ON/OFF current ratio of 104 with retention times of 104 s. Furthermore, both CA and CI states remained stable for more than 103 s. These findings highlight the potential of these devices for applications in information storage through memristor and memcapacitor technologies. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

13 pages, 3503 KiB  
Article
The Thermal Stability and Photoluminescence of ZnSeO3 Nanocrystals Chemically Synthesized into SiO2/Si Track Templates
by Gulnara Aralbayeva, Gulnaz Sarsekhan, Aiman Akylbekova, Liudmila A. Vlasukova, Zein Baimukhanov, Vera Yuvchenko, Assyl-Dastan Bazarbek, Alma Dauletbekova, Gaukhar Kabdrakhimova and Abdirash T. Akilbekov
Crystals 2024, 14(8), 730; https://doi.org/10.3390/cryst14080730 - 17 Aug 2024
Cited by 3 | Viewed by 1234
Abstract
We report the effect of high-temperature treatment on the structure and photoluminescence of zinc selenite nanocrystals (ZnSeO3) deposited into SiO2/Si track templates. The templates were formed via irradiation with Xe ions (200 MeV, 108 ions/cm2) followed [...] Read more.
We report the effect of high-temperature treatment on the structure and photoluminescence of zinc selenite nanocrystals (ZnSeO3) deposited into SiO2/Si track templates. The templates were formed via irradiation with Xe ions (200 MeV, 108 ions/cm2) followed by etching in HF solution. ZnSeO3 nanocrystals were obtained via chemical deposition from the aqueous solution of ZnCl2 and SeO2 as Zn-, Se- and O-precursors. To estimate the thermal stability of the deposited precipitates, heat treatment was carried out at 800 and 1000 °C for 60 min in a vacuum environment. Scanning electron microscopy (SEM), X-ray diffractometry (XRD), photoluminescence (PL) spectroscopy, and electrical measurements were used for the characterization of ZnSeO3/SiO2nanoporous/Si nanocomposites. Thermal treatment of the synthesized nanocomposites resulted in structural transformations with the formation of ZnSe and ZnO phases while the content of the ZnSeO3 phase decreased. For the as-deposited and annealed precipitates, an emission in the range of (400 to 600) nm was observed. PL spectra were approximated by four Gaussian curves with maxima at ~550 nm (2.2 eV), 488 nm (2.54 eV), ~440 nm (2.82 eV), and 410 nm (3.03 eV). Annealing resulted in a decrease in PL intensity that was possibly due to the weight loss of the deposited substance during high-temperature treatment. The redistribution of maxima intensities after annealing was also observed with an increase in blue and violet emissions. The origin of the observed PL is discussed. The I–V curve analysis revealed an electronic type of conductivity for the ZnSeO3(NCs)/SiO2nanoporous/Si structure. The values of the specific conductivity were calculated within the percolation model. The sample annealed at 800 °C showed the highest specific conductivity of 8.5 × 10−6 Ohm−1·cm−1. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

13 pages, 7103 KiB  
Article
Controllable Construction of Aptamer-Modified Fe3O4@SiO2-Au Core-Shell-Satellite Nanocomposites with Surface-Enhanced Raman Scattering and Photothermal Properties and Their Effective Capture, Detection, and Elimination of Staphylococcus aureus
by Yongdan Wang, Shengyi Wang, Yuhui Zou, Yuze Gao, Boya Ma, Yuhan Zhang, Huasong Dai, Jingmei Ma and Wenshi Zhao
Molecules 2024, 29(15), 3593; https://doi.org/10.3390/molecules29153593 - 30 Jul 2024
Cited by 1 | Viewed by 1981
Abstract
The early monitoring and inactivation of bacteria are of crucial importance in preventing the further spread of foodborne pathogens. Staphylococcus aureus (S. aureus), a prototypical foodborne pathogen, is widely present in the natural environment and has the capability to trigger a [...] Read more.
The early monitoring and inactivation of bacteria are of crucial importance in preventing the further spread of foodborne pathogens. Staphylococcus aureus (S. aureus), a prototypical foodborne pathogen, is widely present in the natural environment and has the capability to trigger a range of diseases at low concentrations. In this work, we designed Fe3O4@SiO2-Au core–shell–satellite nanocomposites (NCs) modified with aptamer for efficient capture, high-sensitivity surface-enhanced Raman scattering (SERS) detection, and photothermal therapy (PTT) against S. aureus. Fe3O4@SiO2-Au NCs with tunable Au nanocrystal nanogaps were prepared. By combining the finite-difference time-domain (FDTD) method and experimental results, we studied the electric field distribution of Fe3O4@SiO2-Au under different Au nanogaps and ultimately obtained the optimal SERS substrate FSA-60. The modification of aptamer on the surfaces of FSA-60 could be used for the specific capture and selective detection of S. aureus, achieving a detection limit of as low as 50 cfu/mL. Furthermore, Apt-FSA-60 possessed excellent photothermal properties, demonstrating the strong photothermal killing ability against S. aureus. Therefore, Apt-FSA-60 is a promising high-sensitivity SERS substrate and efficient photothermal agent and is expected to be widely applied and promoted in future disease prevention and treatment. Full article
(This article belongs to the Special Issue Advances in the Applications of Surface Enhanced Raman Scattering)
Show Figures

Graphical abstract

10 pages, 9929 KiB  
Article
The Effect of the Chemical Composition on Mechanical Properties of CMAS Diopside Glass Ceramics
by Sixie Huang, Youqu Shen, Bin Li, Guocong Liu, Na Qiang and Weiping Gong
Appl. Sci. 2024, 14(4), 1503; https://doi.org/10.3390/app14041503 - 12 Feb 2024
Cited by 1 | Viewed by 1545
Abstract
Molecular dynamics simulations were performed on CaO-MgO-Al2O3-SiO2 (CMAS) diopside glass ceramics (GCs) to study the effect of nanocrystal on glass and the effect of chemical composition on mechanical properties. Under tensile loading, the GCs demonstrated that the strength [...] Read more.
Molecular dynamics simulations were performed on CaO-MgO-Al2O3-SiO2 (CMAS) diopside glass ceramics (GCs) to study the effect of nanocrystal on glass and the effect of chemical composition on mechanical properties. Under tensile loading, the GCs demonstrated that the strength lay between its glass and ceramic counterparts and maintained considerable ductility. Moreover, high Mg/Ca ion ratios are conductive to both the strength and ductility of GCs. In addition, Al ions should be avoided as far as possible since they would promote fracture. After analyzing the shear strain and displacement vector map for ion structures, we found that the presence of nanocrystal in glass changes the original deformation pattern and led to the deformation concentration surrounding the nanocrystal. A high Mg/Ca ion ratio would make the deformation more homogeneous, while a high Ca/Mg ion ratio would aggregate the deformation in the glass region near the nanocrystal. The existence of Al ions near the interface between glass and crystal would promote the formation of voids. Full article
(This article belongs to the Special Issue Glass Ceramics: Properties, Characterization and Applications)
Show Figures

Figure 1

15 pages, 2256 KiB  
Article
Semiempirical Two-Dimensional Model of the Bipolar Resistive Switching Process in Si-NCs/SiO2 Multilayers
by Juan Ramirez-Rios, Karla Esther González-Flores, José Juan Avilés-Bravo, Sergio Alfonso Pérez-García, Javier Flores-Méndez, Mario Moreno-Moreno and Alfredo Morales-Sánchez
Nanomaterials 2023, 13(14), 2124; https://doi.org/10.3390/nano13142124 - 21 Jul 2023
Cited by 1 | Viewed by 1290
Abstract
In this work, the SET and RESET processes of bipolar resistive switching memories with silicon nanocrystals (Si-NCs) embedded in an oxide matrix is simulated by a stochastic model. This model is based on the estimation of two-dimensional oxygen vacancy configurations and their relationship [...] Read more.
In this work, the SET and RESET processes of bipolar resistive switching memories with silicon nanocrystals (Si-NCs) embedded in an oxide matrix is simulated by a stochastic model. This model is based on the estimation of two-dimensional oxygen vacancy configurations and their relationship with the resistive state. The simulation data are compared with the experimental current-voltage data of Si-NCs/SiO2 multilayer-based memristor devices. Devices with 1 and 3 Si-NCs/SiO2 bilayers were analyzed. The Si-NCs are assumed as agglomerates of fixed oxygen vacancies, which promote the formation of conductive filaments (CFs) through the multilayer according to the simulations. In fact, an intermediate resistive state was observed in the forming process (experimental and simulated) of the 3-BL device, which is explained by the preferential generation of oxygen vacancies in the sites that form the complete CFs, through Si-NCs. Full article
(This article belongs to the Special Issue Semiconductor Nanomaterials for Memory Devices)
Show Figures

Figure 1

10 pages, 3028 KiB  
Article
Highly Efficient and Stable CsPbBr3-Alginic Acid Composites for White Light-Emitting Diodes
by Muyi Wang, Song Wang, Renjie Chen, Mengmeng Zhu, Yunpeng Liu, Haojie Ding, Jun Ren, Tongtong Xuan and Huili Li
Coatings 2023, 13(6), 1062; https://doi.org/10.3390/coatings13061062 - 7 Jun 2023
Cited by 7 | Viewed by 2046
Abstract
All-inorganic perovskite nanocrystals (NCs) have attractive potential for applications in display and lighting fields due to their special optoelectronic properties. However, they still suffer from poor water and thermal stability. In this work, green CsPbBr3-alginic acid (CsPbBr3-AA) perovskite composites [...] Read more.
All-inorganic perovskite nanocrystals (NCs) have attractive potential for applications in display and lighting fields due to their special optoelectronic properties. However, they still suffer from poor water and thermal stability. In this work, green CsPbBr3-alginic acid (CsPbBr3-AA) perovskite composites were synthesized by an in situ hot-injection process which showed a high photoluminescence quantum yield (PLQY) of 86.43% and improved moisture and thermal stability. Finally, white light-emitting diodes (WLEDs) were fabricated by combining the green CsPbBr3-AA perovskite composites with red K2SiF6:Mn4+ phosphors and blue InGaN LED chips. The WLEDs show a relatively high luminous efficacy of 36.4 lm/W and a wide color gamut (124% of the National Television System Committee). These results indicate that the green CsPbBr3-AA perovskite composites have great potential applications in backlight displays. Full article
(This article belongs to the Special Issue Feature Papers of Coatings for Energy Applications)
Show Figures

Figure 1

11 pages, 2847 KiB  
Article
Enhanced Electroluminescence from a Silicon Nanocrystal/Silicon Carbide Multilayer Light-Emitting Diode
by Teng Sun, Dongke Li, Jiaming Chen, Yuhao Wang, Junnan Han, Ting Zhu, Wei Li, Jun Xu and Kunji Chen
Nanomaterials 2023, 13(6), 1109; https://doi.org/10.3390/nano13061109 - 20 Mar 2023
Cited by 4 | Viewed by 2612
Abstract
Developing high-performance Si-based light-emitting devices is the key step to realizing all-Si-based optical telecommunication. Usually, silica (SiO2) as the host matrix is used to passivate silicon nanocrystals, and a strong quantum confinement effect can be observed due to the large band [...] Read more.
Developing high-performance Si-based light-emitting devices is the key step to realizing all-Si-based optical telecommunication. Usually, silica (SiO2) as the host matrix is used to passivate silicon nanocrystals, and a strong quantum confinement effect can be observed due to the large band offset between Si and SiO2 (~8.9 eV). Here, for further development of device properties, we fabricate Si nanocrystals (NCs)/SiC multilayers and study the changes in photoelectric properties of the LEDs induced by P dopants. PL peaks centered at 500 nm, 650 nm and 800 nm can be detected, which are attributed to surface states between SiC and Si NCs, amorphous SiC and Si NCs, respectively. PL intensities are first enhanced and then decreased after introducing P dopants. It is believed that the enhancement is due to passivation of the Si dangling bonds at the surface of Si NCs, while the suppression is ascribed to enhanced Auger recombination and new defects induced by excessive P dopants. Un-doped and P-doped LEDs based on Si NCs/SiC multilayers are fabricated and the performance is enhanced greatly after doping. As fitted, emission peaks near 500 nm and 750 nm can be detected. The current density-voltage properties indicate that the carrier transport process is dominated by FN tunneling mechanisms, while the linear relationship between the integrated EL intensity and injection current illustrates that the EL mechanism is attributed to recombination of electron–hole pairs at Si NCs induced by bipolar injection. After doping, the integrated EL intensities are enhanced by about an order of magnitude, indicating that EQE is greatly improved. Full article
Show Figures

Figure 1

8 pages, 2190 KiB  
Communication
Digital and Analog Resistive Switching Behavior in Si-NCs Embedded in a Si/SiO2 Multilayer Structure for Neuromorphic Systems
by Alfredo Morales-Sánchez, Karla Esther González-Flores, Sergio Alfonso Pérez-García, Sergio González-Torres, Blas Garrido-Fernández, Luis Hernández-Martínez and Mario Moreno-Moreno
Nanomaterials 2023, 13(6), 986; https://doi.org/10.3390/nano13060986 - 9 Mar 2023
Cited by 5 | Viewed by 2620
Abstract
In this work, we report the digital and analog resistive-switching (RS) characteristics in a memristor based on silicon nanocrystals (Si-NCs) integrated into a complementary metal-oxide-semiconductor (MOS) structure. Si-NCs with a diameter of 5.48 ± 1.24 nm embedded in a SiO2/Si-NCs/SiO2 [...] Read more.
In this work, we report the digital and analog resistive-switching (RS) characteristics in a memristor based on silicon nanocrystals (Si-NCs) integrated into a complementary metal-oxide-semiconductor (MOS) structure. Si-NCs with a diameter of 5.48 ± 1.24 nm embedded in a SiO2/Si-NCs/SiO2 multilayer structure acts as an RS layer. These devices exhibit bipolar RS with an intermediate resistance step during SET and RESET processes, which is believed to lie in the Si-NCs layer acting as charge-trapping nodes. The endurance studies of about 70 DC cycles indicate an ON/OFF ratio of ~106 and a retention time larger than 104 s. Long-term potentiation (LTP, −2 V) and long-term depression (LTD, +4 V) are obtained by applying consecutive identical pulse voltages of 150 ms duration. The current value gradually increases/decreases (LTP/LTD) as the pulse number increases. Three consecutive identical pulses of −2 V/150 ms (LTP) separated by 5 and 15 min show that the last current value obtained at the end of each pulse train is kept, confirming an analog RS behavior. These characteristics provide a possible way to mimic biological synapse functions for applications in neuromorphic computing in Si-NCs-based CMOS structures. Full article
(This article belongs to the Special Issue Advances in Memristive Nanomaterials)
Show Figures

Figure 1

13 pages, 6188 KiB  
Article
Application of Biobased Substances in the Synthesis of Nanostructured Magnetic Core-Shell Materials
by Marcos E. Peralta, Alejandro Koffman-Frischknecht, M. Sergio Moreno, Daniel O. Mártire and Luciano Carlos
Inorganics 2023, 11(1), 46; https://doi.org/10.3390/inorganics11010046 - 16 Jan 2023
Cited by 6 | Viewed by 2647
Abstract
We propose here a novel green synthesis route of core-shell magnetic nanomaterials based on the polyol method, which uses bio-based substances (BBS) derived from biowaste, as stabilizer and directing agent. First, we studied the effect of BBS concentration on the size, morphology, and [...] Read more.
We propose here a novel green synthesis route of core-shell magnetic nanomaterials based on the polyol method, which uses bio-based substances (BBS) derived from biowaste, as stabilizer and directing agent. First, we studied the effect of BBS concentration on the size, morphology, and composition of magnetic iron oxides nanoparticles obtained in the presence of BBS via the polyol synthesis method (MBBS). Then, as a proof of concept, we further coated MBBS with mesoporous silica (MBBS@mSiO2) or titanium dioxide (MBBS@TiO2) to obtain magnetic nanostructured core-shell materials. All the materials were deeply characterized with diverse physicochemical techniques. Results showed that both the size of the nanocrystals and their aggregation strongly depend on the BBS concentration used in the synthesis: the higher the concentration of BBS, the smaller the sizes of the iron oxide nanoparticles. On the other hand, the as-prepared magnetic core-shell nanomaterials were applied with good performance in different systems. In particular, MBBS@SiO2 showed to be an excellent nanocarrier of ibuprofen and successful adsorbent of methylene blue (MB) from aqueous solution. MBBS@TiO2 was capable of degrading MB with the same efficiency of pristine TiO2. These excellent results encourage the use of bio-based substances in different types of synthesis methods since they could reduce the fabrication costs and the environmental impact. Full article
(This article belongs to the Special Issue New Advances into Nanostructured Oxides)
Show Figures

Graphical abstract

15 pages, 2031 KiB  
Article
Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaics
by Ana Pinheiro, Andreia Ruivo, João Rocha, Marta Ferro, Joana Vaz Pinto, Jonas Deuermeier, Tiago Mateus, Ana Santa, Manuel J. Mendes, Rodrigo Martins, Sandra Gago, César A. T. Laia and Hugo Águas
Nanomaterials 2023, 13(1), 210; https://doi.org/10.3390/nano13010210 - 3 Jan 2023
Cited by 6 | Viewed by 3954
Abstract
The present contribution aims to enhance solar cells’ performance via the development of advanced luminescent down-shifting based on encapsulated nanostructured perovskite materials. Here, thin films of inorganic lead halide (CsPbBr3) perovskite nanocrystal luminophores were synthetized, by hot-injection, deposited on glass substrates [...] Read more.
The present contribution aims to enhance solar cells’ performance via the development of advanced luminescent down-shifting based on encapsulated nanostructured perovskite materials. Here, thin films of inorganic lead halide (CsPbBr3) perovskite nanocrystal luminophores were synthetized, by hot-injection, deposited on glass substrates by spin-coating, and encapsulated with parylene type C, via chemical vapor deposition, to protect and stabilize the films. The optical properties of these thin films were characterized by absorption, emission and 2D contour spectra, their structure by X-ray diffraction and X-ray photoelectron spectroscopy, and the morphology by Scanning Transmission Electron microscopy. I–V curve and spectral response nanocrystalline silicon photovoltaic (nc-Si:H PV) cells were studied in the absence and presence of the perovskite and parylene luminescent down-shifting layers. The incorporation of the CsPbBr3 nanocrystals and their encapsulation with the parylene type C polymeric coating led to an increase in the current generated and the spectral response of the PV cells in the regime of the nanocrystals’ fluorescence emission. A 3.1% increase in the short circuit current density and a 5.6% increase in the power conversion efficiency were observed. Full article
Show Figures

Figure 1

11 pages, 4090 KiB  
Article
Study of the Effect of Nitric Acid in Electrochemically Synthesized Silicon Nanocrystals: Tunability of Bright and Uniform Photoluminescence
by Alfredo Morales-Sánchez, María Antonia Cardona-Castro, Liliana Licea-Jiménez, Liliana Palacios-Huerta, Antonio Coyopol, Sergio Alfonso Pérez-García, Jaime Alvarez-Quintana and Mario Moreno
Nanomaterials 2022, 12(12), 2015; https://doi.org/10.3390/nano12122015 - 10 Jun 2022
Cited by 1 | Viewed by 2725
Abstract
In this work, we show a correlation between the composition and the microstructural and optical properties of bright and uniform luminescent porous silicon (PSi) films. PSi films were synthesized by electrochemical etching using nitric acid in an electrolyte solution. PSi samples synthesized with [...] Read more.
In this work, we show a correlation between the composition and the microstructural and optical properties of bright and uniform luminescent porous silicon (PSi) films. PSi films were synthesized by electrochemical etching using nitric acid in an electrolyte solution. PSi samples synthesized with nitric acid emit stronger (up to six-fold greater) photoluminescence (PL) as compared to those obtained without it. The PL peak is shifted from 630 to 570 nm by changing the concentration ratio of the HF:HNO3:(EtOH-H2O) electrolyte solution, but also shifts with the excitation energy, indicating quantum confinement effects in the silicon nanocrystals (Si-NCs). X-ray photoelectron spectroscopy analysis shows a uniform silicon content in the PSi samples that emit the strongest PL. High-resolution transmission electron microscopy reveals that the Si-NCs in these PSi samples are about ~2.9 ± 0.76 nm in size and are embedded in a dense and stoichiometric SiO2 matrix, as indicated by the Fourier transform infrared analysis. On the other hand, the PSi films that show PL of low intensity present an abrupt change in the silicon content depth and the formation of non-bridging oxygen hole center defects. Full article
Show Figures

Figure 1

10 pages, 3133 KiB  
Article
Efficient Sensitized Photoluminescence from Erbium Chloride Silicate via Interparticle Energy Transfer
by Hao Shen, Huabao Shang, Yuhan Gao, Deren Yang and Dongsheng Li
Materials 2022, 15(3), 1093; https://doi.org/10.3390/ma15031093 - 30 Jan 2022
Cited by 6 | Viewed by 2989
Abstract
In this study, we prepare Erbium compound nanocrystals and Si nanocrystal (Si NC) co-embedded silica film by the sol-gel method. Dual phases of Si and Er chloride silicate (ECS) nanocrystals were coprecipitated within amorphous silica. Effective sensitized emission of Er chloride silicate nanocrystals [...] Read more.
In this study, we prepare Erbium compound nanocrystals and Si nanocrystal (Si NC) co-embedded silica film by the sol-gel method. Dual phases of Si and Er chloride silicate (ECS) nanocrystals were coprecipitated within amorphous silica. Effective sensitized emission of Er chloride silicate nanocrystals was realized via interparticle energy transfer between silicon nanocrystal and Er chloride silicate nanocrystals. The influence of density and the distribution of sensitizers and Er compounds on interparticle energy transfer efficiency was discussed. The interparticle energy transfer between the semiconductor and erbium compound nanocrystals offers some important insights into the realization of efficient light emission for silicon-based integrated photonics. Full article
(This article belongs to the Special Issue Advanced Luminescent Materials and Devices)
Show Figures

Figure 1

9 pages, 1855 KiB  
Article
Nanocrystallized Ge-Rich SiGe-HfO2 Highly Photosensitive in Short-Wave Infrared
by Catalin Palade, Ana-Maria Lepadatu, Adrian Slav, Valentin Serban Teodorescu, Toma Stoica, Magdalena Lidia Ciurea, Doru Ursutiu and Cornel Samoila
Materials 2021, 14(22), 7040; https://doi.org/10.3390/ma14227040 - 20 Nov 2021
Cited by 10 | Viewed by 2435
Abstract
Group IV nanocrystals (NCs), in particular from the Si–Ge system, are of high interest for Si photonics applications. Ge-rich SiGe NCs embedded in nanocrystallized HfO2 were obtained by magnetron sputtering deposition followed by rapid thermal annealing at 600 °C for nanostructuring. The [...] Read more.
Group IV nanocrystals (NCs), in particular from the Si–Ge system, are of high interest for Si photonics applications. Ge-rich SiGe NCs embedded in nanocrystallized HfO2 were obtained by magnetron sputtering deposition followed by rapid thermal annealing at 600 °C for nanostructuring. The complex characterization of morphology and crystalline structure by X-ray diffraction, μ-Raman spectroscopy, and cross-section transmission electron microscopy evidenced the formation of Ge-rich SiGe NCs (3–7 nm diameter) in a matrix of nanocrystallized HfO2. For avoiding the fast diffusion of Ge, the layer containing SiGe NCs was cladded by very thin top and bottom pure HfO2 layers. Nanocrystallized HfO2 with tetragonal/orthorhombic structure was revealed beside the monoclinic phase in both buffer HfO2 and SiGe NCs–HfO2 layers. In the top part, the film is mainly crystallized in the monoclinic phase. High efficiency of the photocurrent was obtained in a broad spectral range of curves of 600–2000 nm at low temperatures. The high-quality SiGe NC/HfO2 matrix interface together with the strain induced in SiGe NCs by nanocrystallization of both HfO2 matrix and SiGe nanoparticles explain the unexpectedly extended photoelectric sensitivity in short-wave infrared up to about 2000 nm that is more than the sensitivity limit for Ge, in spite of the increase of bandgap by well-known quantum confinement effect in SiGe NCs. Full article
(This article belongs to the Special Issue Collection of Papers in Material Science from Romania)
Show Figures

Figure 1

Back to TopTop