Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Sandy Shoal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10673 KB  
Article
Sedimentary Environment and Evolution of the Lower Cretaceous Jiufotang Formation in the Pijiagou and Tanjiagou Sections, Southern Fuxin Basin, NE China
by Yiming Huang, Shichao Li, Fei Xiao, Lei Shi, Yulai Yao and Jianguo Yang
Appl. Sci. 2025, 15(19), 10637; https://doi.org/10.3390/app151910637 - 1 Oct 2025
Viewed by 216
Abstract
The Lower Cretaceous Jiufotang Formation in the Fuxin Basin contains a proven petroleum system. However, its southern part remains underexplored due to limited drilling and fragmentary sedimentary studies. To address this issue, we conducted detailed sedimentological logging of the two typical outcrop sections, [...] Read more.
The Lower Cretaceous Jiufotang Formation in the Fuxin Basin contains a proven petroleum system. However, its southern part remains underexplored due to limited drilling and fragmentary sedimentary studies. To address this issue, we conducted detailed sedimentological logging of the two typical outcrop sections, Pijiagou and Tanjiagou. Field observations, petrographic data, and grain-size analysis were integrated to decipher hydrodynamic conditions, calibrate microfacies associations, and reconstruct the sedimentary evolution through facies stacking pattern analysis. The results show that the Jiufotang Formation predominantly consists of calcareous fine-grained clastic rocks, with poorly sorted sandstones indicative of low-energy conditions. Sediment transport mechanisms include both traction and turbidity currents, with suspension being predominant. The succession records a depositional transition from fan-delta to lacustrine environments. Two subfacies, fan-delta front and shore-shallow lacustrine, were identified and subdivided into seven microfacies: subaqueous distributary channels, interdistributary bays, subaqueous levees, mouth bars, muddy shoals, sandy shoals, and carbonate shoals. The sedimentary evolution reflects an initial lacustrine transgression followed by regression, interrupted by multiple lacustrine-level fluctuations. The alternating depositional pattern of lacustrine and deltaic facies has formed complete source-reservoir-seal assemblages in the Jiufotang Formation in the study area, making it a potential favorable target for hydrocarbon accumulation. Full article
(This article belongs to the Topic Advanced Technology for Oil and Nature Gas Exploration)
Show Figures

Figure 1

18 pages, 12207 KB  
Article
Numerical Investigation on the Interaction between a Tsunami-like Solitary Wave and a Monopile on a Sloping Sandy Seabed
by Wenbo Xie, Qi Zhang, Hao Cai and Miao Fu
J. Mar. Sci. Eng. 2024, 12(8), 1421; https://doi.org/10.3390/jmse12081421 - 17 Aug 2024
Cited by 2 | Viewed by 1254
Abstract
An integrated numerical model was developed to investigate the interaction between a tsunami-like solitary wave and a monopile on a sloping sandy seabed in this study. The solitary wave motion is governed by the RANS equations with the k-ε turbulence model. [...] Read more.
An integrated numerical model was developed to investigate the interaction between a tsunami-like solitary wave and a monopile on a sloping sandy seabed in this study. The solitary wave motion is governed by the RANS equations with the k-ε turbulence model. The porous sloping sandy seabed is governed by Biot’s equation (u-p approximation). The solitary wave is validated with previous experimental data. Meanwhile, a further comparison of solitary wave scattering by the monopile is carried out to verify the numerical model. Then, the effects of different monopile locations were examined in investigating the solitary wave–monopile interaction problem. The velocity magnitudes and the free-surface elevation changes in the solitary wave around the monopile are investigated at various monopile locations. In addition, the response of the sloping sandy seabed and monopile under the solitary wave are examined. The numerical results demonstrate the accuracy of the current method in simulating solitary waves and wave height variation around monopiles. Wave run-up is observed in front of the monopile, with a high-velocity forward-moving water jet forming behind it. The maximum fluid velocity, wave run-up height in front of the monopile, excess pore water pressure (EPWP), and bending moment of the monopile increase as the monopile approaches the shoreline. However, at the closest location to the shoreline, due to the strong dynamic interaction between the solitary wave and the monopile, significant wave shoaling and breaking are observed, resulting in a slight decrease in the wave force acting on the monopile. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Geomechanics and Geotechnics)
Show Figures

Figure 1

25 pages, 37249 KB  
Article
Anisotropy Study on the Process of Soil Permeability and Consolidation in Reclamation Areas: A Case Study of Chongming East Shoal in Shanghai
by Meng Yao, Hanmei Wang, Qingbo Yu, Hui Li, Weitong Xia, Qing Wang, Xinlei Huang and Jinxin Lin
Buildings 2023, 13(12), 3059; https://doi.org/10.3390/buildings13123059 - 8 Dec 2023
Cited by 4 | Viewed by 2659
Abstract
Anisotropic permeability is of great significance for assessing the consolidation and drainage mode of soil layers in reclamation areas, as well as for preventing and controlling ground settlement after project construction. This paper analyzes the anisotropic permeability of the inland and nearshore soil [...] Read more.
Anisotropic permeability is of great significance for assessing the consolidation and drainage mode of soil layers in reclamation areas, as well as for preventing and controlling ground settlement after project construction. This paper analyzes the anisotropic permeability of the inland and nearshore soil layers in Chongming East Shoal, Shanghai, and the formation mechanism of anisotropic permeability through permeability and scanning electron microscope (SEM) tests. The results highlight that compared with dredger fill and sandy silt, the horizontal permeability coefficient of underlying soft clay (USC) is significantly higher than its vertical permeability coefficient, which is more significant in nearshore USC. Interestingly, the upper clay (21.5 m) in the thickest clay layer shows greater anisotropic permeability than the lower clay (41.5 m). Due to the instability of seepage channels, the USC anisotropic permeability increases in a fluctuating manner as the hydraulic gradient increases. Microstructural parameters are used to reveal the mechanism of anisotropic permeability, which shows that a simple soil skeleton and structure, strong particle orientation, decreased particle abundance, increased particle roundness, decreased particle contact area, and increased pore area all contribute to the enhancement of permeability. Moreover, micro-parameters have been proposed to evaluate anisotropic permeability in terms of the effective seepage-pore area. This approach addresses the constraint of water films on the permeability efficiency of USC particles. Full article
(This article belongs to the Special Issue Problematic Soils in Building Construction)
Show Figures

Figure 1

20 pages, 5815 KB  
Article
Ecological Impact Prediction of Groundwater Change in Phreatic Aquifer under Multi-Mining Conditions
by Shenghui Zhou, Tingxi Liu and Limin Duan
ISPRS Int. J. Geo-Inf. 2022, 11(7), 359; https://doi.org/10.3390/ijgi11070359 - 23 Jun 2022
Cited by 4 | Viewed by 2511
Abstract
In aeolian sandy grass shoal catchment areas that rely heavily on groundwater, mining-induced geological deformation and aquifer drainage are likely to cause irreversible damage to natural groundwater systems and affect the original circulation of groundwater, thus threatening the ecological environment. This study aimed [...] Read more.
In aeolian sandy grass shoal catchment areas that rely heavily on groundwater, mining-induced geological deformation and aquifer drainage are likely to cause irreversible damage to natural groundwater systems and affect the original circulation of groundwater, thus threatening the ecological environment. This study aimed to predict the impact of groundwater level decline on vegetation growth in the Hailiutu River Basin (HRB), which is a coal-field area. Based on remote-sensing data, the land use/cover change was interpreted and analyzed, and the central areas of greensward land in the basin were determined. Subsequently, the correlation between groundwater depth and grassland distribution was analyzed. Then, the groundwater system under natural conditions was modeled using MODFLOW, and the groundwater flow field in 2029 was predicted by loading the generalized treatment of coal mine drainage water to the model. The change in groundwater depth caused by coal mining and its influence on the grassland were obtained. The results show that coal mining will decrease the groundwater depth, which would induce degradation risks in 4 of the original 34 aggregation centers of greensward land that originally depended on groundwater for growth in HRB because they exceeded the groundwater threshold. The prediction results show that the maximum settlement of groundwater level can reach 5 m in the northern (Yinpanhao), 6 m in the eastern (Dahaize), and 10 m in the southern (Balasu) region of HRB. Attention should be paid to vegetation degradation in areas where groundwater depth exceeds the minimum threshold for plant growth. Full article
(This article belongs to the Special Issue Geo-Information for Watershed Processes)
Show Figures

Figure 1

18 pages, 6023 KB  
Article
The Effect of Wave-Induced Current and Coastal Structure on Sediment Transport at the Zengwen River Mouth
by Chun-Hung Pao, Jia-Lin Chen, Shih-Feng Su, Yu-Ching Huang, Wen-Hsin Huang and Chien-Hung Kuo
J. Mar. Sci. Eng. 2021, 9(3), 333; https://doi.org/10.3390/jmse9030333 - 17 Mar 2021
Cited by 8 | Viewed by 4831
Abstract
The mechanisms that control estuarine sediment transport are complicated due to the interaction between riverine flows, tidal currents, waves, and wave-driven currents. In the past decade, severe seabed erosion and shoreline retreat along the sandy coast of western Taiwan have raised concerns regarding [...] Read more.
The mechanisms that control estuarine sediment transport are complicated due to the interaction between riverine flows, tidal currents, waves, and wave-driven currents. In the past decade, severe seabed erosion and shoreline retreat along the sandy coast of western Taiwan have raised concerns regarding the sustainability of coastal structures. In this study, ADCPs (Acoustic Doppler Current Profiler) and turbidity meters were deployed at the mouth of the Zengwen river to obtain the time series and the spatial distribution of flow velocities and turbidity during the base flow and flood conditions. A nearshore circulation model, SHORECIRC, has been adapted into a hybrid finite-difference/finite-volume, TVD (Total Variation Diminishing)-type scheme and coupled with the wave-spectrum model Simulating Waves Nearshore (SWAN). Conventional finite-difference schemes often produce unphysical oscillations when modeling coastal processes with abrupt bathymetric changes at river mouths. In contrast, the TVD-type finite volume scheme allows for robust treatment of discontinuities through the shock-capturing mechanism. The model reproduces water levels, waves, currents observed at the mouth of the Zengwen River reasonably well. The simulated residual sediment transport patterns demonstrate that the transport process at the river mouth is dominated by the interaction of the bathymetry and wave-induced currents when the riverine discharge was kept in reservoirs. The offshore residual transport causes erosion at the northern part of the river mouth, and the onshore residual transport causes accretion in the ebb tidal shoals around the center of the river mouth. The simulated morphological evolution displays significant changes on shallower deltas. The location with significant sea bed changes is consistent with the spot in which severe erosion occurred in recent years. Further analysis of morphological evolution is also discussed to identify the role of coastal structures, for example, the extension of the newly constructed groins near the river mouth. Full article
(This article belongs to the Special Issue Waves and Ocean Structures II)
Show Figures

Figure 1

11 pages, 1971 KB  
Review
The Problem of Removing Seaweed from the Beaches: Review of Methods and Machines
by Łukasz Warguła, Bartosz Wieczorek, Mateusz Kukla, Piotr Krawiec and Jakub Wojciech Szewczyk
Water 2021, 13(5), 736; https://doi.org/10.3390/w13050736 - 8 Mar 2021
Cited by 10 | Viewed by 9100
Abstract
Beach cleaning and algae collection in the shoreline area are important for the tourism industry, mainly for aesthetic reasons, but also to protect human health. In addition, the collected material can be used in many industries such as energy, medicine, cosmetics or catering. [...] Read more.
Beach cleaning and algae collection in the shoreline area are important for the tourism industry, mainly for aesthetic reasons, but also to protect human health. In addition, the collected material can be used in many industries such as energy, medicine, cosmetics or catering. The problem of cleaning the shoreline area concerns the need to clear land, water and the strip of shore and land onto which water is thrown from falling waves. The vast majority of available cleaning methods are adapted to cleaning beaches or waters. There is a lack of solutions and machine designs suitable for cleaning the coastal strip, which includes: land, the area of land on which the wave is thrown, shoal and deep water. This area is particularly important for tourism as it is mainly used for water bathing. Pictures from tourist areas that are exposed to intensive water contamination show that measures taken to clear the shoreline area are not very effective, as seaweed in shallow water is thrown ashore with the waves. The paper presents a review of methods for cleaning coastal waters and beaches from contamination. It also shows the author’s conceptual design adapted to clear the shoreline area and sandy beaches. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

17 pages, 2786 KB  
Article
Tidal and Storm Impacts on Hydrodynamics and Sediment Dynamics in an Energetic Ebb Tidal Delta
by Kehui Xu, P. Ansley Wren and Yanxia Ma
J. Mar. Sci. Eng. 2020, 8(10), 810; https://doi.org/10.3390/jmse8100810 - 19 Oct 2020
Cited by 6 | Viewed by 3107
Abstract
Bottom-mounted instrumentation was deployed at two sites on a large sandy shoal of an ebb tidal delta offshore of the Port Royal Sound of South Carolina of USA to collect hydrodynamics and sediment dynamics data. One site (“borrow site”) was 2 km offshore [...] Read more.
Bottom-mounted instrumentation was deployed at two sites on a large sandy shoal of an ebb tidal delta offshore of the Port Royal Sound of South Carolina of USA to collect hydrodynamics and sediment dynamics data. One site (“borrow site”) was 2 km offshore in a dredge pit for nearby beach nourishment and the other site (“reference site”) was 10 km offshore. In situ time-series data were collected during two periods after the dredging: 15 March–12 June (spring) and 18 August–18 November (fall) of 2012. Data at the reference site indicated active migrating bedforms from centimeters to decimeters tall, and sediment concentrations were highly associated with semidiurnal and fortnightly tidal cycles. In the fall deployment, waves at the reference site were higher than those at the shallow borrow site. Both Tropical Storm Beryl and Hurricane Sandy formed high waves and strong currents but did not generate the greatest sediment fluxes. The two sites were at different depths and distances offshore, and waves contributed more to sediment mobility at the reference site whereas tidal forcing was the key controlling factor at the borrow site. This study provides valuable datasets for the selection of sites, prediction of pit infilling, and the modeling of storm impact in future beach nourishment and coastal restoration projects. Full article
Show Figures

Figure 1

20 pages, 10949 KB  
Article
Assessment of Dredging Scenarios for a Tidal Inlet in a High-Energy Coast
by Sandra Fernández-Fernández, Caroline C. Ferreira, Paulo A. Silva, Paulo Baptista, Soraia Romão, Ángela Fontán-Bouzas, Tiago Abreu and Xavier Bertin
J. Mar. Sci. Eng. 2019, 7(11), 395; https://doi.org/10.3390/jmse7110395 - 6 Nov 2019
Cited by 23 | Viewed by 4529
Abstract
The high energetic wave climate of the North Atlantic Ocean causes important morphological changes at Figueira da Foz coastal system (W Portugal), which is comprised of sandy beaches and the Mondego estuary-inlet. The submerged sandbar at the inlet mouth is highly dynamic inducing [...] Read more.
The high energetic wave climate of the North Atlantic Ocean causes important morphological changes at Figueira da Foz coastal system (W Portugal), which is comprised of sandy beaches and the Mondego estuary-inlet. The submerged sandbar at the inlet mouth is highly dynamic inducing short waves shoaling and breaking processes that can entail navigation problems towards the local harbor. Therefore, coastal dredging operations are performed to guarantee safe navigation. Nevertheless, these operations have a limited temporal effectiveness and require a high annual budget to be accomplished. The goal of this research is to seek long-life dredging alternatives using modeling tools (i.e., Delft3D model suite). Delft3D model is used to simulate the morphological evolution of five dredging scenarios during a three-month winter period under three wave climate scenarios. The bed level differences at the dredged area and at the inlet mouth for each scenario are analyzed in comparison with numerical solutions obtained in a reference scenario (i.e., no-dredging). Results highlight morphological changes at the dredged inlet and surrounding areas and their effectiveness in extending the operational lifetime of inlet dredged operations on dredging configuration and wave climate conditions. These findings are the basis for selecting the most suitable dredging scenario to this coastal region under current wave climate conditions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

18 pages, 11679 KB  
Article
Sediment Identification Using Machine Learning Classifiers in a Mixed-Texture Dredge Pit of Louisiana Shelf for Coastal Restoration
by Haoran Liu, Kehui Xu, Bin Li, Ya Han and Guandong Li
Water 2019, 11(6), 1257; https://doi.org/10.3390/w11061257 - 15 Jun 2019
Cited by 25 | Viewed by 7999
Abstract
Machine learning classifiers have been rarely used for the identification of seafloor sediment types in the rapidly changing dredge pits for coastal restoration. Our study uses multiple machine learning classifiers to identify the sediment types of the Caminada dredge pit in the eastern [...] Read more.
Machine learning classifiers have been rarely used for the identification of seafloor sediment types in the rapidly changing dredge pits for coastal restoration. Our study uses multiple machine learning classifiers to identify the sediment types of the Caminada dredge pit in the eastern part of the submarine sandy Ship Shoal of the Louisiana inner shelf of the United States (USA), and compares the performance of multiple supervised classification methods. High-resolution bathymetry and backscatter data, as well as 58 sediment grab samples were collected in the Caminada pit in August 2018, about two years after dredging. Two primary features (bathymetry and backscatter) and four secondary features were selected in the machine learning models. Three supervised classifications were tested in the study area: Decision Trees, Random Forest, and Regularized Logistic Regression. The models were trained using three different combinations of features: (1) all six features, (2) only bathymetry and backscatter features, and (3) a subset of selected features. The best performing model was the Random Forest method, but its performance was relatively poor when dealing with a few mixed (sand and mud) surficial sediment samples. The model provides a new and efficient method to predict the change of sediment distribution inside the Caminada pit over time, and is more reliable when predicting mixed bed with rough pit bottoms. Our results can be used to better understand the impacts on biological communities by (1) direct defaunation after initial sand excavation, (2) later mud accumulation in topographic lows, and (3) other geological and physical processes. In the future, the deposition and redistribution of mud inside the Caminada pit will continue, likely impacting benthos and water quality. Backscatter, roughness derived from bathymetry, rugosity derived from backscatter, and bathymetry (in the importance order from high to low) were identified as the most effective predictors of sediment texture for mineral resources management. Full article
Show Figures

Figure 1

28 pages, 12006 KB  
Article
A Two Decadal (1993–2012) Numerical Assessment of Sediment Dynamics in the Northern Gulf of Mexico
by Zhengchen Zang, Z. George Xue, Kehui Xu, Samuel J. Bentley, Qin Chen, Eurico J. D’Sa and Qian Ge
Water 2019, 11(5), 938; https://doi.org/10.3390/w11050938 - 4 May 2019
Cited by 22 | Viewed by 5776
Abstract
We adapted the coupled ocean-sediment transport model to the northern Gulf of Mexico to examine sediment dynamics on seasonal-to-decadal time scales as well as its response to decreased fluvial inputs from the Mississippi-Atchafalaya River. Sediment transport on the shelf exhibited contrasting conditions in [...] Read more.
We adapted the coupled ocean-sediment transport model to the northern Gulf of Mexico to examine sediment dynamics on seasonal-to-decadal time scales as well as its response to decreased fluvial inputs from the Mississippi-Atchafalaya River. Sediment transport on the shelf exhibited contrasting conditions in a year, with strong westward transport in spring, fall, and winter, and relatively weak eastward transport in summer. Sedimentation rate varied from almost zero on the open shelf to more than 10 cm/year near river mouths. A phase shift in river discharge was detected in 1999 and was associated with the El Niño-Southern Oscillation (ENSO) event, after which, water and sediment fluxes decreased by ~20% and ~40%, respectively. Two sensitivity tests were carried out to examine the response of sediment dynamics to high and low river discharge, respectively. With a decreased fluvial supply, sediment flux and sedimentation rate were largely reduced in areas proximal to the deltas, which might accelerate the land loss in down-coast bays and estuaries. The results of two sensitivity tests indicated the decreased river discharge would largely affect sediment balance in waters around the delta. The impact from decreased fluvial input was minimum on the sandy shoals ~100 km west of the Mississippi Delta, where deposition of fluvial sediments was highly affected by winds. Full article
Show Figures

Figure 1

20 pages, 3935 KB  
Article
Application of SWAT Model with a Modified Groundwater Module to the Semi-Arid Hailiutu River Catchment, Northwest China
by Guangwen Shao, Danrong Zhang, Yiqing Guan, Yuebo Xie and Feng Huang
Sustainability 2019, 11(7), 2031; https://doi.org/10.3390/su11072031 - 5 Apr 2019
Cited by 17 | Viewed by 4323
Abstract
In the original soil and water assessment Tool (SWAT) model (SWAT-O), the contributions of shallow aquifers and deep aquifers to streamflow are simulated using the linear reservoir method. The movement of groundwater was limited in the hydrological response unit which is a minimum [...] Read more.
In the original soil and water assessment Tool (SWAT) model (SWAT-O), the contributions of shallow aquifers and deep aquifers to streamflow are simulated using the linear reservoir method. The movement of groundwater was limited in the hydrological response unit which is a minimum calculation unit in the SWAT. However, this computational method may not be suitable for the areas where a groundwater system is complicated, and the river is predominately recharged by groundwater. In this paper, we proposed an enhanced groundwater module which divides shallow aquifers into upper and lower aquifers, integrates all the deep aquifers of a sub-basin into a regional aquifer, and simulates interactive water amount between lower aquifer and deep aquifer using water depth difference. The modified groundwater module was introduced to the original SWAT model, hereby referred to as SWAT-MG. The SWAT-MG and SWAT-O models were applied to the Hailiutu River catchment, which is a semi-arid wind sandy grass shoal catchment. Results showed that both models underestimated streamflow in peak flow, while the simulated streamflow of SWAT-MG was closer the observed values than that of SWAT-O. Three evaluation criteria (NSE, RSR, PBIAS) were applied to evaluate the performance of the models and the results showed that SWAT-MG had a better performance than SWAT-O. The baseflow index of Hailiutu River which was calculated by the results of SWAT-MG was 96.78%, which means the streamflow is predominately recharged by groundwater, and this conforms to the actual situation of Hailiutu River catchment. This indicates that a SWAT model with a modified groundwater module could better represent the groundwater flow behavior in the study area. Full article
Show Figures

Figure 1

26 pages, 10512 KB  
Article
The Impacts of Climate Variability and Land Use Change on Streamflow in the Hailiutu River Basin
by Guangwen Shao, Yiqing Guan, Danrong Zhang, Baikui Yu and Jie Zhu
Water 2018, 10(6), 814; https://doi.org/10.3390/w10060814 - 20 Jun 2018
Cited by 52 | Viewed by 7268
Abstract
The Hailiutu River basin is a typical semi-arid wind sandy grass shoal watershed in northwest China. Climate and land use have changed significantly during the period 1970–2014. These changes are expected to impact hydrological processes in the basin. The Mann–Kendall (MK) test and [...] Read more.
The Hailiutu River basin is a typical semi-arid wind sandy grass shoal watershed in northwest China. Climate and land use have changed significantly during the period 1970–2014. These changes are expected to impact hydrological processes in the basin. The Mann–Kendall (MK) test and sequential t-test analysis of the regime shift method were used to detect the trend and shifts of the hydrometeorological time series. Based on the analyzed results, seven scenarios were developed by combining different land use and/or climate situations. The Soil Water Assessment Tool (SWAT) model was applied to analyze the impacts of climate variability and land use change on the values of the hydrological components. The China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS) was applied to enhance the spatial expressiveness of precipitation data in the study area during the period 2008–2014. Rather than solely using observed precipitation or CMADS precipitation, the precipitation values of CMADS and the observed precipitation values were combined to drive the SWAT model for better simulation results. From the trend analysis, the annual streamflow and wind speed showed a significant downward trend. No significant trend was found for the annual precipitation series; however, the temperature series showed upward trends. With the change point analysis, the whole study period was divided into three sub-periods (1970–1985, 1986–2000, and 2001–2014). The annual precipitation, mean wind speed, and average temperature values were 316 mm, 2.62 m/s, and 7.9 °C, respectively, for the sub-period 1970–1985, 272 mm, 2.58 m/s, and 8.4 °C, respectively, for the sub-period 1986–2000, and 391 mm, 2.2 m/s, and 9.35 °C, respectively, for the sub-period 2001–2014. The simulated mean annual streamflow was 35.09 mm/year during the period 1970–1985. Considering the impact of the climate variability, the simulated mean annual streamflow values were 32.94 mm/year (1986–2000) and 36.78 mm/year (2001–2014). Compared to the period 1970–1985, the simulated mean annual streamflow reduced by 2.15 mm/year for the period 1986–2000 and increased by 1.69 mm/year for the period 2001–2014. The main variations of land use from 1970 to 2014 were the increased area of shrub and grass land and decreased area of sandy land. In the simulation it was shown that these changes caused the mean annual streamflow to decrease by 0.23 mm/year and 0.68 mm/year during the periods 1986–2000 and 2001–2014, respectively. Thus, the impact of climate variability on the streamflow was more profound than that of land use change. Under the impact of coupled climate variability and land use change, the mean annual streamflow decreased by 2.45 mm/year during the period 1986–2000, and the contribution of this variation to the decrease in observed streamflow was 27.8%. For the period 2001–2014, the combined climate variability and land use change resulted in an increase of 0.84 mm/year in annual streamflow. The results obtained in this study could provide guidance for water resource management and planning in the Erdos plateau. Full article
Show Figures

Figure 1

Back to TopTop