Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (153)

Search Parameters:
Keywords = SYBR green I

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2015 KiB  
Communication
Real-Time PCR-Based Detection of Hepatitis E Virus in Groundwater: Primer Performance and Method Validation
by Jin-Ho Kim, Siwon Lee and Eung-Roh Park
Int. J. Mol. Sci. 2025, 26(15), 7377; https://doi.org/10.3390/ijms26157377 - 30 Jul 2025
Viewed by 236
Abstract
Hepatitis E virus (HEV) is a leading cause of acute viral hepatitis and is primarily transmitted via contaminated water and food. Groundwater may also serve as a potential vector for HEV transmission. This study aimed to optimize real-time polymerase chain reaction (rtPCR) for [...] Read more.
Hepatitis E virus (HEV) is a leading cause of acute viral hepatitis and is primarily transmitted via contaminated water and food. Groundwater may also serve as a potential vector for HEV transmission. This study aimed to optimize real-time polymerase chain reaction (rtPCR) for the detection of HEV, employing both TaqMan probe- and SYBR Green-based methods. A total of 12 primer sets for the TaqMan probe-based method and 41 primer sets for the SYBR Green-based method were evaluated in order to identify the optimal combinations. Primer sets #4 (TaqMan probe-based) and #21 (SYBR Green-based) demonstrated the highest sensitivity and specificity, successfully detecting HEV in artificially spiked samples at 1 fg/μL. The TaqMan probe-based method facilitated rapid detection with minimized non-specific amplification, whereas the SYBR Green-based method allowed for broader primer exploration by leveraging melting curve analysis. Despite the absence of HEV detection in 123 groundwater samples, this study underscores the value of real-time PCR for environmental monitoring and paves the way for enhanced diagnostic tools for public health applications. Full article
(This article belongs to the Special Issue Microbial Infections and Novel Biological Molecules for Treatment)
Show Figures

Figure 1

15 pages, 3612 KiB  
Article
Postmortem Changes in mRNA Expression and Tissue Morphology in Brain and Femoral Muscle Tissues of Rat
by Sujin Choi, Minju Jung, Mingyoung Jeong, Sohyeong Kim, Dong Geon Lee, Kwangmin Park, Xianglan Xuan, Heechul Park, Dong Hyeok Kim, Jungho Kim, Min Ho Lee, Yoonjung Cho and Sunghyun Kim
Int. J. Mol. Sci. 2025, 26(15), 7059; https://doi.org/10.3390/ijms26157059 - 22 Jul 2025
Viewed by 208
Abstract
The postmortem interval (PMI), defined as the time elapsed between death and the discovery or examination of the body, is a crucial parameter in forensic science for estimating the time of death. There are many ways to measure the PMI, such as Henssge’s [...] Read more.
The postmortem interval (PMI), defined as the time elapsed between death and the discovery or examination of the body, is a crucial parameter in forensic science for estimating the time of death. There are many ways to measure the PMI, such as Henssge’s nomogram, which uses rectal temperature measurement; livor mortis; rigor mortis; and forensic entomology. However, these methods are usually affected by various conditions in the surrounding environment. The purpose of the present study was to compare molecular genetics and histological changes in the brain and skeletal muscle tissues of SD rats over increasing periods of time after death. For the PMIs, we considered 0 h, 6 h, 12 h, 24 h, 36 h, 48 h, 4 days, 6 days, 8 days, 10 days, 14 days, and 21 days and compared them at 4 °C and 26 °C. Hematoxylin and Eosin (H&E) staining was performed to observe tissue changes. Morphological tissue changes were observed in cells for up to 21 days at 4 °C, and cell destruction was visually confirmed after 14 days at 26 °C. Total RNA (tRNA) was isolated from each tissue sample, and complementary DNA (cDNA) was synthesized. A reverse transcription quantitative PCR (RT-qPCR) SYBR Green assay targeting three types of housekeeping genes, including Gapdh, Sort1, B2m, and 5S rRNA, was performed. The results showed that Gapdh and 5S rRNA were highly stable and could be better RNA targets for estimating the PMI in brain and skeletal muscle tissues. Conversely, Sort1 and B2m showed poor stability and low expression levels. In conclusion, these molecular biomarkers could be used as auxiliary indicators of the PMI in human, depending on the stability of the marker. Full article
(This article belongs to the Special Issue Advances in Molecular Forensic Pathology and Toxicology: An Update)
Show Figures

Figure 1

23 pages, 1189 KiB  
Article
Hyaluronic Acid-Graft-Poly(L-Lysine): Synthesis and Evaluation as a Gene Delivery System
by Viktor Korzhikov-Vlakh, Polina Teterina, Nina Gubina, Apollinariia Dzhuzha, Tatiana Tennikova and Evgenia Korzhikova-Vlakh
Polysaccharides 2025, 6(3), 60; https://doi.org/10.3390/polysaccharides6030060 - 5 Jul 2025
Viewed by 536
Abstract
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free [...] Read more.
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free strain-promoted azide-alkyne cycloaddition reaction was proposed. For this purpose, hyaluronic acid was modified with dibenzocyclooctyne moieties, and poly-L-lysine with a terminal azido group was obtained using ring-opening polymerization of N-carboxyanhydride of the corresponding protected amino acid, initiated with the amino group azido-PEG3-amine. Two HA-g-PLys samples with different degrees of grafting were synthesized, and the structures of all modified and synthesized polymers were confirmed using 1H NMR and FTIR spectroscopy. The HA-g-PLys samples obtained were able to form nanoparticles in aqueous media due to self-assembly driven by electrostatic interactions. The binding of DNA and model siRNA by copolymers to form polyplexes was analyzed using ethidium bromide, agarose gel electrophoresis, and SybrGreen I assays. The hydrodynamic diameter of polyplexes was ˂300 nm (polydispersity index, PDI ˂ 0.3). The release of a model fluorescently-labeled oligonucleotide in the complex biological medium was significantly higher in the case of HA-g-PLys as compared to that in the case of PLys-based polyplexes. In addition, the cytotoxicity in normal and cancer cells, as well as the ability of HA-g-PLys to facilitate intracellular delivery of anti-GFP siRNA to NIH-3T3/GFP+ cells, were evaluated. Full article
Show Figures

Figure 1

17 pages, 1278 KiB  
Article
Antimalarial Drug Repurposing of Epirubicin and Pelitinib in Combination with Artemether and Lumefantrine
by Douglas O. Ochora, Reagan M. Mogire, Bernard M. Murithi, Farid Abdi, Erick N. Ondari, Rael J. Masai, Edwin Mwakio, Agnes Cheruyiot, Abiy Yenesew and Hoseah M. Akala
Pharmaceuticals 2025, 18(7), 956; https://doi.org/10.3390/ph18070956 - 25 Jun 2025
Viewed by 403
Abstract
Background: Drug therapy remains the principal management strategy for malaria but is increasingly challenged by the emergence of drug-resistant malaria parasites. The need for new antimalarial drugs is urgent, yet drug discovery and development are hindered by high costs, long durations, and safety [...] Read more.
Background: Drug therapy remains the principal management strategy for malaria but is increasingly challenged by the emergence of drug-resistant malaria parasites. The need for new antimalarial drugs is urgent, yet drug discovery and development are hindered by high costs, long durations, and safety concerns that prevent approval. The current study aimed to determine antiplasmodial activities of approved drugs in combination with artemether (ART) and lumefantrine (LU). Methods: Using the SYBR Green I assay test, this study investigated the efficacy of epirubicin (EPI) and pelitinib (PEL) combined with ART and LU at fixed drug–drug ratios (4:1, 3:1, 1:1, 1:2, 1:3 and 1:4) and volume/volume. These combinations, as well as single drug treatments, were tested against cultured strains of Plasmodium falciparum (W2, DD2, D6, 3D7 and F32-ART) and fresh and cultured clinical isolates. The fifty percent inhibition concentration (IC50) and a mean sum of fifty percent fractional inhibition concentration (FIC50) were determined. Results: Synergism was observed when EPI was combined with both ART and LU across all fixed ratios with a mean of mean FIC50 values of <0.6. The combination of LU and EPI against the 3D7 strain demonstrated the highest efficacy with a synergism FIC50 value of 0.18. Most combinations of PEL with ART and LU showed antagonism (FIC50 > 1) when tested against strains of P. falciparum and clinical isolates. Conclusions: This study underscores the utility of alternative drug discovery and development strategies to bypass cost, time, and safety barriers, thereby enriching the antimalarial drug pipeline and accelerating the transition from lab to market. Full article
Show Figures

Figure 1

14 pages, 1696 KiB  
Article
Development of Multiplex qPCR Method for Accurate Detection of Enzyme-Producing Psychrotrophic Bacteria
by Kidane Yalew, Shuwen Zhang, Solomon Gebreyowhans, Ning Xie, Yunna Wang, Jiaping Lv, Xu Li and Xiaoyang Pang
Foods 2025, 14(11), 1975; https://doi.org/10.3390/foods14111975 - 3 Jun 2025
Viewed by 613
Abstract
Microbial detection in milk is crucial for food safety and quality, as beneficial and harmful microorganisms can affect consumer health and dairy product integrity. Identifying and quantifying these microorganisms helps prevent contamination and spoilage. The study employs advanced molecular techniques to detect and [...] Read more.
Microbial detection in milk is crucial for food safety and quality, as beneficial and harmful microorganisms can affect consumer health and dairy product integrity. Identifying and quantifying these microorganisms helps prevent contamination and spoilage. The study employs advanced molecular techniques to detect and quantify the genomic DNA for the target hydrolytic enzyme coding genes lipA and aprX based on the multi-align sequence conserved region, specific primer pair, and hydrolysis probes designed using the singleplex qPCR and multiplex qPCR. Cultured isolates and artificially contaminated sterilized ultra-high-temperature (UHT) milk were analyzed for their specificity, cross-reactivity, and sensitivity. The finding indicated that strains with lipA and aprX genes were amplified while the other strains were not amplified. This indicated that the designed primer pairs/probes were very specific to the target gene of interest. The specificity of each design primer pair was checked using SYBR Green qPCR using 16 different isolate strains from the milk sample. The quantification specificity of each strain target gene was deemed to be with a mean Ct value for positive pseudomonas strain > 16.98 ± 1.76 (p < 0.0001), non-pseudomonas positive strain ≥ 27.47 ± 1.25 (p < 0.0001), no Ct for the negative control and molecular grade water. The sensitivity limit of detection (LOD) analyzed based on culture broth and milk sample was >105 and >104 in PCR amplification while it was >104 and >103 in real-time qPCR, respectively. At the same time, the correlation regression coefficient of the standard curve based on the pure culture cell DNA as the DNA concentration serially diluted (20 ng/µL to 0.0002 ng/µL) was obtained in multiplex without interference and cross-reactivity, yielding R2 ≥ 0.9908 slope (−3.2591) and intercepting with a value of 37, where the efficiency reached the level of 95–102% sensitivity reached up to 0.0002 ng/µL concentration of DNA, and sensitivity of microbial load was up to 1.2 × 102 CFU/mL. Therefore, multiplex TaqMan qPCR simultaneous amplification was considered the best method developed for the detection of the lipA and aprX genes in a single tube. This will result in developing future simultaneous (three- to four-gene) detection of spoilage psychrotrophic bacteria in raw milk. Full article
Show Figures

Figure 1

13 pages, 1490 KiB  
Article
Development of a SYBR Green-Based Real-Time PCR Assay to Detect Oncomelania hupensis quadrasi DNA in Environmental Water Samples
by Daria L. Manalo, Jude Karlo G. Bolivar, Karl Ian T. Ermino, Jeromir G. Bondoc, Mark Joseph M. Espino, Efraim P. Panganiban, Kathyleen S. Nogrado, Raffy Jay C. Fornillos, Mario A. Jiz, Lydia R. Leonardo and Ian Kendrich C. Fontanilla
Trop. Med. Infect. Dis. 2025, 10(5), 140; https://doi.org/10.3390/tropicalmed10050140 - 20 May 2025
Viewed by 647
Abstract
Oncomelania hupensis quadrasi is the intermediate host of S. japonicum, the causative species of schistosomiasis in the Philippines. Conventionally, risk areas are identified by procedures requiring highly skilled personnel and constant surveillance efforts. Recent developments in disease diagnostics explore the utilization of [...] Read more.
Oncomelania hupensis quadrasi is the intermediate host of S. japonicum, the causative species of schistosomiasis in the Philippines. Conventionally, risk areas are identified by procedures requiring highly skilled personnel and constant surveillance efforts. Recent developments in disease diagnostics explore the utilization of environmental DNA as targets for polymerase chain reactions in disease surveillance. In this study, a low-cost, specific, and efficient SYBR Green-based real-time PCR assay to detect O. h. quadrasi DNA from water samples was developed, optimized, and validated. Primers were designed based on the A18 microsatellite region of O. h. quadrasi. The assay exhibited a detection limit of one copy number per microliter at 99.4% efficiency and R2 = 0.999, which specifically amplified O. h. quadrasi DNA only. Validation of this assay in environmental water samples demonstrated 100% PPV and NPV values, suggesting its potential as a tool for identifying risk areas, pathogen-directed surveillance, policy making, and disease control. Full article
(This article belongs to the Section Neglected and Emerging Tropical Diseases)
Show Figures

Figure 1

18 pages, 1649 KiB  
Article
Antiprotozoal Activity and Cytotoxicity Screening of Lippia adoensis (Hochst.) Extracts: Growth Inhibition of Plasmodium, Leishmania, and Trypanosoma Parasites
by Eugenie Aimée Madiesse Kemgne, Mariscal Brice Tchatat Tali, Darline Dize, Cyrille Armel Njanpa Ngansop, Boniface Pone Kamdem and Fabrice Fekam Boyom
J. Oman Med. Assoc. 2025, 2(1), 6; https://doi.org/10.3390/joma2010006 - 13 May 2025
Viewed by 466
Abstract
The serendipitous discovery of antiparasitic drugs, such as quinine and artemisinin, of plant origin reveals that searching new chemical pharmacophores from medicinal plants is valuable. The present study sought to explore the antiplasmodial, antileishmanial, and antitrypanosomal activities of Lippia adoensis extracts. Crude extracts [...] Read more.
The serendipitous discovery of antiparasitic drugs, such as quinine and artemisinin, of plant origin reveals that searching new chemical pharmacophores from medicinal plants is valuable. The present study sought to explore the antiplasmodial, antileishmanial, and antitrypanosomal activities of Lippia adoensis extracts. Crude extracts of L. adoensis leaves and twigs, which were obtained by extraction using 70% ethanol in water, were assayed for antiplasmodial activity against P. falciparum 3D7 and Dd2 through the SYBR green I-based fluorescence assay; and for antileishmanial, antitrypanosomal, and cytotoxic effects on Leishmania donovani, Trypanosoma brucei brucei, and Vero cells, respectively, using resazurin colorimetric assays. In vitro phytochemical analysis of L. adoensis extracts was performed using standard methods. Moreover, liquid chromatography–mass spectrometry (LC-MS) feature-based detection and molecular networking flow on Global Natural Product Social (GNPS) were also used for the phytochemical screening of L. adoensis extracts. Crude extracts from L. adoensis inhibited the growth of P. falciparum (3D7 and Dd2) (IC50s; (3D7): 10.00 and 97.46 μg/mL; (Dd2): 29.48 and 26.96 μg/mL), L. donovani (IC50s: 22.87–10.52 μg/mL), and T. brucei brucei (IC50s: 2.30–55.06 μg/mL). The extracts were found to be non-cytotoxic to Vero cells, thus yielding median cytotoxic concentrations (CC50s) above 100 μg/mL. In vitro phytochemical analysis of the crude extracts revealed the presence of alkaloids, terpenoids, phenolic compounds, and carbohydrates. The LC-MS tandem molecular networking flow predicted that the extracts contained valsafungin A and bacillamidin in the first cluster, and fatty acids, ketone, and aldehyde derivatives in the second cluster. Overall, the present study demonstrated the antiparasitic effects of L. adoensis extracts, thus justifying the use of this plant in the traditional treatment of fever and malaria conditions. Nevertheless, detailed metabolomic studies and antiparasitic mechanisms of action of the extracts are expected to unveil the potential antiparasitic hit compounds. Full article
Show Figures

Graphical abstract

14 pages, 6839 KiB  
Article
Analysis of Colorectal Cancer Gene Mutations and Application of Long Blocker Displacement Amplification Technology for High-Throughput Mutation Detection
by Ping Lu, Xinglei Su, Sirui Leong, Xuehao Xiu, Ping Song, Junjie Peng and Yunpei Si
Biosensors 2025, 15(5), 308; https://doi.org/10.3390/bios15050308 - 12 May 2025
Viewed by 777
Abstract
Genetic mutation detection for colorectal cancer (CRC) is crucial for precision diagnosis and treatment, yet current methods often suffer from challenges such as low sensitivity, time consumption, and high costs. In our preliminary bioinformatic analysis of 751 CRC cases from The Cancer Genome [...] Read more.
Genetic mutation detection for colorectal cancer (CRC) is crucial for precision diagnosis and treatment, yet current methods often suffer from challenges such as low sensitivity, time consumption, and high costs. In our preliminary bioinformatic analysis of 751 CRC cases from The Cancer Genome Atlas and 131 Chinese patient samples, APC, TP53, and KRAS were identified as the most frequently mutated genes. Among them, KRAS missense mutations emerged as key diagnostic biomarkers. In this study, we applied a fluorescence-based long block displacement amplification (LBDA) sensing method for the rapid, high-throughput, and cost-effective detection of KRAS genetic mutations. In the LBDA system, SYBR Green dye binds to the amplified double-stranded DNA, generating a fluorescence signal that directly reflects the abundance of mutant types (MTs). This real-time signal output enables the enrichment and sensitive detection of MTs, establishing LBDA as an efficient biosensing platform for KRAS genotyping. Using this technique, a detection limit of 0.08% variant allele frequency was achieved with 20 ng of synthetic DNA input. To evaluate clinical performance, the LBDA method was applied to 118 tissue samples from 59 CRC patients, including tumor and matched peritumoral tissues. For 59 CRC tumor samples, LBDA successfully identified KRAS mutations in 37.29% of cases, closely matching results (42.37%) obtained by next-generation sequencing and achieving 88% sensitivity and 100% specificity. In conclusion, this study presents a rapid and cost-effective mutation detection method based on optical biosensing, offering strong potential for advancing personalized CRC diagnosis and treatment. Full article
(This article belongs to the Special Issue DNA Molecular Engineering-Based Biosensors)
Show Figures

Graphical abstract

13 pages, 1235 KiB  
Article
Validation of a Real-Time PCR for the Diagnosis of Leishmania Species Using the Hsp20 Gene
by Mayra Maldonado-Aroni, Nyshon Rojas-Palomino, Aide Sandoval-Juarez, Marco Galarza-Pérez, José Alarcón-Guerrero, Rosa Guevara-Montero and Víctor Cárdenas-López
Trop. Med. Infect. Dis. 2025, 10(5), 121; https://doi.org/10.3390/tropicalmed10050121 - 1 May 2025
Viewed by 849
Abstract
Leishmaniasis is a complex neglected tropical disease that impacts public health, particularly in resource-limited populations where access to accurate and timely diagnosis is often limited. Current diagnostic methods, primarily relying on microscopy, suffer from low sensitivity and specificity, hindering effective case management and [...] Read more.
Leishmaniasis is a complex neglected tropical disease that impacts public health, particularly in resource-limited populations where access to accurate and timely diagnosis is often limited. Current diagnostic methods, primarily relying on microscopy, suffer from low sensitivity and specificity, hindering effective case management and disease control. The objective of this study was to validate a novel real-time PCR assay targeting the conserved Hsp20 gene for the detection of Leishmania spp. We evaluated the performance of the method using two distinct detection systems, such as SYBR Green and TaqMan probes, against a diverse panel of 225 clinical samples confirmed to have the disease. The real-time PCR targeting Hsp20 using SYBR Green demonstrated a sensitivity of 88% (95% CI: 83.53–92.47) and 100% specificity. Meanwhile, the TaqMan probe demonstrated a lower sensitivity of 47% (95% CI: 29.53–64.92). The high sensitivity and robust performance of the real-time PCR using SYBR Green establish its potential as a valuable diagnostic tool, particularly useful in endemic regions where rapid and accurate diagnosis is critical for timely treatment and effective disease control. Full article
(This article belongs to the Special Issue Molecular Surveillance and New Diagnostic Tests for Leishmaniasis)
Show Figures

Figure 1

12 pages, 1315 KiB  
Article
Targeted-Amplicon NGS for Blastocystis sp. in Shepherd Dogs of Portugal Discriminates Co-Colonization with Multiple Zoonotic Subtypes
by Sara Gomes-Gonçalves, Maria João Feiteiro, Guilherme Moreira, Rita Cruz, Fernando Esteves, Helena Vala and João R. Mesquita
Vet. Sci. 2025, 12(4), 325; https://doi.org/10.3390/vetsci12040325 - 2 Apr 2025
Viewed by 997
Abstract
Research on endoparasites in pet dogs has been growing, but shepherd dogs have largely been overlooked. These dogs frequently share close proximity not only with sheep, which are reservoirs of zoonotic subtypes of Blastocystis, but also with their owners. This close contact [...] Read more.
Research on endoparasites in pet dogs has been growing, but shepherd dogs have largely been overlooked. These dogs frequently share close proximity not only with sheep, which are reservoirs of zoonotic subtypes of Blastocystis, but also with their owners. This close contact increases the potential for shepherd dogs to act as intermediates in the transmission of Blastocystis. To clarify the role of these dogs as reservoirs for this parasite, this study investigated the presence of Blastocystis in shepherd dogs. Stool samples from Portuguese shepherd dogs were analyzed using SYBR-Green-based real-time PCR and melting curve analysis followed by targeted-amplicon NGS for mixed infections detection. Our results revealed a 60% occurrence of Blastocystis sp. in shepherd dog stools and frequent identification of zoonotic subtypes ST1–ST4 and ST14. Additionally, we observed mixed infections and subtype diversity within individual dogs, suggesting a potential role in cross-species transmission between livestock and humans. Full article
Show Figures

Figure 1

9 pages, 3264 KiB  
Article
Development of a Low-Cost and Easy-Assembly Capillary Electrophoresis System for Separation of DNA
by Jiawen Li, Shuaiqiang Fan, Jiandong Zhu, Bo Yang, Zhenqing Li, Dawei Zhang and Yoshinori Yamaguchi
Bioengineering 2025, 12(3), 303; https://doi.org/10.3390/bioengineering12030303 - 17 Mar 2025
Viewed by 655
Abstract
Capillary electrophoresis based on laser-induced fluorescence (CE-LIF) plays an important role in the analysis of nucleic acids. However, the commercial CE-LIF is not only quite expensive but also inflexible, thus hindering its widespread use in the lab. Herein, we proposed a compact, low-cost, [...] Read more.
Capillary electrophoresis based on laser-induced fluorescence (CE-LIF) plays an important role in the analysis of nucleic acids. However, the commercial CE-LIF is not only quite expensive but also inflexible, thus hindering its widespread use in the lab. Herein, we proposed a compact, low-cost, and flexible CE-LIF system. We also investigated its stability by separating the DNA ladders. Experiments demonstrated that the relative standard error of the relative fluorescence intensity and migration time was lower than 6.2% and 1.1%, respectively. The aperture size of the light source illuminating the capillary can affect the separation performance. Smaller apertures offer higher resolution length for the adjacent DNA fragments but may reduce the number of theoretical plates. Various fluorescent dyes (e.g., SYBR Green I, Gel Green, EvaGreen) can be employed in the self-built system. The limit of detection of dsDNA was as low as 0.05 ng/μL. The working range for DNA was 0.05 ng/μL~10 ng/μL. Finally, we have successfully separated the PCR products of the target gene of Porphyromonas gingivalis and Candida albicans in the home-built CE system. Such a robust CE-LIF system is easy to assemble in the lab. The total cost of the assembled CE system did not exceed 1100 USD. We believe this work can advance the application of CE and hope it will facilitate the easy assembly of flexible CE instruments in labs. Full article
(This article belongs to the Special Issue Applications of Genomic Technology in Disease Outcome Prediction)
Show Figures

Figure 1

12 pages, 826 KiB  
Article
Identification of Necrophagous Beetles (Coleoptera) Using Low-Resolution Real-Time PCR in the Buffer Zone of Kampinos National Park
by Tadeusz Malewski, Katarzyna Leszczyńska, Katarzyna Daria Borzuchowska, Maciej Sierakowski, Tomasz Oszako and Justyna Anna Nowakowska
Insects 2025, 16(2), 215; https://doi.org/10.3390/insects16020215 - 15 Feb 2025
Viewed by 1179
Abstract
Forensic entomology is concerned with the study of arthropods that assist in criminal investigations. Among them, necrophagous beetles (Coleoptera) play a crucial role as they are found in all stages of decomposition of corpses, which makes them valuable for forensic analysis. Accurate species [...] Read more.
Forensic entomology is concerned with the study of arthropods that assist in criminal investigations. Among them, necrophagous beetles (Coleoptera) play a crucial role as they are found in all stages of decomposition of corpses, which makes them valuable for forensic analysis. Accurate species identification is crucial for the effective use of entomological evidence. Efficient, cost-effective, and rapid methods are essential for this purpose. In the present study, we developed a novel assay that enables simple, inexpensive, and rapid identification of necrophagous beetle species. Using two primer sets targeting the cytochrome c oxidase 1 (COI) gene and analyzing the resulting SYBR Green I melting curves, we were able to identify fourteen beetle species: Aleochara curtula (Goeze, 1777), Anoplotrupes stercorosus (Scriba, 1791), Creophilus maxillosus (Linnaeus, 1758), Dermestes undulatus (Brahm, 1790), Hister unicolor (Linnaeus, 1758), Margarinotus brunneus (Fabricius, 1775), Necrodes littoralis (Linnaeus, 1758), Nicrophorus investigator (Zetterstedt, 1824), Ontholestes murinus (Linnaeus, 1758), Oiceoptoma thoracicum (Linnaeus, 1758), Philonthus cognatus (Stephens, 1832), Saprinus planiusculus (Motschulsky, 1849), Silpha tristis (Illiger, 1798), and Thanatophilus rugosus (Linnaeus, 1758). Data on the melting temperature of the amplicon can be obtained within 60–90 min after DNA extraction. This study expands the understanding of the species composition of necrophagous Coleoptera, which is crucial for forensic entomology methods based on insect succession. Furthermore, it provides the first comprehensive data on necrophagous beetles in the vicinity of Kampinos National Park. Full article
(This article belongs to the Special Issue Forensic Entomology: From Basic Research to Practical Applications)
Show Figures

Figure 1

25 pages, 719 KiB  
Review
Diagnostic Assays for Avian Influenza Virus Surveillance and Monitoring in Poultry
by Shahan Azeem and Kyoung-Jin Yoon
Viruses 2025, 17(2), 228; https://doi.org/10.3390/v17020228 - 6 Feb 2025
Cited by 1 | Viewed by 2799
Abstract
Diagnostic testing plays a key role in a surveillance program as diagnostic testing aims to accurately determine the infection or disease status of an individual animal. Diagnostic assays for AIV can be categorized into four broad types: tests for detecting the virus, its [...] Read more.
Diagnostic testing plays a key role in a surveillance program as diagnostic testing aims to accurately determine the infection or disease status of an individual animal. Diagnostic assays for AIV can be categorized into four broad types: tests for detecting the virus, its antigen, its genomic material, and antibodies to the virus. Virus characterization almost always follows virus detection. The present article surveys the current literature on the goals, principles, test performance, advantages, and disadvantages of these diagnostic assays. Virus isolation can be achieved using embryonating eggs or cell cultures in a lab setting. Virus antigens can be detected by antigen-capturing immunoassays or tissue immunoassays. Viral RNA can be detected by PCR-based assays (gel-based reverse transcription–polymerase chain reaction (RT-PCR), or probe or SYBR® Green-based real-time RT-PCR), loop-mediated isothermal amplification, in situ hybridization, and nucleic acid sequence-based amplification. Antibodies to AIV can be detected by ELISA, agar gel immunodiffusion, hemagglutination inhibition, and microneutralization. Avian influenza virus can be characterized by hemagglutination inhibition, neuraminidase inhibition, sequencing (dideoxynucleotide chain-termination sequencing, next-generation sequencing), genetic sequence-based pathotype prediction, and pathogenicity testing. Novel and variant AIVs can be recognized by DNA microarrays, electron microscopy, mass spectroscopy, and Biological Microelectromechanical Systems. A variety of diagnostic tests are employed in AIV surveillance and monitoring. The choice of their use depends on the goal of testing (fit for purpose), the time of testing during the disease, the assay target, the sample matrix, assay performance, and the advantages and disadvantages of the assay. The article concludes with authors’ perspective of the use of diagnostic assays in the surveillance and monitoring of AIV in poultry. Full article
Show Figures

Figure 1

13 pages, 1707 KiB  
Article
Characterization of CK2, MYC and ERG Expression in Biological Subgroups of Children with Acute Lymphoblastic Leukemia
by Luca Lo Nigro, Marta Arrabito, Nellina Andriano, Valeria Iachelli, Manuela La Rosa and Paola Bonaccorso
Int. J. Mol. Sci. 2025, 26(3), 1076; https://doi.org/10.3390/ijms26031076 - 26 Jan 2025
Cited by 1 | Viewed by 1036
Abstract
Despite the excellent survival rate, relapse occurs in 20% of children with ALL. Deep analyses of cell signaling pathways allow us to identify new markers and/or targets promising more effective and less toxic therapy. We analyzed 61 diagnostic samples collected from 35 patients [...] Read more.
Despite the excellent survival rate, relapse occurs in 20% of children with ALL. Deep analyses of cell signaling pathways allow us to identify new markers and/or targets promising more effective and less toxic therapy. We analyzed 61 diagnostic samples collected from 35 patients with B- and 26 with T-ALL, respectively. The expression of CK2, MYC and ERG genes using Sybr-Green assay and the comparative 2-ΔΔCt method using 20 healthy donors (HDs) was evaluated. We observed a statistically significant difference in CK2 expression in non-HR (p = 0.010) and in HR (p = 0.0003) T-ALL cases compared to HDs. T-ALL patients with PTEN-Exon7 mutation, IKZF1 and CDKN2A deletions showed high CK2 expression. MYC expression was higher in pediatric T-ALL patients than HDs (p = 0.019). Surprisingly, we found MYC expression to be higher in non-HR than in HR T-ALL patients. TLX3 (HOX11L2)-rearranged T-ALLs (27%) in association with CRLF2 overexpression (23%) showed very high MYC expression. In B-ALLs, we detected CK2 expression higher than HDs and MYC overexpression in HR compared to non-HR patients, particularly in MLL-rearranged B-ALLs. We observed a strong difference in ERG expression between pediatric T- and B-ALL cases. In conclusion, we confirmed CK2 as a prognostic marker and a therapeutic target. Full article
(This article belongs to the Special Issue Acute Leukemia: From Basic Research to Clinical Application)
Show Figures

Figure 1

25 pages, 5418 KiB  
Article
Transcriptomic Characterization of Genes Harboring Markers Linked to Maize Yield
by Agnieszka Tomkowiak, Tomasz Jamruszka, Jan Bocianowski, Aleksandra Sobiech, Karolina Jarzyniak, Maciej Lenort, Sylwia Mikołajczyk and Monika Żurek
Genes 2024, 15(12), 1558; https://doi.org/10.3390/genes15121558 - 29 Nov 2024
Cited by 1 | Viewed by 1045
Abstract
Background: It is currently believed that breeding priorities, including maize breeding, should focus on introducing varieties with greater utility value, specifically higher yields, into production. Global modern maize breeding relies on various molecular genetics techniques. Using the above mentioned technologies, we can identify [...] Read more.
Background: It is currently believed that breeding priorities, including maize breeding, should focus on introducing varieties with greater utility value, specifically higher yields, into production. Global modern maize breeding relies on various molecular genetics techniques. Using the above mentioned technologies, we can identify regions of the genome that are associated with various phenotypic traits, including yield, which is of fundamental importance for understanding and manipulating these regions. Objectives: The aim of the study was to analyze the expression of candidate genes associated with maize yield. To better understand the function of the analyzed genes in increasing maize yield, their expression in different organs and tissues was also assessed using publicly available transcriptome data. Methods: RT-qPCR analyses were performed using iTaq Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). Each of the performed RT-qPCR experiments consisted of three biological replicates and three technical replicates, the results of which were averaged. Results: The research results allowed us to select three out of six candidate genes (cinnamoyl-CoA reductase 1—CCR1, aspartate aminotransferase—AAT and sucrose transporter 1—SUT1), which can significantly affect grain yield in maize. Not only our studies but also literature reports clearly indicate the participation of CCR1, AAT and SUT1 in the formation of yield. Identified molecular markers located within these genes can be used in breeding programs to select high yielding maize genotypes. Full article
(This article belongs to the Special Issue Genetic and Genomic Studies of Crop Breeding)
Show Figures

Figure 1

Back to TopTop