Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Sardinia radio telescope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9232 KiB  
Article
Design, Fabrication, and Electromagnetic Characterization of a Feed Horn of the Linear-Polarized Multi-Beam Cryogenic S-Band Receiver for the Sardinia Radio Telescope
by Tonino Pisanu, Paolo Maxia, Alessandro Navarrini, Giuseppe Valente, Renzo Nesti, Luca Schirru, Pasqualino Marongiu, Pierluigi Ortu, Adelaide Ladu, Francesco Gaudiomonte, Silvio Pilia, Roberto Caocci, Paola Di Ninni, Luca Cresci and Aldo Sonnini
Electronics 2025, 14(11), 2301; https://doi.org/10.3390/electronics14112301 - 5 Jun 2025
Viewed by 461
Abstract
The S-band (i.e., 2–4 GHz) is essential in multiple fields of radio astronomy, ranging from pulsar and solar studies to investigations of the early universe. The Italian 64 m fully steerable Sardinia Radio Telescope (SRT) is a system designed to operate in a [...] Read more.
The S-band (i.e., 2–4 GHz) is essential in multiple fields of radio astronomy, ranging from pulsar and solar studies to investigations of the early universe. The Italian 64 m fully steerable Sardinia Radio Telescope (SRT) is a system designed to operate in a wide frequency band ranging from 300 MHz to 116 GHz. Recently, the Astronomical Observatory of Cagliari (OAC) has been developing a new cryogenic seven-beam S-band radio receiver. This paper describes the design, fabrication and electromagnetic characterization of the feed horn for this new receiver. It has been designed to observe the sky in the 3–4.5 GHz frequency range and it will be composed of seven feed horns arranged in a regular hexagonal layout with a central element. The feed horns are optimized for placement in the primary focus and consequently illuminate the 64 m primary mirror of the SRT. The electromagnetic characterization of the single feed horn is crucial to verify the receiver’s performance; for this reason, a single feed horn has been manufactured to compare the measured reflection coefficient and the radiated far-field diagram with the results of the electromagnetic simulations, performed using the CST® Suite Studio 2024 and Ansys HFSS® Electromagnetics Suite 2021 R1 (To make the S-parameters and the radiation diagram measurement procedure feasible, the single feed horn has been connected to two adapters: a circular-to-rectangular waveguide adapter and a coax-to-rectangular waveguide adapter. The results of the measurements performed in the anechoic chamber are in very good agreement with the simulated results. Additionally, the feed horn phase center position is evaluated, merging the measurements and simulations results for an optimal installation on the primary focus of the SRT. Full article
(This article belongs to the Special Issue Microwave Devices: Analysis, Design, and Application)
Show Figures

Figure 1

22 pages, 5289 KiB  
Article
Design of the New Dual-Polarized Broadband Phased Array Feed Antenna for the Sardinia Radio Telescope
by Paolo Maxia, Giovanni Andrea Casula, Alessandro Navarrini, Tonino Pisanu, Giuseppe Valente, Giacomo Muntoni and Giorgio Montisci
Electronics 2025, 14(4), 807; https://doi.org/10.3390/electronics14040807 - 19 Feb 2025
Viewed by 840
Abstract
High-sensitivity and large-scale surveys are essential in advancing radio astronomy, enabling detailed exploration of the universe. A Phased Array Feed (PAF) installed in the focal plane of a radio telescope significantly enhances mapping efficiency by increasing the instantaneous Field of View (FoV) and [...] Read more.
High-sensitivity and large-scale surveys are essential in advancing radio astronomy, enabling detailed exploration of the universe. A Phased Array Feed (PAF) installed in the focal plane of a radio telescope significantly enhances mapping efficiency by increasing the instantaneous Field of View (FoV) and improving sky sampling capabilities. This paper presents the design and optimization of a novel C-Band Phased Array Feed antenna for the Sardinia Radio Telescope (SRT). The system features an 8 × 8 array of dual-polarized elements optimized to achieve a uniform beam pattern and an edge taper of approximately 5 dB for single radiating elements within the 3.0–7.7 GHz frequency range. The proposed antenna addresses key efficiency limitations identified in the PHAROS 2 (PHased Arrays for Reflector Observing Systems) system, including the under-illumination of the Sardinia Radio Telescope’s primary mirror caused by narrow sub-array radiation patterns. By expanding the operational bandwidth and refining the radiation characteristics, this new design enables significantly improved performance across the broader frequency range of 3.0–7.7 GHz, enhancing the telescope’s capability for wide-field, high-resolution observations. Full article
(This article belongs to the Special Issue Microwave Devices: Analysis, Design, and Application)
Show Figures

Figure 1

10 pages, 2014 KiB  
Article
Measurement Campaign of Radio Frequency Interference in a Portion of the C-Band (4–5.8 GHz) for the Sardinia Radio Telescope
by Luca Schirru and Francesco Gaudiomonte
Sensors 2024, 24(19), 6481; https://doi.org/10.3390/s24196481 - 8 Oct 2024
Viewed by 1248
Abstract
Radio frequency interference (RFI) analysis is crucial for ensuring the proper functioning of a radio telescope and the quality of astronomical observations, as human-generated interference can compromise scientific data collection. The aim of this study is to present the results of an RFI [...] Read more.
Radio frequency interference (RFI) analysis is crucial for ensuring the proper functioning of a radio telescope and the quality of astronomical observations, as human-generated interference can compromise scientific data collection. The aim of this study is to present the results of an RFI measurement campaign in the frequency range of 4–5.8 GHz, a portion of the well-known C-band, for the Sardinia Radio Telescope (SRT), conducted in October–November 2023. In fact, this Italian telescope, managed by the Astronomical Observatory of Cagliari (OAC), a branch of the Italian National Institute for Astrophysics (INAF), was recently equipped with a new C-band receiver that operates from 4.2 GHz to 5.6 GHz. The measurements were carried out at three strategically chosen locations around the telescope using the INAF mobile laboratory, providing comprehensive coverage of all possible antenna pointing directions. The results revealed several sources of RFI, including emissions from radar, terrestrial and satellite communications, and wireless transmissions. Characterizing these sources and assessing their frequency band occupation are essential for understanding the impact of RFI on scientific observations. This work provides a significant contribution to astronomers who will use the SRT for scientific observations, offering a suggestion for the development of mitigation strategies and safeguarding the radio astronomical environment for future observational campaigns. Full article
(This article belongs to the Special Issue Advanced Optics and Sensing Technologies for Telescopes)
Show Figures

Figure 1

14 pages, 2285 KiB  
Article
Design, Implementation, and Characterization of a Signal Acquisition Chain for SADino: The Precursor of the Italian Low-Frequency Telescope Named the Sardinia Aperture Array Demonstrator (SAAD)
by Adelaide Ladu, Luca Schirru, Mauro Pili, Gian Paolo Vargiu, Francesco Gaudiomonte, Federico Perini, Andrea Melis, Raimondo Concu and Matteo Murgia
Sensors 2023, 23(22), 9151; https://doi.org/10.3390/s23229151 - 13 Nov 2023
Cited by 1 | Viewed by 2401
Abstract
Low-frequency aperture arrays represent sensitive instruments to detect signals from radio astronomic sources situated in the universe. In Italy, the Sardinia Aperture Array Demonstrator (SAAD) consists of an ongoing project of the Italian National Institute for Astrophysics (INAF) aimed to install an aperture [...] Read more.
Low-frequency aperture arrays represent sensitive instruments to detect signals from radio astronomic sources situated in the universe. In Italy, the Sardinia Aperture Array Demonstrator (SAAD) consists of an ongoing project of the Italian National Institute for Astrophysics (INAF) aimed to install an aperture array constituted of 128 dual-polarized Vivaldi antennas at the Sardinia Radio Telescope (SRT) site. The originally envisaged 128 elements of SAAD were re-scoped to the 16 elements of its precursor named SADino, with the aim to quickly test the system with a digital beam-former based on the Italian Tile Processing Module (iTPM) digital back-end. A preliminary measurements campaign of radio frequency interference (RFI) was performed to survey the less contaminated spectral region. The results of these measurements permitted the establishment of the technical requirements for receiving a chain for the SADino telescope. In this paper, the design, implementation, and characterization of this signal acquisition chain are proposed. The operative frequency window of SAAD and its precursor, SADino, sweeps from 260 MHz to 420 MHz, which appears very attractive for radio astronomy applications and radar observation in space and surveillance awareness (SSA) activities. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2023)
Show Figures

Figure 1

16 pages, 5516 KiB  
Article
Radio Frequency Interference Measurements to Determine the New Frequency Sub-Bands of the Coaxial L-P Cryogenic Receiver of the Sardinia Radio Telescope
by Luca Schirru, Adelaide Ladu and Francesco Gaudiomonte
Universe 2023, 9(9), 390; https://doi.org/10.3390/universe9090390 - 28 Aug 2023
Cited by 2 | Viewed by 1413
Abstract
Radio frequency interference (RFI) represents all unwanted signals detected by radio receivers of a telescope. Unfortunately, the presence of RFI is significantly increasing with the technological development of wireless systems around the world. For this reason, RFI measurement campaigns are periodically necessary to [...] Read more.
Radio frequency interference (RFI) represents all unwanted signals detected by radio receivers of a telescope. Unfortunately, the presence of RFI is significantly increasing with the technological development of wireless systems around the world. For this reason, RFI measurement campaigns are periodically necessary to map the RFI scenario around a telescope. The Sardinia Radio Telescope (SRT) is an Italian instrument that was designed to operate in a wide frequency band between 300 MHz and 116 GHz. One of the receivers of the telescope is a coaxial cryogenic receiver that covered a portion of the P and L bands (i.e., 305–410 MHz and 1300–1800 MHz) in its original version. Although the receiver was used for years to observe bright sources with sufficient results, its sub-bands can be redesigned considering the most recently evolved RFI scenario. In this paper, the results of a RFI measurement campaign are reported and discussed. On the basis of these results, the new sub-bands of the L-P receiver, together with the design of the new microwave filter selector block of the SRT receiver, are presented. In this way, SRT will cover up to 120 MHz and 460 MHz of −3 dB bandwidth at the P-band (290–410 MHz) and L-band (1320–1780 MHz), respectively. The bands of these filters are selected to reject the main RFI with high levels of amplitude and optimize the estimated antenna temperature and sensitivity of the receiver during the research activities, such as pulsar observations, very long baseline interferometer applications and spectroscopy science. Full article
Show Figures

Figure 1

21 pages, 6727 KiB  
Article
Adaptation of an IRAM W-Band SIS Receiver to the INAF Sardinia Radio Telescope: A Feasibility Study and Preliminary Tests
by Adelaide Ladu, Luca Schirru, Pierluigi Ortu, Andrea Saba, Mauro Pili, Alessandro Navarrini, Francesco Gaudiomonte, Pasqualino Marongiu and Tonino Pisanu
Sensors 2023, 23(17), 7414; https://doi.org/10.3390/s23177414 - 25 Aug 2023
Cited by 2 | Viewed by 1535
Abstract
Radio telescopes are used by astronomers to observe the naturally occurring radio waves generated by planets, interstellar molecular clouds, galaxies, and other cosmic objects. These telescopes are equipped with radio receivers that cover a portion of the radio frequency (RF) and millimetre-wave spectra. [...] Read more.
Radio telescopes are used by astronomers to observe the naturally occurring radio waves generated by planets, interstellar molecular clouds, galaxies, and other cosmic objects. These telescopes are equipped with radio receivers that cover a portion of the radio frequency (RF) and millimetre-wave spectra. The Sardinia Radio Telescope (SRT) is an Italian instrument designed to operate between 300 MHz and 116 GHz. Currently, the SRT maximum observational frequency is 26.5 GHz. A feasibility study and preliminary tests were performed with the goal of equipping the SRT with a W-band (84–116 GHz) mono-feed radio receiver, whose results are presented in this paper. In particular, we describe the adaptation to the SRT of an 84–116 GHz cryogenic receiver developed by the Institute de Radio Astronomie Millimétrique (IRAM) for the Plateau de Bure Interferometer (PdBI) antennas. The receiver was upgraded by INAF with a new electronic control system for the remote control from the SRT control room, with a new local oscillator (LO), and with a new refrigeration system. Our feasibility study includes the design of new receiver optics. The single side band (SSB) receiver noise temperature measured in the laboratory, Trec ≈ 66 K at 86 GHz, is considered sufficiently low to carry out the characterisation of the SRT active surface and metrology system in the 3 mm band. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

21 pages, 4048 KiB  
Article
Upgrading of the L-P Band Cryogenic Receiver of the Sardinia Radio Telescope: A Feasibility Study
by Adelaide Ladu, Luca Schirru, Francesco Gaudiomonte, Pasqualino Marongiu, Gianmarco Angius, Federico Perini and Gian Paolo Vargiu
Sensors 2022, 22(11), 4261; https://doi.org/10.3390/s22114261 - 2 Jun 2022
Cited by 8 | Viewed by 2868
Abstract
The Sardinia Radio Telescope is a quasi-Gregorian system with a shaped 64 m diameter primary reflector and a 7.9 m diameter secondary reflector. It was designed to operate with high efficiency across the 0.3–116 GHz frequency range. The telescope is equipped with a [...] Read more.
The Sardinia Radio Telescope is a quasi-Gregorian system with a shaped 64 m diameter primary reflector and a 7.9 m diameter secondary reflector. It was designed to operate with high efficiency across the 0.3–116 GHz frequency range. The telescope is equipped with a cryogenic coaxial dual-frequency L-P band receiver, which covers a portion of the P-band (305–410 MHz) and the L-band (1300–1800 MHz). Although this receiver has been used for years in its original design, with satisfactory results, it presents some parts that could be upgraded in order to improve the performances of the system. With the passing of time and with technology advances, the presence of unwanted human-made signals in the area around the telescope, known as radio frequency interferences, has grown exponentially. In addition, the technology of the receiver electronic control system became obsolete and it could be replaced with next-generation electronic boards, which offer better performances both service reliability and low generation of unwanted radio frequency signals. In this paper, a feasibility study for improving the L-P band receiver is discussed, taking into account the mitigation of the main radio frequency interferences. With this study, it is possible to have a sensitive instrument that can be used for scientific research at low frequencies (P- and L-bands), which are usually populated by signals from civil and military mobile communications, TV broadcasting and remote sensing applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

10 pages, 4031 KiB  
Article
Recent Advances of the BIRALET System about Space Debris Detection
by Tonino Pisanu, Giacomo Muntoni, Luca Schirru, Pierluigi Ortu, Enrico Urru and Giorgio Montisci
Aerospace 2021, 8(3), 86; https://doi.org/10.3390/aerospace8030086 - 19 Mar 2021
Cited by 17 | Viewed by 4464
Abstract
Space debris is internationally recognized as a planetary threat. Efforts to enhance the worldwide radar monitoring networks have been intensified in the last years. Among the new radars employed for the observations, one of the most promising is the Bistatic Radar for Low [...] Read more.
Space debris is internationally recognized as a planetary threat. Efforts to enhance the worldwide radar monitoring networks have been intensified in the last years. Among the new radars employed for the observations, one of the most promising is the Bistatic Radar for Low Earth Orbit (LEO) Tracking (BIRALET), which employs the Sardinia Radio Telescope as a receiving segment. The Sardinia Radio Telescope (SRT) has recently been proven to be a reliable instrument for space debris monitoring and, for this purpose, over the years has undergone some substantial modifications in order to be able to rise to the status of a fully functional radar receiver. However, an extensive measurement campaign, in order to assess the real potential of the radar, has never been done before. In this paper, the authors present the first real space debris measurement campaign of the SRT, made between December 2018 and October 2019 using the new dedicated channel of the P-band receiver. A total of 27 objects were correctly detected during this campaign, characterized by a radar cross section (RCS) interval between 0.13 and 13.4 m2 and a range interval between 459 and 1224 km. Full article
(This article belongs to the Special Issue New Space: Advances in Space Science and Engineering)
Show Figures

Figure 1

19 pages, 7845 KiB  
Article
The Ad Hoc Back-End of the BIRALET Radar to Measure Slant-Range and Doppler Shift of Resident Space Objects
by Luca Schirru, Tonino Pisanu and Angelo Podda
Electronics 2021, 10(5), 577; https://doi.org/10.3390/electronics10050577 - 1 Mar 2021
Cited by 12 | Viewed by 3561
Abstract
Space debris is a term for all human-made objects orbiting the Earth or reentering the atmosphere. The population of space debris is continuously growing and it represents a potential issue for active satellites and spacecraft. New collisions and fragmentation could exponentially increase the [...] Read more.
Space debris is a term for all human-made objects orbiting the Earth or reentering the atmosphere. The population of space debris is continuously growing and it represents a potential issue for active satellites and spacecraft. New collisions and fragmentation could exponentially increase the amount of debris and so the level of risk represented by these objects. The principal technique used for the debris monitoring, in the Low Earth Orbit (LEO) between 200 km and 2000 km of altitude, is based on radar systems. The BIRALET system represents one of the main Italian radars involved in resident space objects observations. It is a bi-static radar, which operates in the P-band at 410–415 MHz, that uses the Sardinia Radio Telescope as receiver. In this paper, a detailed description of the new ad hoc back-end developed for the BIRALET radar, with the aim to perform slant-range and Doppler shift measurements, is presented. The new system was successfully tested in several validation measurement campaigns, the results of which are reported and discussed. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

14 pages, 2065 KiB  
Article
Orbit Determination of Resident Space Objects Using the P-Band Mono-Beam Receiver of the Sardinia Radio Telescope
by Matteo Losacco and Luca Schirru
Appl. Sci. 2019, 9(19), 4092; https://doi.org/10.3390/app9194092 - 30 Sep 2019
Cited by 18 | Viewed by 3994
Abstract
The population of space debris in near-Earth space is continuously growing and it represents a serious problem for active satellites and spacecraft. A performant ground-based and space-based network of sensors is necessary for space surveillance and consequently to prevent new collisions and monitoring [...] Read more.
The population of space debris in near-Earth space is continuously growing and it represents a serious problem for active satellites and spacecraft. A performant ground-based and space-based network of sensors is necessary for space surveillance and consequently to prevent new collisions and monitoring atmospheric reentry of these objects. This paper illustrates the possible role of the Italian ground-based novel bi-static radar sensor, named BIRALET, for space monitoring and resident space objects tracking. The main characteristics of the receiver system, the Sardinia Radio Telescope with its P-band mono-beam receiver, are described in detail. Then, a preliminary analysis of the performance of the sensor is presented, and the results of numerical simulations are shown, providing a general overview on both observation capabilities and orbit determination accuracy achievable with the Sardinia Radio Telescope. Full article
(This article belongs to the Special Issue Space Debris: Monitoring and Hazard Evaluation)
Show Figures

Figure 1

15 pages, 2780 KiB  
Article
Space Debris Detection in Low Earth Orbit with the Sardinia Radio Telescope
by Giacomo Muntoni, Luca Schirru, Tonino Pisanu, Giorgio Montisci, Giuseppe Valente, Francesco Gaudiomonte, Giampaolo Serra, Enrico Urru, Pierluigi Ortu and Alessandro Fanti
Electronics 2017, 6(3), 59; https://doi.org/10.3390/electronics6030059 - 14 Aug 2017
Cited by 32 | Viewed by 10644
Abstract
Space debris are orbiting objects that represent a major threat for space operations. The most used countermeasure to face this threat is, by far, collision avoidance, namely the set of maneuvers that allow to avoid a collision with the space debris. Since collision [...] Read more.
Space debris are orbiting objects that represent a major threat for space operations. The most used countermeasure to face this threat is, by far, collision avoidance, namely the set of maneuvers that allow to avoid a collision with the space debris. Since collision avoidance is tightly related to the knowledge of the debris state (position and speed), the observation of the orbital debris is the key of the problem. In this work a bistatic radar configuration named BIRALET (BIstatic RAdar for LEO Tracking) is used to detect a set of space debris at 410 MHz, using the Sardinia Radio Telescope as the receiver antenna. The signal-to-noise ratio, the Doppler shift and the frequency spectrum for each debris are reported. Full article
Show Figures

Figure 1

16 pages, 1361 KiB  
Article
A New, Effective and Low-Cost Three-Dimensional Approach for the Estimation of Upper-Limb Volume
by Roberto Buffa, Elena Mereu, Paolo Lussu, Valeria Succa, Tonino Pisanu, Franco Buffa and Elisabetta Marini
Sensors 2015, 15(6), 12342-12357; https://doi.org/10.3390/s150612342 - 26 May 2015
Cited by 29 | Viewed by 6081
Abstract
The aim of this research was to validate a new procedure (SkanLab) for the three-dimensional estimation of total arm volume. SkanLab is based on a single structured-light Kinect sensor (Microsoft, Redmond, WA, USA) and on Skanect (Occipital, San Francisco, CA, USA) and [...] Read more.
The aim of this research was to validate a new procedure (SkanLab) for the three-dimensional estimation of total arm volume. SkanLab is based on a single structured-light Kinect sensor (Microsoft, Redmond, WA, USA) and on Skanect (Occipital, San Francisco, CA, USA) and MeshLab (Visual Computing Lab, Pisa, Italy) software. The volume of twelve plastic cylinders was measured using geometry, as the reference, water displacement and SkanLab techniques (two raters and repetitions). The right total arm volume of thirty adults was measured by water displacement (reference) and SkanLab (two raters and repetitions). The bias and limits of agreement (LOA) between techniques were determined using the Bland–Altman method. Intra- and inter-rater reliability was assessed using the intraclass correlation coefficient (ICC) and the standard error of measurement. The bias of SkanLab in measuring the cylinders volume was −21.9 mL (−5.7%) (LOA: −62.0 to 18.2 mL; −18.1% to 6.7%) and in measuring the volume of arms’ was −9.9 mL (−0.6%) (LOA: −49.6 to 29.8 mL; −2.6% to 1.4%). SkanLab’s intra- and inter-rater reliabilities were very high (ICC >0.99). In conclusion, SkanLab is a fast, safe and low-cost method for assessing total arm volume, with high levels of accuracy and reliability. SkanLab represents a promising tool in clinical applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop