Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = SWE-SPH

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7333 KiB  
Article
Application of Smooth Particle Hydrodynamics to Particular Flow Cases Solved by Saint-Venant Equations
by Salman A. M. Fadl-Elmola, Cristian Moisescu Ciocan and Ioana Popescu
Water 2021, 13(12), 1671; https://doi.org/10.3390/w13121671 - 16 Jun 2021
Viewed by 2613
Abstract
Smoothed particle hydrodynamics (SPH) is a Lagrangian mesh free particle method which has been developed and widely applied to different areas in engineering. Recently, the SPH method has also been used to solve the shallow water equations, resulting in (SPH-SWEs) formulations. With the [...] Read more.
Smoothed particle hydrodynamics (SPH) is a Lagrangian mesh free particle method which has been developed and widely applied to different areas in engineering. Recently, the SPH method has also been used to solve the shallow water equations, resulting in (SPH-SWEs) formulations. With the significant developments made, SPH-SWEs provide an accurate computational tool for solving problems of wave propagation, flood inundation, and wet-dry interfaces. Capabilities of the SPH method to solve Saint-Venant equations have been tested using a SPH-SWE code to simulate different hydraulic test cases. Results were compared to other established and commercial hydraulic modelling packages that use Eulerian approaches. The test cases cover non-uniform steady state profiles, wave propagation, and flood inundation cases. The SPH-SWEs simulations provided results that compared well with other established and commercial hydraulic modeling packages. Nevertheless, SPH-SWEs simulations experienced some drawbacks such as loss of inflow water volume of up to 2%, for 2D flood propagation. Simulations were carried out using an open source solver, named SWE-SPHysics. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

27 pages, 7630 KiB  
Article
A New Parallel Framework of SPH-SWE for Dam Break Simulation Based on OpenMP
by Yushuai Wu, Lirong Tian, Matteo Rubinato, Shenglong Gu, Teng Yu, Zhongliang Xu, Peng Cao, Xuhao Wang and Qinxia Zhao
Water 2020, 12(5), 1395; https://doi.org/10.3390/w12051395 - 14 May 2020
Cited by 15 | Viewed by 4985
Abstract
Due to its Lagrangian nature, Smoothed Particle Hydrodynamics (SPH) has been used to solve a variety of fluid-dynamic processes with highly nonlinear deformation such as debris flows, wave breaking and impact, multi-phase mixing processes, jet impact, flooding and tsunami inundation, and fluid–structure interactions. [...] Read more.
Due to its Lagrangian nature, Smoothed Particle Hydrodynamics (SPH) has been used to solve a variety of fluid-dynamic processes with highly nonlinear deformation such as debris flows, wave breaking and impact, multi-phase mixing processes, jet impact, flooding and tsunami inundation, and fluid–structure interactions. In this study, the SPH method is applied to solve the two-dimensional Shallow Water Equations (SWEs), and the solution proposed was validated against two open-source case studies of a 2-D dry-bed dam break with particle splitting and a 2-D dam break with a rectangular obstacle downstream. In addition to the improvement and optimization of the existing algorithm, the CPU-OpenMP parallel computing was also implemented, and it was proven that the CPU-OpenMP parallel computing enhanced the performance for solving the SPH-SWE model, after testing it against three large sets of particles involved in the computational process. The free surface and velocities of the experimental flows were simulated accurately by the numerical model proposed, showing the ability of the SPH model to predict the behavior of debris flows induced by dam-breaks. This validation of the model is crucial to confirm its use in predicting landslides’ behavior in field case studies so that it will be possible to reduce the damage that they cause. All the changes made in the SPH-SWEs method are made open-source in this paper so that more researchers can benefit from the results of this research and understand the characteristics and advantages of the solution proposed. Full article
Show Figures

Figure 1

20 pages, 9079 KiB  
Article
SWE-SPHysics Simulation of Dam Break Flows at South-Gate Gorges Reservoir
by Shenglong Gu, Xianpei Zheng, Liqun Ren, Hongwei Xie, Yuefei Huang, Jiahua Wei and Songdong Shao
Water 2017, 9(6), 387; https://doi.org/10.3390/w9060387 - 31 May 2017
Cited by 37 | Viewed by 7127
Abstract
This paper applied a Smoothed Particle Hydrodynamics (SPH) approach to solve Shallow Water Equations (SWEs) to study practical dam-break flows. The computational program is based on the open source code SWE-SPHysics, where a Monotone Upstream-centered Scheme for Conservation Laws (MUSCL) reconstruction method is [...] Read more.
This paper applied a Smoothed Particle Hydrodynamics (SPH) approach to solve Shallow Water Equations (SWEs) to study practical dam-break flows. The computational program is based on the open source code SWE-SPHysics, where a Monotone Upstream-centered Scheme for Conservation Laws (MUSCL) reconstruction method is used to improve the Riemann solution with Lax-Friedrichs flux. A virtual boundary particle method is applied to treat the solid boundary. The model is first tested on two benchmark collapses of water columns with the existence of downstream obstacle. Subsequently the model is applied to forecast a prototype dam-break flood, which might occur in South-Gate Gorges Reservoir area of Qinghai Province, China. It shows that the SWE-SPH modeling approach could provide a promising simulation tool for practical dam-break flows in engineering scale. Full article
(This article belongs to the Special Issue Modeling of Water Systems)
Show Figures

Figure 1

17 pages, 5098 KiB  
Article
SPH Simulations of Solute Transport in Flows with Steep Velocity and Concentration Gradients
by Yu-Sheng Chang and Tsang-Jung Chang
Water 2017, 9(2), 132; https://doi.org/10.3390/w9020132 - 17 Feb 2017
Cited by 16 | Viewed by 7793
Abstract
In this study, a meshless particle method, smoothed particle hydrodynamics (SPH), is adopted to solve the shallow water equations (SWEs) and the advection diffusion equations (ADEs) for simulating solute transport processes under 1D/2D conditions with steep gradients. A new SPH-SWEs-ADEs model is herein [...] Read more.
In this study, a meshless particle method, smoothed particle hydrodynamics (SPH), is adopted to solve the shallow water equations (SWEs) and the advection diffusion equations (ADEs) for simulating solute transport processes under 1D/2D conditions with steep gradients. A new SPH-SWEs-ADEs model is herein developed to focus on the numerical performance of solute transport in flows with steep velocity and concentration gradients, since the traditional mesh-based methods have numerical difficulties on solving such steep velocity/concentration gradient flows. The present model is validated by six benchmark study cases, including three steep concentration gradient cases and three coupled steep concentration/velocity gradient cases. The comparison between the simulated results and the exact solutions for the former three cases shows that complete mass concentration conservation in pure advection-dominated flows is preserved. The numerical oscillation in concentration and the negative concentration resulted from the discretization of the advection term of ADEs can be totally avoided. The other three cases confirm that this model can also well capture coupled steep gradients of velocities and concentrations. It is demonstrated that the presented solver is an effective and reliable tool to investigate solute transports in complex flows incorporating steep velocity gradients. Full article
(This article belongs to the Special Issue Modeling of Water Systems)
Show Figures

Figure 1

Back to TopTop