Synthesis, Structures and Photophysical Properties of Tetra- and Hexanuclear Zinc Complexes Supported by Tridentate Schiff Base Ligands
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Synthesis and Characterization of Compounds
3.2. Crystallographic Characterization
3.3. Electronic Absorption and Emission Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Follmer, C.; Real-Guerra, R.; Wasserman, G.E.; Olivera-Severo, D.; Carlini, C.R. Jackbean, soybean and Bacillus pasteurii ureases. Eur. J. Biochem. 2004, 271, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Sumner, J.B. The Isolation and Crystallization of the Enzyme Urease. J. Biol. Chem. 1926, 69, 435–441. [Google Scholar] [CrossRef]
- Bertagnolli, H.; Kaim, W. The Dinuclear CuA Center in Cytochrome c Oxidase and N2O Reductase-A Metal–Metal Bond in Biology? Angew. Chem. Int. Ed. Engl. 1995, 34, 771–773. [Google Scholar] [CrossRef]
- Lv, Y.; Cao, M.; Li, J.; Wang, J. A Sensitive Ratiometric Fluorescent Sensor for Zinc(II) with High Selectivity. Sensors 2013, 13, 3131–3141. [Google Scholar] [CrossRef] [PubMed]
- Fernley, R.T. Non-cytoplasmic carbonic anhydrases. Trends Biochem. Sci. 1988, 13, 356–359. [Google Scholar] [CrossRef]
- Hewett-Emmett, D.; Tashian, R.E. Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gam-ma-carbonic anhydrase gene families. Mol. Phylogenetics Evol. 1996, 5, 50–77. [Google Scholar] [CrossRef] [PubMed]
- Thiel, G.; Lietz, M. Regulator neuronaler Gene: Zinkfingerprotein REST. Biol. Unserer Zeit 2004, 34, 96–101. [Google Scholar] [CrossRef]
- Tashian, R.E. The carbonic anhydrases: Widening perspectives on their evolution, expression and function. Bioessays 1989, 10, 186–192. [Google Scholar] [CrossRef]
- Liu, M.-J.; Bao, S.; Gálvez-Peralta, M.; Pyle, C.J.; Rudawsky, A.C.; Pavlovicz, R.E.; Killilea, D.W.; Li, C.D.; Nebert, W.; Wewers, M.D.; et al. ZIP8 Regulates Host Defense through Zinc-Mediated Inhibition of NF-κB. Cell Rep. 2013, 3, 386–400. [Google Scholar] [CrossRef]
- Ternes, W. Biochemie der Elemente—Anorganische Chemie Biologischer Prozesse, Springer Spektrum; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Roy, P.; Dhara, K.; Manassero, M.; Ratha, J.; Banerjee, P. Selective Fluorescence Zinc Ion Sensing and Binding Behavior of 4-Methyl-2,6-bis(((phenylmethyl)imino)methyl)phenol: Biological Application. Inorg. Chem. 2007, 46, 6405–6412. [Google Scholar] [CrossRef]
- Yu, G.; Liu, Y.; Song, Y.; Wu, X.; Zhu, D. A new blue light-emitting material. Synth. Met. 2001, 117, 211–214. [Google Scholar] [CrossRef]
- Di Bella, S.; Fragala, I. Two-dimensional characteristics of the second-order nonlinear optical response in dipolar donor–acceptor coor-dination complexes. New J. Chem. 2002, 26, 285–290. [Google Scholar]
- Leung, A.C.W.; Chong, J.H.; Patrick, B.O.; MacLachlan, M.J. Poly(salphenyleneethynylene)s: A New Class of Soluble, Conjugated, Metal-Containing Polymers. Macromolecules 2003, 36, 5051–5054. [Google Scholar] [CrossRef]
- Wang, P.; Hong, Z.; Xie, Z.; Tong, S.; Wong, O.; Lee, C.-S.; Wong, N.; Hung, L.; Lee, S. A bis-salicylaldiminato Schiff base and its zinc complex as new highly fluorescent red dopants for high performance organic electroluminescence devices. Chem. Commun. 2003, 14, 1664–1665. [Google Scholar] [CrossRef]
- Rigamonti, L.; Demartin, F.; Forni, A.; Righetto, S.; Pasini, A. Copper(II) Complexes of salen Analogues with Two Differently Sub-stituted (Push−Pull) Salicylaldehyde Moieties. A Study on the Modulation of Electronic Asymmetry and Nonlinear Optical Properties. Inorg. Chem. 2006, 45, 10976–10989. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, G.; Wang, S.; Chen, Q.; Ma, J.S. A Highly Fluorescent Anthracene-Containing Hybrid Material Exhibiting Tunable Blue–Green Emission Based on the Formation of an Unusual “T-Shaped” Excimer. Chem. Eur. J. 2007, 13, 3630–3635. [Google Scholar] [CrossRef]
- Kotova, O.; Semenov, S.; Eliseeva, S.; Troyanov, S.; Lyssenko, K.; Kuzmina, N. New Helical Zinc Complexes with Schiff Base Derivatives of β-Diketonates or β-Keto Esters and Ethylenediamine. Eur. J. Inorg. Chem. 2009, 2009, 3467–3474. [Google Scholar] [CrossRef]
- Hai, Y.; Chen, J.-J.; Zhao, P.; Lv, H.; Yu, Y.; Xu, P.; Zhang, J.-L. Luminescent zinc salen complexes as single and two-photon fluo-rescence subcellular imaging probes. Chem. Commun. 2011, 47, 2435–2437. [Google Scholar] [CrossRef]
- Dumur, F.; Contal, E.; Wantz, G.; Gigmes, D. Photoluminescence of Zinc Complexes: Easily Tunable Optical Properties by Variation of the Bridge Between the Imido Groups of Schiff Base Ligands. Eur. J. Inorg. Chem. 2014, 2014, 4186–4198. [Google Scholar] [CrossRef]
- Su, Q.; Wu, Q.-L.; Li, G.-H.; Liu, X.-M.; Mu, Y. Bis-salicylaldiminato zinc complexes: Syntheses, characterization and luminescent properties. Polyhedron 2007, 26, 5053–5060. [Google Scholar] [CrossRef]
- Cheng, J.; Ma, X.; Zhang, Y.; Liu, J.; Zhou, X.; Xiang, H. Optical Chemosensors Based on Transmetalation of Salen-Based Schiff Base Complexes. Inorg. Chem. 2014, 53, 3210–3219. [Google Scholar] [CrossRef]
- Malthus, S.J.; Cameron, S.A.; Brooker, S. Improved Access to 1,8-Diformyl-carbazoles Leads to Metal-Free Carbazole-Based [2 + 2] Schiff Base Macrocycles with Strong Turn-On Fluorescence Sensing of Zinc(II) Ions. Inorg. Chem. 2018, 57, 2480–2488. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yu, B.; Guo, Y.; Tang, X.; Zhang, H.; Liu, W. Both Visual and Fluorescent Sensor for Zn2+ Based on Quinoline Platform. Inorg. Chem. 2010, 49, 4002–4007. [Google Scholar] [CrossRef]
- Frederickson, C.J.; Kasarskis, E.J.; Ringo, D.; Frederickson, R.E. A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J. Neurosci. Methods 1987, 20, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Nasir, M.S.; Fahrni, C.J.; Suhy, D.A.; Kolodsick, K.J.; Singer, C.P.; O’Halloran, T.V. The chemical cell biology of zinc: Structure and intracellular fluorescence of a zinc-quinolinesulfonamide complex. JBIC J. Biol. Inorg. Chem. 1999, 4, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Coyle, P.; Zalewski, P.D.; Philcox, J.C.; Forbes, I.J.; Ward, A.D.; Lincoln, S.F.; Mahadevan, I.; Rofe, A.M. Measurement of zinc in hepatocytes by using a fluorescent probe, zinquin: Relationship to metallothionein and intracellular zinc. Biochem. J. 1994, 303, 781–786. [Google Scholar] [CrossRef]
- Zalewski, P.D.; Forbes, I.J.; Betts, W.H. Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem. J. 1993, 296, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, I.B.; Kimber, M.C.; Lincoln, S.F.; Tiekink, E.R.T.; Ward, A.D.; Betts, W.H.; Forbes, I.J.; Zalewski, P.D. The Synthesis of Zinquin Ester and Zinquin Acid, Zinc(II)-Specific Fluorescing Agents for Use in the Study of Biological Zinc(II). Aust. J. Chem. 1996, 49, 561–568. [Google Scholar] [CrossRef]
- Toroptsev, I.V.; Eshchenko, V.A. Histochemical detection of zinc using fluorescent 8-(arensulfonilamino)-quinolines. Tsitologiia 1970, 12, 1481–1484. [Google Scholar]
- Ullmann, S.; Börner, M.; Kahnt, A.; Abel, B.; Kersting, B. Green-Emissive Zn2+ Complex Supported by a Macrocyclic Schiff-Base/Calix[4]arene-Ligand: Crystallographic and Spectroscopic Characterization. Eur. J. Inorg. Chem. 2021, 36, 3691–3698. [Google Scholar] [CrossRef]
- Laube, C.; Taut, J.A.; Kretzschmar, J.; Zahn, S.; Knolle, W.; Ullman, S.; Kahnt, A.; Kersting, B.; Abel, B. Light controlled oxidation by supramolecular Zn(ii) Schiff-base complexes. Inorg. Chem. Front. 2020, 7, 4333–4346. [Google Scholar] [CrossRef]
- Klose, J.; Severin, T.; Hahn, P.; Jeremies, A.; Bergmann, J.; Fuhrmann, D.; Griebel, J.; Abel, B.; Kersting, B. Coordination chemistry and photoswitching of dinuclear macrocyclic cadmium-, nickel-, and zinc complexes containing azobenzene carboxylato co-ligands. Beilstein J. Org. Chem. 2019, 15, 840–851. [Google Scholar] [CrossRef]
- Ullmann, S.; Schnorr, R.; Laube, C.; Abel, B.; Kersting, B. Photoluminescence properties of tetrahedral zinc(ii) complexes supported by calix[4]arene-based salicylaldiminato ligands. Dalton Trans. 2018, 47, 5801–5811. [Google Scholar] [CrossRef]
- Ullmann, S.; Schnorr, R.; Handke, M.; Laube, C.; Abel, B.; Matysik, J.; Findesien, M.; Rüger, R.; Heine, T.; Kersting, B. Zn2+-Ion Sensing by Fluorescent Schiff Base Calix[4]arene Macrocycles. Chem. Eur. J. 2017, 23, 3824–3827. [Google Scholar] [CrossRef] [PubMed]
- Spectrum FL; PerkinElmer: Waltham, MA, USA, 2019.
- OriginPro 8G; OriginLab Corporation: Northampton, MA, USA, 2009.
- MestReNova 14.1.0; Mestrelab Research S.L.: Santiago de Compostela, Spain, 2019.
- X-AREA and X-RED 32; V1.35; STOE & Cie GmbH: Darmstadt, Germany, 2006.
- Sheldrick, G.M. Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallogr. Sect. A Found. Crystallogr. 1990, 46, 467–473. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Spek, A.L. PLATON—A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 2000. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Farrugia, L.J. ORTEP-3 for Windows—A version of ORTEP-III with a Graphical User Interface (GUI) by J. Farrugia. J. Appl. Cryst. 1997, 30, 565. [Google Scholar] [CrossRef]
- Van Lenthe, E.; Baerends, E.J. Optimized Slater-type basis sets for the elements 1-118. J. Comput. Chem. 2003, 24, 1142–1156. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 18, 3865–3868. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- van Gisbergen, S.; Snijders, J.; Baerends, E. Implementation of time-dependent density functional response equations. Comput. Phys. Commun. 1999, 118, 119–138. [Google Scholar] [CrossRef]
- Seth, M.; Ziegler, T. Range-Separated Exchange Functionals with Slater-Type Functions. J. Chem. Theory Comput. 2012, 8, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.A.; Oliveira, M.J.; Burnus, T. Libxc: A library of exchange and correlation functionals for density functional theory. Comput. Phys. Commun. 2012, 183, 2272–2281. [Google Scholar] [CrossRef]
- Lehtola, S.; Steigemann, C.; Oliveira, M.J.; Marques, M.A. Recent developments in libxc—A comprehensive library of functionals for density functional theory. Softwarex 2018, 7, 1–5. [Google Scholar] [CrossRef]
- Rüger, R.; Franchini, M.; Trnka, T.; Yakovlev, A.; van Lenthe, E.; Philipsen, P.; van Vuren, T.; Klumpers, B.; Soin, T. AMS 2021.104 SCM, Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Baerends, E.J.; Ziegler, T.; Atkins, A.J.; Autschbach, J.; Baseggio, O.; Bashford, D.; Bérces, A.; Bickelhaupt, F.M.; Bo, C.; Boerrigter, P.M.; et al. ADF, 2021.104, SCM, Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands, 2021. [Google Scholar]
- te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. [Google Scholar] [CrossRef]
- Louwen, J.N.; Pye, C.C.; van Lenthe, E.; Austin, N.D.; McGarrity, E.S.; Xiong, R.; Sandler, S.I.; Burnett, R.I. AMS 2021.104 COS-MO-RS, SCM, Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Pye, C.C.; Ziegler, T.; van Lenthe, E.; Louwen, J.N. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package—Part II. COSMO for real solvents. Can. J. Chem. 2009, 87, 790–797. [Google Scholar] [CrossRef]
- Pye, C.C.; Ziegler, T. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package. Theor. Chem. Acc. 1999, 101, 396–408. [Google Scholar] [CrossRef]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; Van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aq-ua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 7, 1349–1356. [Google Scholar] [CrossRef]
- Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S. SHAPE; University of Barcelona: Barcelona, Spain, 2013. [Google Scholar]
- Hirozo, K.; Yoshihiko, S. The Crystal Structure of Zinc Oxyacetate, Zn4O(CH3COO)6. Bull. Chem. Soc. Jap. 1954, 27, 112–114. [Google Scholar]
- Yoe, J.H.; Jones, A.L. Colorimetric Determination of Iron with Disodium-1,2-dihydroxybenzene-3,5-disulfonate. Ind. Eng. Chem. Anal. Ed. 1944, 16, 111–115. [Google Scholar] [CrossRef]
- Yoe, J.H.; Harvey, A.E. Colorimetric Determination of Iron with 4-Hydroxybiphenyl-3-carboxylic Acid. J. Am. Chem. Soc. 1948, 70, 648–654. [Google Scholar] [CrossRef]
- Meyer, A.S.; Ayres, G.H. The Mole Ratio Method for Spectrophotometric Determination of Complexes in Solution. J. Am. Chem. Soc. 1957, 79, 49–53. [Google Scholar] [CrossRef]
- Meyer, A.S.; Ayres, G.H. The Interaction of Platinum(II) and Tin(II) Chlorides. J. Am. Chem. Soc. 1955, 77, 2671–2675. [Google Scholar] [CrossRef]
- Mitra, A.; Hinge, V.K.; Mittal, A.; Bhakta, S.; Guionneau, P.; Rao, C.P. A Zinc-Sensing Glucose-Based Naphthyl Imino Conjugate as a Detecting Agent for Inorganic and Organic Phosphates, Including DNA. Chem. Eur. J. 2011, 17, 8044–8047. [Google Scholar] [CrossRef]
- Pathak, R.K.; Dessingou, J.; Rao, C.P. Multiple Sensor Array of Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ Complexes of a Triazole Linked Imino-Phenol Based Calix[4]arene Conjugate for the Selective Recognition of Asp, Glu, Cys, and His. Anal. Chem. 2012, 84, 8294–8300. [Google Scholar] [CrossRef]
- Mum-midivarapu, V.V.S.; Tabbasum, K.; Chinta, J.P.; Rao, C.P. 1,3-Di-amidoquinoline conjugate of calix[4]arene (L) as a ratiometric and colorimetric sensor for Zn2+: Spectroscopy, microscopy and computational studies. Dalton Trans. 2012, 41, 1671–1674. [Google Scholar] [CrossRef]
- Mum-midivarapu, V.V.S.; Bandaru, S.; Yarramala, D.S.; Samanta, K.D.; Mhatre, S.; Rao, C.P. Binding and Ratiometric Dual Ion Recognition of Zn2+ and Cu2+ by 1,3,5-Tris-amidoquinoline Conjugate of Calix[6]arene by Spectroscopy and Its Supramolecular Features by Microscopy. Anal. Chem. 2015, 87, 4988–4995. [Google Scholar] [CrossRef]
- Nugent, J.W.; Lee, H.; Lee, H.-S.; Reibenspies, J.H.; Hancock, R.D. Mechanism of chelation enhanced fluorescence in complexes of cadmium(ii), and a possible new type of anion sensor. Chem. Commun. 2013, 49, 9749–9751. [Google Scholar] [CrossRef]
- Joseph, R.; Chinta, J.P.; Rao, C.P. Lower Rim 1,3-Diderivative of Calix[4]arene-Appended Salicylidene Imine (H2L): Experimental and Computational Studies of the Selective Recognition of H2L toward Zn2+ and Sensing Phosphate and Amino Acid by [ZnL]. J. Org. Chem. 2010, 75, 3387–3395. [Google Scholar] [CrossRef]
Zn1-O1 2.114(4) | N1-Zn1-O1 87.90(19) | N3-Zn4-O11 88.40(18) |
Zn1-N1 2.064(5) | N1-Zn1-O3 97.27(17) | N3-Zn4-O13 90.8(2) |
Zn1-O2 2.016(4) | N1-Zn1-O4 86.15(16) | N3-Zn4-O14 88.41(19) |
Zn1-O3 2.103(4) | N1-Zn1-O5 98.8(2) | N3-Zn4-O15 98.98(19) |
Zn1-O4 2.264(4) | O1-Zn1-O4 94.19(16) | O11-Zn4-O14 93.16(16) |
Zn1-O5 2.101(4) | O2-Zn1-N1 163.88(19) | O12-Zn4-N3 166.20(19) |
Zn2-O1 2.063(4) | O2-Zn1-O1 78.83(16) | O12-Zn4-O11 78.95(16) |
Zn2-N2 2.091(5) | O2-Zn1-O3 92.02(16) | O12-Zn4-O13 94.78(18) |
Zn2-O2 2.065(4) | O2-Zn1-O4 85.74(15) | O12-Zn4-O14 86.82(17) |
Zn2-O6 2.060(4) | O2-Zn1-O5 93.55(17) | O12-Zn4-O15 93.07(17) |
Zn2-O7 1.996(4) | O3-Zn1-O1 90.56(17) | O13-Zn4-O11 90.37(18) |
Zn3-O2 1.939(4) | O3-Zn1-O4 174.26(17) | O13-Zn4-O14 176.35(18) |
Zn3-O8 1.976(4) | O5-Zn1-O1 170.98(16) | O15-Zn4-O11 170.48(16) |
Zn3-O9 1.957(4) | O5-Zn1-O3 94.56(17) | O15-Zn4-O13 95.50(18) |
Zn3-O10 1.969(4) | O5-Zn1-O4 80.33 | O15-Zn4-O14 81.13(16) |
Zn4-O11 2.113(4) | O1-Zn2-N2 88.07(19) | N4-Zn5-O11 87.19(19) |
Zn4-N3 2.034(5) | O1-Zn2-O2 78.89(16) | O12-Zn5-N4 164.02(19) |
Zn4-O12 2.012(4) | O2-Zn2-N2 156.16(18) | O12-Zn5-O11 79.39(16) |
Zn4-O13 2.107(4) | O6-Zn2-N2 89.1(2) | O12-Zn5-O16 95.29(19) |
Zn4-O14 2.234(4) | O6-Zn2-O1 148.89(19) | O16-Zn5-N4 88.1(2) |
Zn4-O15 2.096(4) | O6-Zn2-O2 91.90(18) | O16-Zn5-O11 135.03(19) |
Zn5-O12 2.045(4) | O7-Zn2-N2 105.0(2) | O17-Zn5-N4 96.70(19) |
Zn5-N4 2.059(5) | O7-Zn2-O1 109.06(18) | O17-Zn5-O11 115.40(19) |
Zn5-O11 2.063(4) | O7-Zn2-O2 98.14(17) | O17-Zn5-O12 96.87(19) |
Zn5-O16 2.046(5) | O7-Zn2-O6 101.6(2) | O17-Zn5-O16 109.6(2) |
Zn5-O17 2.000(4) | O2-Zn3-O8 107.92(19) | O12-Zn6-O18 106.5(2) |
Zn6-O12 1.934(4) | O2-Zn3-O9 108.63(17) | O12-Zn6-O19 108.21(18) |
Zn6-O18 1.952(5) | O2-Zn3-O10 122.87(18) | O12-Zn6-O20 121.79(19) |
Zn6-O19 1.966(4) | O9-Zn3-O8 108.25(19) | O18-Zn6-O19 106.9(2) |
Zn6-O20 1.940(4) | O9-Zn3-O10 107.01(18) | O20-Zn6-O18 107.7(2) |
O10-Zn3-O8 101.30(19) | O20-Zn6-O19 104.93(19) |
Zn1-O1 2.018(3) | N1-Zn1-O2 159.01(11) | N5-Zn3-N7 118.88(11) |
Zn1-O2 2.135(2) | N3-Zn1-N1 107.88(12) | N5-Zn3-O3 84.91(10) |
Zn1-N1 2.117(3) | N3-Zn1-O2 85.17(12) | N7-Zn3-O3 157.33(11) |
Zn1-N3 2.048(3) | O1-Zn1-N1 86.28(11) | O4-Zn3-N5 115.58(11) |
Zn1-O5 1.956(2) | O1-Zn1-N3 119.00(12) | O4-Zn3-N7 86.56(11) |
Zn2-O1 2.144(2) | O5-Zn1-N1 99.91(11) | O4-Zn3-O3 72.08(9) |
Zn2-O2 2.012(3) | O5-Zn1-N1 99.91(11) | O5-Zn3-N5 108.29(12) |
Zn2-N2 2.050(3) | O5-Zn1-N3 119.00(12) | O5-Zn3-N7 99.47(11) |
Zn2-N4 2.118(3) | O5-Zn1-O1 129.36(10) | O5-Zn3-O3 88.85(10) |
Zn2-O6 1.992(3) | O5-Zn1-O2 91.57(10) | O5-Zn3-O4 129.58(10) |
Zn3-O3 2.154(2) | N2-Zn2-N4 110.11(11) | N6-Zn4-O4 160.17(11) |
Zn3-O4 2.008(3) | N2-Zn2-O1 85.85(10) | N8-Zn4-N6 108.65(11) |
Zn3-N5 2.053(3) | N4-Zn2-O1 158.57(11) | N8-Zn4-O4 84.43(11) |
Zn3-N7 2.118(3) | O2-Zn2-N2 115.58(12) | O3-Zn4-N6 88.07(11) |
Zn3-O5 1.962(2) | O2-Zn2-N4 87.08(12) | O3-Zn4-N8 116.03(11) |
Zn4-O3 2.003(2) | O2-Zn2-O1 72.81(9) | O3-Zn4-O4 72.58(9) |
Zn4-O4 2.135(2) | O6-Zn2-N2 110.14(12) | O6-Zn4-N6 98.18(11) |
Zn4-N6 2.076(3) | O6-Zn2-N4 98.46(11) | O6-Zn4-N8 109.84(11) |
Zn4-N8 2.055(3) | O6-Zn2-O1 88.76(10) | O6-Zn4-O3 128.75(10) |
Zn4-O5 1.993(2) | O6-Zn2-O2 128.62(11) | O6-Zn4-O3 90.88(10) |
λmax/nm | ελ/[M−1cm−1] | Assignment | |
HL(a) | 451 348 248 | 5600 5480 28,800 | π-π* (ArOH) π-π*(ArOH) π-π*(ArOH+Ph) |
L−(a,b) | 349 232 | 6620 45,940 | π-π* (ArO−) |
L−(a,c) | 349 234 | 6640 59,920 | π-π* (ArO−) |
λex/nm | λem/nm | Stokes shift/cm−1 (rel. intensity/a.u.) | |
HL(d) | 447 | 497 | 2250 (5380) |
L−(b,d) | 346 | 563 | 11,139 (350) |
1(d) | 378 | 452 | 4331 (35,850) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Severin, T.; Karabtsova, V.; Börner, M.; Weiske, H.; Kuc, A.; Kersting, B. Synthesis, Structures and Photophysical Properties of Tetra- and Hexanuclear Zinc Complexes Supported by Tridentate Schiff Base Ligands. Chemistry 2023, 5, 1028-1045. https://doi.org/10.3390/chemistry5020070
Severin T, Karabtsova V, Börner M, Weiske H, Kuc A, Kersting B. Synthesis, Structures and Photophysical Properties of Tetra- and Hexanuclear Zinc Complexes Supported by Tridentate Schiff Base Ligands. Chemistry. 2023; 5(2):1028-1045. https://doi.org/10.3390/chemistry5020070
Chicago/Turabian StyleSeverin, Tobias, Viktoriia Karabtsova, Martin Börner, Hendrik Weiske, Agnieszka Kuc, and Berthold Kersting. 2023. "Synthesis, Structures and Photophysical Properties of Tetra- and Hexanuclear Zinc Complexes Supported by Tridentate Schiff Base Ligands" Chemistry 5, no. 2: 1028-1045. https://doi.org/10.3390/chemistry5020070
APA StyleSeverin, T., Karabtsova, V., Börner, M., Weiske, H., Kuc, A., & Kersting, B. (2023). Synthesis, Structures and Photophysical Properties of Tetra- and Hexanuclear Zinc Complexes Supported by Tridentate Schiff Base Ligands. Chemistry, 5(2), 1028-1045. https://doi.org/10.3390/chemistry5020070