Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Salmonellaenterica serovars

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 251 KiB  
Case Report
Nosocomial Pneumonia Caused in an Immunocompetent Patient by the Emergent Monophasic ST34 Variant of Salmonella enterica Serovar Typhimurium: Treatment-Associated Selection of Fluoroquinolone and Piperacillin/Tazobactam Resistance
by Xenia Vázquez, Lorena Forcelledo, Salvador Balboa-Palomino, Javier Fernández and María Rosario Rodicio
Antibiotics 2022, 11(3), 303; https://doi.org/10.3390/antibiotics11030303 - 24 Feb 2022
Cited by 3 | Viewed by 3420
Abstract
The present report describes an uncommon case of nosocomial pneumonia caused by Salmonellaenterica in an immunocompetent patient. The patient was admitted to ICU of a tertiary hospital due to low level of consciousness, aphasia and seizure episodes. Four days after hospitalization, he [...] Read more.
The present report describes an uncommon case of nosocomial pneumonia caused by Salmonellaenterica in an immunocompetent patient. The patient was admitted to ICU of a tertiary hospital due to low level of consciousness, aphasia and seizure episodes. Four days after hospitalization, he developed nosocomial pneumonia, which evolved into septic shock. Gram-negative bacilli were recovered from blood, tracheal aspirate and fecal samples of the patient. The isolates, which were identified as Salmonella enterica, proved to be resistant to ciprofloxacin, amoxicillin/clavulanic acid and piperacillin/tazobactam. Four months before, the same bacterial species was recovered from feces and blood cultures of the patient, admitted to the nephrology ward of the same hospital with diagnosis of gastroenteritis and acute renal failure. However, at that time, the isolates were susceptible to the above-mentioned antibiotics. Genome sequencing revealed that all isolates were closely related and belonged to the emergent ST34 monophasic variant of S. enterica serovar Typhimurium. Since the patient has received therapy with fluoroquinolones and amoxicillin/clavulanic acid, these results support treatment-associated selection of the acquired resistances. In conclusion, this case represents a paradigm of selective pressure leading to in vivo development of resistance to highly relevant antibiotics, including the piperacillin/tazobactam combination used for empirical management of severe infections at ICU. Full article
12 pages, 2331 KiB  
Article
Distribution of Salmonella spp. Serotypes Isolated from Poultry in Abruzzo and Molise Regions (Italy) during a 6-Year Period
by Margherita Perilli, Silvia Scattolini, Gianluca Ciro Telera, Alessandra Cornacchia, Patrizia Tucci, Flavio Sacchini, Massimo Sericola, Romina Romantini, Francesca Marotta, Andrea Di Provvido, Francesco Pomilio and Fabrizio De Massis
Microorganisms 2022, 10(2), 199; https://doi.org/10.3390/microorganisms10020199 - 18 Jan 2022
Cited by 8 | Viewed by 2103
Abstract
Human salmonellosis incidence is increasing in the European Union (EU). Salmonellaenterica subsp. enterica serovar Enteriditis, Salmonellaenterica subsp. enterica serovar Typhimurium (including its monophasic variant) and Salmonellaenterica subsp. enterica serovar Infantis represent targets in control programs due to their frequent association [...] Read more.
Human salmonellosis incidence is increasing in the European Union (EU). Salmonellaenterica subsp. enterica serovar Enteriditis, Salmonellaenterica subsp. enterica serovar Typhimurium (including its monophasic variant) and Salmonellaenterica subsp. enterica serovar Infantis represent targets in control programs due to their frequent association with human cases. This study aimed to detect the most prevalent serotypes circulating in Abruzzo and Molise Regions between 2015 and 2020 in the framework of the Italian National Control Program for Salmonellosis in Poultry (PNCS)]. A total of 332 flocks of Abruzzo and Molise Regions were sampled by veterinary services in the period considered, and 2791 samples were taken. Samples were represented by faeces and dust from different categories of poultry flocks: laying hens (n = 284), broilers (n = 998), breeding chickens (n = 1353) and breeding or fattening turkeys (n = 156). Breeding and fattening turkeys had the highest rate of samples positive for Salmonella spp. (52.6%; C.I. 44.8%–60.3%). Faeces recovered through boot socks represented the greatest number of positive samples (18.2%). Salmonellaenterica subsp. enterica serovar Infantis was the prevalent serotype in breeding and fattening turkeys (32.7%; C.I. 25.8%–40.4%) and in broiler flocks (16.5%; C.I. 14.4%–19.0%). Salmonellaenterica subsp. enterica serovar Typhimurium was detected at low levels in laying hens (0.7%; C.I. 0.2%–2.5%) followed by breeding and fattening turkeys (0.6%; C.I. 0.2%–2.5%). Salmonellaenterica subsp. enterica serovar Enteriditis was also detected at low levels in laying hens (2.5%; C.I. 1.2%–5.0%). These findings highlight the role of broilers and breeding/fattening turkeys as reservoirs of Salmonella spp. and, as a consequence, in the diffusion of dangerous serotypes as Salmonellaenterica subsp. enterica serovar Infantis. This information could help veterinary services to analyze local trends and to take decisions not only based on indications from national control programs, but also based on real situations at farms in their own competence areas. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

14 pages, 24276 KiB  
Article
Encapsulation of Cochleates Derived from Salmonella Infantis with Biopolymers to Develop a Potential Oral Poultry Vaccine
by Constanza Avendaño, Sonia Vidal, María Gabriela Villamizar-Sarmiento, Miguel Guzmán, Héctor Hidalgo, Lisette Lapierre, Carolina Valenzuela and Leonardo Sáenz
Polymers 2021, 13(19), 3426; https://doi.org/10.3390/polym13193426 - 6 Oct 2021
Cited by 2 | Viewed by 2867
Abstract
The aim of this study was to develop and characterize Salmonellaenterica serovar Infantis (S. Infantis) cochleates protected by encapsulation technology as a potential vaccine and to determine its safety in pullets. Cochleates were encapsulated by two technologies, spray drying and ionotropic [...] Read more.
The aim of this study was to develop and characterize Salmonellaenterica serovar Infantis (S. Infantis) cochleates protected by encapsulation technology as a potential vaccine and to determine its safety in pullets. Cochleates were encapsulated by two technologies, spray drying and ionotropic gelation at different concentrations (0–15% v/v), and were characterized by physicochemical properties, protein content and Fourier Transform Infrared Spectroscopy (FTIR). The cochleates were white liquid suspensions with tubular shapes and a protein content of 1.0–2.1 mg/mL. After encapsulation by spray drying, microparticles ranged in size from 10.4–16.9 µm, were spherical in shape, and the protein content was 0.7–1.8 mg/g. After encapsulation by ionotropic gelation, beads ranged in size from 1620–1950 µm and were spherical in shape with a protein content of 1.0–2.5 mg/g. FTIR analysis indicated that both encapsulation processes were efficient. The cochleates encapsulated by ionotropic gelation were then tested for safety in pullets. No ill effect on the health of animals was observed upon physical or postmortem examination. In conclusion, this study was the first step in developing a potential oral S. Infantis vaccine safe for poultry using a novel cochleate encapsulation technology. Future studies are needed to determine the effectiveness of the vaccine. Full article
(This article belongs to the Topic Multiple Application for Novel and Advanced Materials)
Show Figures

Figure 1

19 pages, 6212 KiB  
Article
Cellular Activity of Salmonella Typhimurium ArtAB Toxin and Its Receptor-Binding Subunit
by Elise Overgaard, Brad Morris, Omid Mohammad Mousa, Emily Price, Adriana Rodriguez, Leyla Cufurovic, Richard S. Beard and Juliette K. Tinker
Toxins 2021, 13(9), 599; https://doi.org/10.3390/toxins13090599 - 27 Aug 2021
Cited by 2 | Viewed by 4004
Abstract
Salmonellosis is among the most reported foodborne illnesses in the United States. The Salmonellaenterica Typhimurium DT104 phage type, which is associated with multidrug-resistant disease in humans and animals, possesses an ADP-ribosylating toxin called ArtAB. Full-length artAB has been found on a [...] Read more.
Salmonellosis is among the most reported foodborne illnesses in the United States. The Salmonellaenterica Typhimurium DT104 phage type, which is associated with multidrug-resistant disease in humans and animals, possesses an ADP-ribosylating toxin called ArtAB. Full-length artAB has been found on a number of broad-host-range non-typhoidal Salmonella species and serovars. ArtAB is also homologous to many AB5 toxins from diverse Gram-negative pathogens, including cholera toxin (CT) and pertussis toxin (PT), and may be involved in Salmonella pathogenesis, however, in vitro cellular toxicity of ArtAB has not been characterized. artAB was cloned into E. coli and initially isolated using a histidine tag (ArtABHIS) and nickel chromatography. ArtABHIS was found to bind to African green monkey kidney epithelial (Vero) cells using confocal microscopy and to interact with glycans present on fetuin and monosialotetrahexosylganglioside (GM1) using ELISA. Untagged, or native, holotoxin (ArtAB), and the pentameric receptor-binding subunit (ArtB) were purified from E. coli using fetuin and d-galactose affinity chromatography. ArtAB and ArtB metabolic and cytotoxic activities were determined using Vero and Chinese hamster ovary (CHO) epithelial cells. Vero cells were more sensitive to ArtAB, however, incubation with both cell types revealed only partial cytotoxicity over 72 h, similar to that induced by CT. ArtAB induced a distinctive clustering phenotype on CHO cells over 72 h, similar to PT, and an elongated phenotype on Vero cells, similar to CT. The ArtB binding subunit alone also had a cytotoxic effect on CHO cells and induced morphological rounding. Results indicate that this toxin induces distinctive cellular outcomes. Continued biological characterization of ArtAB will advance efforts to prevent disease caused by non-typhoidal Salmonella. Full article
(This article belongs to the Collection Bacterial Enterotoxins)
Show Figures

Graphical abstract

11 pages, 7849 KiB  
Article
Three-Way Junction-Induced Isothermal Amplification with High Signal-to-Background Ratio for Detection of Pathogenic Bacteria
by Jung Ho Kim, Seokjoon Kim, Sung Hyun Hwang, Tae Hwi Yoon, Jung Soo Park, Eun Sung Lee, Jisu Woo and Ki Soo Park
Sensors 2021, 21(12), 4132; https://doi.org/10.3390/s21124132 - 16 Jun 2021
Cited by 7 | Viewed by 3556
Abstract
The consumption of water and food contaminated by pathogens is a major cause of numerous diseases and deaths globally. To control pathogen contamination and reduce the risk of illness, a system is required that can quickly detect and monitor target pathogens. We developed [...] Read more.
The consumption of water and food contaminated by pathogens is a major cause of numerous diseases and deaths globally. To control pathogen contamination and reduce the risk of illness, a system is required that can quickly detect and monitor target pathogens. We developed a simple and reproducible strategy, termed three-way junction (3WJ)-induced transcription amplification, to detect target nucleic acids by rationally combining 3WJ-induced isothermal amplification with a light-up RNA aptamer. In principle, the presence of the target nucleic acid generates a large number of light-up RNA aptamers (Spinach aptamers) through strand displacement and transcription amplification for 2 h at 37 °C. The resulting Spinach RNA aptamers specifically bind to fluorogens such as 3,5-difluoro-4-hydroxybenzylidene imidazolinone and emit a highly enhanced fluorescence signal, which is clearly distinguished from the signal emitted in the absence of the target nucleic acid. With the proposed strategy, concentrations of target nucleic acids selected from the genome of Salmonellaenterica serovar Typhi (S. Typhi) were quantitatively determined with high selectivity. In addition, the practical applicability of the method was demonstrated by performing spike-and-recovery experiments with S. Typhi in human serum. Full article
(This article belongs to the Special Issue Biomolecular Engineering for Diagnostic Applications II)
Show Figures

Figure 1

16 pages, 367 KiB  
Article
Virulence and Antimicrobial Resistance Profiles of Salmonella enterica Serovars Isolated from Chicken at Wet Markets in Dhaka, Bangladesh
by Nure Alam Siddiky, Md Samun Sarker, Md. Shahidur Rahman Khan, Ruhena Begum, Md. Ehsanul Kabir, Md. Rezaul Karim, Md. Tanvir Rahman, Asheak Mahmud and Mohammed A. Samad
Microorganisms 2021, 9(5), 952; https://doi.org/10.3390/microorganisms9050952 - 28 Apr 2021
Cited by 41 | Viewed by 6645
Abstract
Virulent and multi drug resistant (MDR) Salmonellaenterica is a foremost cause of foodborne diseases and had serious public health concern globally. The present study was undertaken to identify the pathogenicity and antimicrobial resistance (AMR) profiles of Salmonellaenterica serovars recovered from chicken [...] Read more.
Virulent and multi drug resistant (MDR) Salmonellaenterica is a foremost cause of foodborne diseases and had serious public health concern globally. The present study was undertaken to identify the pathogenicity and antimicrobial resistance (AMR) profiles of Salmonellaenterica serovars recovered from chicken at wet markets in Dhaka, Bangladesh. A total of 870 cecal contents of broiler, sonali, and native chickens were collected from 29 wet markets. The overall prevalence of S. Typhimurium, S. Enteritidis, and untyped Salmonella spp., were found to be 3.67%, 0.57%, and 1.95% respectively. All isolates were screened by polymerase chain reaction (PCR) for eight virulence genes, namely invA, agfA, IpfA, hilA, sivH, sefA, sopE, and spvC. S. Enteritidis isolates carried all virulence genes whilst S. Typhimurium isolates carried six virulence genes except sefA and spvC. A diverse phenotypic and genotypic AMR pattern was found. Harmonic descending trends of resistance patterns were observed among the broiler, sonali, and native chickens. Interestingly, virulent and MDR Salmonella enterica serovars were found in native chicken, although antimicrobials were not used in their production cycle. The research findings anticipate that virulent and MDR Salmonella enterica are roaming in the wet markets which can easily anchor to the vendor, consumers, and in the food chain. Full article
(This article belongs to the Special Issue Survival, Persistence and Resistance in Salmonella)
15 pages, 2249 KiB  
Article
Characterisation of Phage Susceptibility Variation in Salmonellaenterica Serovar Typhimurium DT104 and DT104b
by Manal Mohammed and Beata Orzechowska
Microorganisms 2021, 9(4), 865; https://doi.org/10.3390/microorganisms9040865 - 17 Apr 2021
Cited by 7 | Viewed by 4019
Abstract
The surge in mortality and morbidity rates caused by multidrug-resistant (MDR) bacteria prompted a renewal of interest in bacteriophages (phages) as clinical therapeutics and natural biocontrol agents. Nevertheless, bacteria and phages are continually under the pressure of the evolutionary phage–host arms race for [...] Read more.
The surge in mortality and morbidity rates caused by multidrug-resistant (MDR) bacteria prompted a renewal of interest in bacteriophages (phages) as clinical therapeutics and natural biocontrol agents. Nevertheless, bacteria and phages are continually under the pressure of the evolutionary phage–host arms race for survival, which is mediated by co-evolving resistance mechanisms. In Anderson phage typing scheme of Salmonella Typhimurium, the epidemiologically related definitive phage types, DT104 and DT104b, display significantly different phage susceptibility profiles. This study aimed to characterise phage resistance mechanisms and genomic differences that may be responsible for the divergent phage reaction patterns in S. Typhimurium DT104 and DT104b using whole genome sequencing (WGS). The analysis of intact prophages, restriction–modification systems (RMS), plasmids and clustered regularly interspaced short palindromic repeats (CRISPRs), as well as CRISPR-associated proteins, revealed no unique genetic determinants that might explain the variation in phage susceptibility among the two phage types. Moreover, analysis of genes coding for potential phage receptors revealed no differences among DT104 and DT104b strains. However, the findings propose the need for experimental assessment of phage-specific receptors on the bacterial cell surface and analysis of bacterial transcriptome using RNA sequencing which will explain the differences in bacterial susceptibility to phages. Using Anderson phage typing scheme of Salmonella Typhimurium for the study of bacteria-phage interaction will help improving our understanding of host–phage interactions which will ultimately lead to the development of phage-based technologies, enabling effective infection control. Full article
(This article belongs to the Special Issue Salmonella and Salmonellosis)
Show Figures

Figure 1

13 pages, 6057 KiB  
Article
Spread of Antimicrobial Resistance by Salmonella enterica Serovar Choleraesuis between Close Domestic and Wild Environments
by María Gil Molino, Alfredo García, Sofía Gabriela Zurita, Francisco Eduardo Martín-Cano, Waldo García-Jiménez, David Risco, Joaquín Rey, Pedro Fernández-Llario and Alberto Quesada
Antibiotics 2020, 9(11), 750; https://doi.org/10.3390/antibiotics9110750 - 29 Oct 2020
Cited by 7 | Viewed by 3398
Abstract
The Salmonellaenterica serovar Choleraesuis affects domestic pig and wild boar (WB), causing clinical salmonellosis. Iberian swine production is based on a free-range production system where WB and Iberian pig (IP) share ecosystems. This study focuses on the negative impact on the pork [...] Read more.
The Salmonellaenterica serovar Choleraesuis affects domestic pig and wild boar (WB), causing clinical salmonellosis. Iberian swine production is based on a free-range production system where WB and Iberian pig (IP) share ecosystems. This study focuses on the negative impact on the pork industry of infections due to this serotype, its role in the spread of antibiotic resistance, and its zoonotic potential. Antibiotic resistance (AR) and genetic relationships were analyzed among 20 strains of S. Choleraesuis isolated from diseased WB and IP sampled in the southwest region of the Iberian Peninsula. AR was studied using the Kirby–Bauer method with the exception of colistin resistance, which was measured using the broth microdilution reference method. Resistance and Class 1 integrase genes were measured using PCR, and the genetic relationship between isolates and plasmid content by pulsed field gel electrophoresis. The results show a higher incidence of AR in isolates from IP. Phylogenetic analysis revealed seven profiles with two groups containing isolates from IP and WB, which indicates circulation of the same clone between species. Most pulsotypes presented with one plasmid of the same size, indicating vertical transmission. AR determinants blaTEM and tetA were routinely found in IP and WB, respectively. One isolate from IP expressed colistin resistance and presented the mcr-1 gene carried by a plasmid. This study suggests that S. Choleraesuis circulates between WB and IP living in proximity, and also that the mobilization of AR genes by plasmids is low. Furthermore, the detection of plasmid-mediated colistin resistance in bacteria from IP is alarming and should be monitored. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Virulence Mechanisms)
Show Figures

Figure 1

Back to TopTop