Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Schiff base polynuclear coordination compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6781 KiB  
Article
A Structure and Magnetism Study of {MnII3MnIVLnIII3} Coordination Complexes with Ln = Dy, Yb
by Victoria Mazalova, Tatiana Asanova, Igor Asanov and Petra Fromme
Inorganics 2024, 12(11), 286; https://doi.org/10.3390/inorganics12110286 - 31 Oct 2024
Viewed by 1255
Abstract
We report the research results of polynuclear complexes consisting of 3d-4f mixed-metal cores that are maintained by acetate ligands and multidentate Schiff base ligands with structurally exposed thioether groups. The presence of the latter at the periphery of these neutral compounds enables their [...] Read more.
We report the research results of polynuclear complexes consisting of 3d-4f mixed-metal cores that are maintained by acetate ligands and multidentate Schiff base ligands with structurally exposed thioether groups. The presence of the latter at the periphery of these neutral compounds enables their anchoring onto substrate surfaces. Specifically, we investigated the electronic and magnetic properties as well as the structural arrangement in {MnII3MnIVLnIII3} with Ln = Dy, Yb coordination complexes using various complementary methods. We studied the electronic and atomic structure of the target compounds using the XAS and XES techniques. The molecular structures of the compounds were determined using density functional theory, and the magnetic data were obtained as a function of the magnetic field. Using the XMCD method, we followed the changes in the electronic and magnetic properties of adsorbed magnetic compounds induced by the reaction of ligands through interaction with the substrate. The complexes show antiferromagnetic exchange interactions between Mn and Ln ions. The spectroscopic analyses confirmed the structural and electronic integrity of complexes in organic solution. This study provides important input for a full understanding of the dependence of the magnetic properties and the molecule–substrate interaction of single adsorbed molecules on the type of ligands. It highlights the importance of chemical synthesis for controlling and tailoring the magnetic properties of metalorganic molecules for their use as optimized building blocks of future molecular spin electronics. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

18 pages, 3405 KiB  
Article
Synthesis, Structures and Photophysical Properties of Tetra- and Hexanuclear Zinc Complexes Supported by Tridentate Schiff Base Ligands
by Tobias Severin, Viktoriia Karabtsova, Martin Börner, Hendrik Weiske, Agnieszka Kuc and Berthold Kersting
Chemistry 2023, 5(2), 1028-1045; https://doi.org/10.3390/chemistry5020070 - 2 May 2023
Cited by 1 | Viewed by 2944
Abstract
The synthesis, structure and photophysical properties of two polynuclear zinc complexes, namely [Zn6L2(µ3-OH)2(OAc)8] (1) and [Zn4L4(µ2-OH)2](ClO4)2 (2 [...] Read more.
The synthesis, structure and photophysical properties of two polynuclear zinc complexes, namely [Zn6L2(µ3-OH)2(OAc)8] (1) and [Zn4L4(µ2-OH)2](ClO4)2 (2), supported by tridentate Schiff base ligand 2,6-bis((N-benzyl)iminomethyl)-4-tert-butylphenol (HL) are presented. The synthesized compounds were investigated using ESI-MS, IR, NMR, UV-vis absorption spectroscopy, photoluminescence spectroscopy and single-crystal X-ray crystallography. The hexanuclear neutral complex 1 comprises six-, five- and four-coordinated Zn2+ ions coordinated by O and N atoms from the supporting ligand and OH- and acetate ligands. The Zn2+ ions in complex cation [Zn4L4(µ2-OH)2]2+ of 2 are all five-coordinated. The complexation of ligand HL by Zn2+ ions leads to a six-fold increase in the intensity and a large blue shift of the ligand-based 1(π-π)* emission. Other biologically relevant ions, i.e., Na+, K+, Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+ and Cu2+, did not give rise to a fluorescence enhancement. Full article
(This article belongs to the Special Issue Commemorating 150 Years of Justus von Liebig’s Legacy)
Show Figures

Graphical abstract

28 pages, 6960 KiB  
Review
Homo- and Hetero-Oligonuclear Complexes of Platinum Group Metals (PGM) Coordinated by Imine Schiff Base Ligands
by Barbara Miroslaw
Int. J. Mol. Sci. 2020, 21(10), 3493; https://doi.org/10.3390/ijms21103493 - 15 May 2020
Cited by 34 | Viewed by 6313
Abstract
Chemistry of Schiff base (SB) ligands began in 1864 due to the discovery made by Hugo Schiff (Schiff, H., Justus Liebigs Ann. der Chemie 1864, 131 (1), 118–119). However, there is still a vivid interest in coordination compounds based on imine ligands. The [...] Read more.
Chemistry of Schiff base (SB) ligands began in 1864 due to the discovery made by Hugo Schiff (Schiff, H., Justus Liebigs Ann. der Chemie 1864, 131 (1), 118–119). However, there is still a vivid interest in coordination compounds based on imine ligands. The aim of this paper is to review the most recent concepts on construction of homo- and hetero-oligonuclear Schiff base coordination compounds narrowed down to the less frequently considered complexes of platinum group metals (PGM). The combination of SB and PGM in oligonuclear entities has several advantages over mononuclear or polynuclear species. Such complexes usually exhibit better electroluminescent, magnetic and/or catalytic properties than mononuclear ones due to intermetallic interactions and frequently have better solubility than polymers. Various construction strategies of oligodentate imine ligands for coordination of PGM are surveyed including simple imine ligands, non-innocent 1,2-diimines, chelating imine systems with additional N/O/S atoms, classic N2O2-compartmental Schiff bases and their modifications resulting in acyclic fused ligands, macrocycles such as calixsalens, metallohelical structures, nano-sized molecular wheels and hybrid materials incorporating mesoionic species. Co-crystallization and formation of metallophilic interactions to extend the mononuclear entities up to oligonuclear coordination species are also discussed. Full article
(This article belongs to the Special Issue Oligonuclear Metal Complexes with Schiff Base Ligands)
Show Figures

Graphical abstract

12 pages, 3091 KiB  
Article
Rare Nuclearities in Ni(II) Cluster Chemistry: An Unprecedented {Ni12} Nanosized Cage from the Use of N-Naphthalidene-2-Amino-5-Chlorobenzoic Acid
by Panagiota S. Perlepe, Konstantinos N. Pantelis, Luís Cunha-Silva, Vlasoula Bekiari, Albert Escuer and Theocharis C. Stamatatos
Inorganics 2020, 8(5), 32; https://doi.org/10.3390/inorganics8050032 - 9 May 2020
Cited by 2 | Viewed by 3292
Abstract
The self-assembly reaction between NiI2, benzoic acid (PhCO2H) and the Schiff base chelate, N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2), in the presence of the organic base triethylamine (NEt3), has resulted in the isolation and the structural, spectroscopic, [...] Read more.
The self-assembly reaction between NiI2, benzoic acid (PhCO2H) and the Schiff base chelate, N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2), in the presence of the organic base triethylamine (NEt3), has resulted in the isolation and the structural, spectroscopic, and physicochemical characterization of the dodecanuclear [Ni12I2(OH)6(O2CPh)5(nacb)5(H2O)4(MeCN)4]I (1) cluster compound in ~30% yield. Complex 1 has a cage-like conformation, comprising twelve distorted, octahedral NiII ions that are bridged by five μ3-OH, one μ-OH, an I in 55% occupancy, five PhCO2 groups (under the η11:μ, η123 and η224 modes), and the naphthoxido and carboxylato O-atoms of five doubly deprotonated nacb2− groups. The overall {Ni12} cluster exhibits a nanosized structure with a diameter of ~2.5 nm and its metallic core can be conveniently described as a series of nine edge- or vertex-sharing {Ni3} triangular subunits. Complex 1 is the highest nuclearity coordination compound bearing the nacbH2 chelate, and a rare example of polynuclear NiII complex containing coordinating I ions. Direct current (DC) magnetic susceptibility studies revealed the presence of predominant antiferromagnetic exchange interactions between the NiII ions, while photophysical studies of 1 in the solid-state showed a cyan-to-green centered emission at 520 nm, upon maximum excitation at 380 nm. The reported results demonstrate the rich coordination chemistry of the deprotonated nacb2− chelate in the presence of NiII metal ions, and the ability of this ligand to adopt a variety of different bridging modes, thus fostering the formation of high-nuclearity molecules with rare, nanosized dimensions and interesting physical (i.e., magnetic and optical) properties. Full article
Show Figures

Figure 1

16 pages, 12276 KiB  
Article
Heterometallic ZnII–LnIII–ZnII Schiff Base Complexes with Linear or Bent Conformation—Synthesis, Crystal Structures, Luminescent and Magnetic Characterization
by Barbara Miroslaw, Beata Cristóvão and Zbigniew Hnatejko
Molecules 2018, 23(7), 1761; https://doi.org/10.3390/molecules23071761 - 18 Jul 2018
Cited by 30 | Viewed by 4494
Abstract
A series of racemic, heteronuclear complexes [Zn2Nd(ac)2(HL)2]NO3·3H2O (1), [Zn2Sm(ac)2(HL)2]NO3·3CH3OH·0.3H2O (2), [Zn2Ln(ac)2(HL)2]NO [...] Read more.
A series of racemic, heteronuclear complexes [Zn2Nd(ac)2(HL)2]NO3·3H2O (1), [Zn2Sm(ac)2(HL)2]NO3·3CH3OH·0.3H2O (2), [Zn2Ln(ac)2(HL)2]NO3·5.33H2O (35) (where HL is the dideprotonated form of N,N′-bis(5-bromo-3-methoxysalicylidene)-1,3-diamino-2-propanol, ac = acetate ion, and Ln = Eu (3), Tb (4), Dy (5), respectively) with an achiral multisite coordination Schiff base ligand (H3L) were synthesized and characterized. The X-ray crystallography revealed that the chirality in complexes is centered at lanthanide(III) ions due to two vicinally located μ-acetato-bridging ligands. The presented crystals have isoskeletal coordination units but they crystallize in monoclinic (1, 2) or trigonal crystal systems (35) with slightly different conformation. In 1 and 2 the ZnII–LnIII–ZnII coordination core is linear, whereas in isostructural crystals 35 the chiral coordination cores are bent and lie on a two-fold axis. The complexes 1, 35 show a blue emission attributed to the emission of the ligand. For ZnII2SmIII complex (2) the characteristic emission bands of f-f* transitions were observed. The magnetic properties for compounds 1, 4 and 5 are characteristic for the paramagnetism of the corresponding lanthanide(III) ions. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Graphical abstract

Back to TopTop