Study of the Effect of Nitric Acid in Electrochemically Synthesized Silicon Nanocrystals: Tunability of Bright and Uniform Photoluminescence
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daldosso, N.; Pavesi, L. Nanosilicon photonics. Laser Photonics Rev. 2009, 3, 508–534. [Google Scholar] [CrossRef]
- Canham, L.T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046–1048. [Google Scholar] [CrossRef]
- Palacios-Huerta, L.; Cabañas Tay, S.A.; Luna-López, J.A.; Aceves-Mijares, M.; Coyopol, A.; Morales-Sánchez, A. Effect of the structure on luminescent characteristics of SRO-based light emitting capacitor. Nanotechnology 2015, 26, 395202. [Google Scholar] [CrossRef] [PubMed]
- Wolkin, M.V.; Jorne, J.; Fauchet, P.M.; Allan, G.; Delerue, C. Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen. Phys. Rev. Lett. 1999, 82, 197–200. [Google Scholar] [CrossRef]
- Tae, Y.K.; Nae, M.P.; Kyung, H.K.; Gun, Y.S. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl. Phys. Lett. 2004, 85, 5355–5357. [Google Scholar] [CrossRef]
- Zhenyi, N.; Shu, Z.; Shuangyi, Z.; Wenbing, P.; Deren, Y.; Xiaodong, P. Silicon nanocrystals: Unfading silicon materials for optoelectronics. Mater. Sci. Eng. R Rep. 2019, 138, 85–117. [Google Scholar] [CrossRef]
- Cabañas-Tay, S.A.; Palacios-Huerta, L.; Luna-López, J.A.; Aceves-Mijares, M.; Alcántara-Iniesta, S.; Pérez-García, S.A.; Morales-Sánchez, A. Analysis of the luminescent centers in silicon rich silicon nitride light-emitting capacitors. Semicond. Sci. Technol. 2015, 30, 065009. [Google Scholar] [CrossRef]
- Sang, K.K.; Baek, H.K.; Chang, H.C.; Seong, J.P. Size-dependent photocurrent of photodetectors with silicon nanocrystals. Appl. Phys. Lett. 2009, 94, 183106. [Google Scholar] [CrossRef] [Green Version]
- Vivaldo, I.; Carrillo, J.; López, O.; Jiménez, S.; Martínez, J.; Murias, D.; López, J.A. Study of the photon down-conversion effect produced by thin silicon-rich oxide films on silicon solar cells. Int. J. Energy Res. 2016, 41, 410–416. [Google Scholar] [CrossRef]
- Yuan, Z.; Anopchenko, A.; Daldosso, N.; Guider, R.; Navarro-Urrios, D.; Pitanti, A.; Spano, R.; Pavesi, L. Silicon Nanocrystals as an Enabling Material for Silicon Photonics. Proc. IEEE Inst. Electr. Electron Eng. 2009, 97, 1250–1268. [Google Scholar] [CrossRef] [Green Version]
- Perálvarez, M.; Barreto, J.; Carreras, J.; Morales, A.; Navarro-Urrios, D.; Lebour, Y.; Domínguez, C.; Garrido, B. Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition. Nanotechnology 2009, 20, 405201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelenina, A.; Dyakov, S.A.; Hiller, D.; Gutsch, S.; Trouillet, V.; Bruns, M.; Mirabella, S.; Löper, P.; López-Conesa, L.; López-Vidrier, J.; et al. Structural and optical properties of size controlled Si nanocrystals in Si3N4 matrix: The nature of photoluminescence peak shift. J. Appl. Phys. 2013, 114, 184311. [Google Scholar] [CrossRef]
- Laube, J.; Gutsch, S.; Hiller, D.; Bruns, M.; Kubel, C.; Weiss, C.; Zacharias, M. Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition. J. Appl. Phys. 2014, 116, 223501. [Google Scholar] [CrossRef]
- Ivanda, M.; Gebavi, H.; Ristić, D.; Furic’, K.; Musić, S.; Ristić, M.; Žonja, S.; Biljanović, P.; Gamulin, O.; Balarin, M.; et al. Silicon nanocrystals by thermal annealing of Si-rich silicon oxide prepared by the LPCVD method. J. Mol. Struct. 2007, 834, 461–464. [Google Scholar] [CrossRef]
- Hao, X.J.; Podhorodecki, A.P.; Shen, Y.S.; Zatryb, G.; Misiewicz, J.; Green, M.A. Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films. Nanotechnology 2009, 20, 485703. [Google Scholar] [CrossRef] [Green Version]
- Teodorescu, V.S.; Ciurea, M.L. Morphology of Si nanocrystallites embedded in SiO2 matrix. J. Mater. Res. 2008, 23, 2990–2995. [Google Scholar] [CrossRef]
- Gourbilleau, F.; Ternon, C.; Maestre, D.; Palais, O.; Dufour, C. Silicon-rich SiO2/SiO2 multilayers: A promising material for the third generation of solar cell. J. Appl. Phys. 2009, 106, 013501. [Google Scholar] [CrossRef]
- Morales-Morales, F.; Palacios-Huerta, L.; Cabañas-Tay, S.A.; Coyopol, A.; Morales-Sánchez, A. Luminescent Si quantum dots in flexible and semitransparent membranes for photon down converting material. Opt. Mater. 2019, 90, 220–226. [Google Scholar] [CrossRef]
- Cardona-Castro, M.A.; Morales-Sánchez, A.; Licea-Jiménez, L.; Alvarez-Quintana, J. Si-nanocrystal-based nanofluids for nanothermometry. Nanotechnology 2016, 27, 235502. [Google Scholar] [CrossRef]
- Svrcek, V.; Yamanari, T.; Mariotti, D.; Mitra, S.; Velusamy, T.; Matsubara, K. A silicon nanocrystal/polymer nanocomposite as a down-conversion layer in organic and hybrid solar cells. Nanoscale 2015, 7, 11566. [Google Scholar] [CrossRef] [Green Version]
- Ciurea, M.L.; Draghici, M.; Iancu, V.; Reshotko, M.; Balberg, I. Coupled confinement effect on the photoluminescence and electrical transport in porous silicon. J. Lumin. 2003, 102, 492–497. [Google Scholar] [CrossRef]
- Valenta, J.; Janda, P.; Dohnalová, K.; Niznansky, D.; Vácha, F.; Linnros, J. Colloidal suspensions of silicon nanocrystals: From single nanocrystals to photonic structures. Opt. Mater. 2005, 27, 1046–1049. [Google Scholar] [CrossRef]
- Marinins, A.; Yang, A.; Chen, H.; Linnros, J.; Veinot, J.G.C.; Popov, S.; Sychugov, I. Photostable Polymer/Si Nanocrystal Bulk Hybrids with Tunable Photoluminescence. ACS Photonics 2016, 3, 1575–1580. [Google Scholar] [CrossRef]
- Chen, X.; Uttamchandani, D.; Trager-Cowan, C.; O’Donnell, K.P. Luminescence from porous silicon. Semicond. Sci. Technol. 1993, 8, 93–96. [Google Scholar] [CrossRef]
- Fauchet, P.M. Photoluminescence and electroluminescence from porous silicon. J. Lumin. 1996, 70, 294–309. [Google Scholar] [CrossRef]
- Jia-Chuan, L.; Hsi-Ting, H.; Hsin-Kai, W.; Kuo-Chang, L.; Meng-Kai, H. Edge effect in electrochemical etching on porous silicon and its direct evidence on photoluminescence patterns. Opt. Mater. Express 2017, 7, 880–887. [Google Scholar] [CrossRef]
- Laiho, R.; Pavlov, A.; Hovi, O.; Tsuboi, T. Time dependence and optical quenching of photoluminescence in porous silicon. Appl. Phys. Lett. 1993, 63, 275. [Google Scholar] [CrossRef]
- Salonen, J.; Laine, E. The quenching and recovery of photoluminescence in porous silicon. J. Appl. Phys. 1996, 80, 5984. [Google Scholar] [CrossRef]
- Mehra, R.M.; Agarwal, V.; Jain, V.K.; Mathur, P.C. Influence of anodisation time, current density and electrolyte concentration on the photoconductivity spectra of porous silicon. Thin Solid Film. 1998, 315, 281–285. [Google Scholar] [CrossRef]
- Zarea, M.; Shokrollahi, A.; Seraji, F.E. Effect of fabrication parameters on morphological and optical properties of highly doped p-porous silicon. Appl. Surf. Sci. 2011, 257, 9507–9514. [Google Scholar] [CrossRef]
- Chan, K.S.; Dwight, T.J.E. Photoluminescence, morphological and electrical properties of porous silicon formulated with different HNO3 concentrations. Results Phys. 2018, 10, 5–9. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Li, X.; Bohn, P.W. In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching. J. Appl. Phys. 2002, 91, 6134. [Google Scholar] [CrossRef]
- Cao, D.T.; Ngan, L.T.Q.; Anh, C.T. Enhancement and stabilization of the photoluminescence from porous silicon prepared by Ag-assisted electrochemical etching. Surf. Interface Anal. 2011, 45, 726–766. [Google Scholar] [CrossRef]
- Nakamura, T.; Yuan, Z.; Watanabe, K.; Adachi, S. Bright and multicolor luminescent colloidal Si nanocrystals prepared by pulsed laser irradiation in liquid. Appl. Phys. Lett. 2016, 108, 023105. [Google Scholar] [CrossRef]
- Ondič, L.; Kůsová, K.; Ziegler, M.; Fekete, L.; Gärtnerová, V.; Chab, V.; Holý, V.; Cibulka, O.; Herynková, K.; Gallart, M.; et al. A complex study of the fast blue luminescence of oxidized silicon nanocrystals: The role of the core. Nanoscale 2014, 6, 3837–3845. [Google Scholar] [CrossRef]
- Dohnalová, K.; Ondič1, L.; Kůsová, K.; Pelant, I.; Rehspringer, J.L.; Mafouana, R.-R. White-emitting oxidized silicon nanocrystals: Discontinuity in spectral development with reducing size. J. Appl. Phys. 2010, 107, 053102. [Google Scholar] [CrossRef]
- Luna-López, J.A.; Garzón-Román, A.; Gómez-Barojas, E.; Flores-Gracia, J.F.; Martínez-Juárez, J.; Carrillo-López, J. Synthesis of colloidal solutions with silicon nanocrystals from porous silicon. Nanoscale Res. Lett. 2014, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Zhang, P.; Smith, T.A.; Anthony, R.J.; Kortshagen, U.R.; Yu, P.; Feng, Y.; Shrestha, S.; Coniber, G.; Huang, S. Tunability Limit of Photoluminescence in Colloidal Silicon Nanocrystals. Sci. Rep. 2015, 5, 12469. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Li, X.J.; Jia, Y.B.; Zhu, J.S.; Yuheng, Z. The role of SiO2 in the blue luminescence in hydrothermally prepared porous silicon. J. Phys. Condens. Matter 1997, 9, L151–L156. [Google Scholar] [CrossRef]
- Vaccaro, L.; Spallino, L.; Zatsepin, A.F.; Buntov, E.A.; Ershov, A.V.; Grachev, D.A.; Cannas, M. Photoluminescence of Si nanocrystals embedded in SiO2: Excitation/emission mapping. Phys. Status Solidi B 2015, 252, 600–606. [Google Scholar] [CrossRef]
- Podhorodecki, A.; Zatryb, G.; Golacki, L.W.; Misiewicz, J.; Wojcik, J.; Mascher, P. On the origin of emission and thermal quenching of SRSO:Er3+ films grown by ECR-PECVD. Nanoscale Res. Lett. 2013, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilcoxon, J.P.; Samara, G.A. Tailorable, visible light emission from silicon nanocrystals. Appl. Phys. Lett. 1999, 74, 3164. [Google Scholar] [CrossRef] [Green Version]
- Holmes, J.D.; Ziegler, K.J.; Doty, R.C.; Pell, L.E.; Johnston, K.P.; Korgel, B.A. Highly Luminescent Silicon Nanocrystals with Discrete Optical Transitions. J. Am. Chem. Soc. 2001, 123, 3743–3748. [Google Scholar] [CrossRef] [PubMed]
- Salh, R. Defect Related Luminescence in Silicon Dioxide Network: A Review. In Crystaline Silicon-Properties and Uses; Basu, S., Ed.; IntechOpen: London, UK, 2011; pp. 135–172. [Google Scholar] [CrossRef] [Green Version]
- Skuja, L. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non Cryst. Solids 1998, 239, 16–48. [Google Scholar] [CrossRef]
- Averboukh, B.; Huber, R.; Cheah, K.W.; Shen, Y.R.; Qin, G.G.; Ma, Z.C.; Zong, W.H. Luminescence studies of a Si/SiO2 superlattice. J. Appl. Phys. 2002, 92, 3564. [Google Scholar] [CrossRef]
- Lin, G.R.; Chang, C.H.; Cheng, C.H.; Wu, C.I.; Wang, P.S. Transient UV and Visible Luminescent Dynamics of Si-Rich SiOx Metal–Oxide–Semiconductor Light-Emitting Diodes. IEEE Photon. J. 2012, 4, 1351–1364. [Google Scholar]
- Steinert, M.; Acker, J.; Oswald, S.; Wetzig, K. Study on the Mechanis of Silicon Etching in HNO3-Rich HF/HNO3 Mixtures. J. Phys. Chem. C 2007, 111, 2133–2140. [Google Scholar] [CrossRef]
- Shih, S.; Jung, K.H.; Hsieh, T.Y.; Sarathy, J.; Campbell, J.C.; Kwong, D.L. Photoluminescence and formation mechanism of chemically etched silicon. Appl. Phys. Lett. 1992, 60, 1863–1865. [Google Scholar] [CrossRef]
- San-Andrés, E. Bonding configuration and density of defects of SiOxHy thin films deposited by the electron cyclotron resonance plasma method. J. Appl. Phys. 2003, 94, 7462. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Huerta, L.; Cabañas-Tay, S.A.; Cardona-Castro, M.A.; Aceves-Mijares, M.; Domínguez-Horna, C.; Morales-Sánchez, A. Structural and optical properties of silicon rich oxide fils in graded stoichiometric multilayers for optoelectronic device. Appl. Phys. Lett. 2016, 109, 031906. [Google Scholar] [CrossRef]
- Chou, J.S.; Lee, S. Effect of porosity on infrared absortion spectra of silicon dioxide. J. Appl. Phys. 1995, 77, 1805. [Google Scholar] [CrossRef]
- Cortazar, O.; Vazquez-Agustín, M.A.; Aceves-Mijares, M. Effect of the Annealing Atmosphere and Temperature on the Photoluminescence of Si Nanocrystal Films Covered with Spin-On Glass. J. Nanoelectron. Optoelectron. 2015, 10, 93–98. [Google Scholar] [CrossRef]
- Bolotov, V.V.; Sten’kin, Y.A.; Roslikov, V.E.; Kang, V.E.; Ponomareva, I.V.; Nesov, S.N. Effect of Ethanol on Optical and Electrical Parameters of Porous Silicon. Semiconductors 2009, 43, 925–928. [Google Scholar] [CrossRef]
- Cheylan, S.; Elliman, R.G. Effect of hydrogen on the photoluminescence of Si nanocrystals embedded in a SiO2 matrix. Appl. Phys. Lett. 2001, 78, 1225. [Google Scholar] [CrossRef]
- Dasog, M.; De los Reyes, G.B.; Titova, L.V.; Hegmann, F.A.; Veinot, J.G.C. Size vs Suface: Tuning the Photoluminescence of Freestading Silicon Nanocrystals Across the Visible Spectrum via Surface Groups. ACS Nano 2014, 8, 9636–9648. [Google Scholar] [CrossRef]
- Salonen, J.; Laine, E.; Niinistö, L. Thermal carbonization of porous silicon surface by acetylene. J. Appl. Phys. 2002, 91, 456. [Google Scholar] [CrossRef]
- Camara, G.A.; Iwasita, T. Parallel pathways of ethanol oxidation: The effect of ethanol concentration. J. Electroanal. Chem. 2005, 578, 315–321. [Google Scholar] [CrossRef]
- Giz, M.J.; Camara, G.A. The ethanol electrooxidation reaction at Pt (111): The effect of ethanol concentration. J. Electroanal. Chem. 2009, 625, 117–122. [Google Scholar] [CrossRef]
- Shao, M.H.; Adzic, R.R. Electrooxidation of ethanol on a Pt electrode in acid solutions: In situ ATR-SEIRAS study. Electrochim. Acta 2005, 50, 2415–2422. [Google Scholar] [CrossRef]
- Chou, S.T.; Tsai, J.H.; Sheu, B.C. The photoluminescence in Si+-implanted SiO2 films with rapid thermal anneal. J. Appl. Phys. 1998, 83, 5394–5398. [Google Scholar] [CrossRef]
- Delerue, C.; Allan, G.; Lannoo, M. Theoretical aspects of the luminescence of porous silicon. Phys. Rev. B 1993, 48, 11024. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, L.; Riabinina, D.; Kadari, B.; MacLeod, J.M.; Chaker, M.; Rosei, F. Synthesis and Characterization of Group IV Nanocrystals. ECS Trans. 2010, 28, 15–31. [Google Scholar] [CrossRef]
Sample | Electrolyte Ratio | J (mA/cm2) | Time (min) | ||
---|---|---|---|---|---|
HF | HNO3 | EtOH:H2O (1:1) | |||
PSi0 | 1 | 0 | 3 | 2.39 | 60 |
PSi1 | 1 | 3 | 3 | ||
PSi2 | 6 | ||||
PSi3 | 9 | ||||
PSi4 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Sánchez, A.; Cardona-Castro, M.A.; Licea-Jiménez, L.; Palacios-Huerta, L.; Coyopol, A.; Pérez-García, S.A.; Alvarez-Quintana, J.; Moreno, M. Study of the Effect of Nitric Acid in Electrochemically Synthesized Silicon Nanocrystals: Tunability of Bright and Uniform Photoluminescence. Nanomaterials 2022, 12, 2015. https://doi.org/10.3390/nano12122015
Morales-Sánchez A, Cardona-Castro MA, Licea-Jiménez L, Palacios-Huerta L, Coyopol A, Pérez-García SA, Alvarez-Quintana J, Moreno M. Study of the Effect of Nitric Acid in Electrochemically Synthesized Silicon Nanocrystals: Tunability of Bright and Uniform Photoluminescence. Nanomaterials. 2022; 12(12):2015. https://doi.org/10.3390/nano12122015
Chicago/Turabian StyleMorales-Sánchez, Alfredo, María Antonia Cardona-Castro, Liliana Licea-Jiménez, Liliana Palacios-Huerta, Antonio Coyopol, Sergio Alfonso Pérez-García, Jaime Alvarez-Quintana, and Mario Moreno. 2022. "Study of the Effect of Nitric Acid in Electrochemically Synthesized Silicon Nanocrystals: Tunability of Bright and Uniform Photoluminescence" Nanomaterials 12, no. 12: 2015. https://doi.org/10.3390/nano12122015