A New Parallel Framework of SPH-SWE for Dam Break Simulation Based on OpenMP
1
School of Water Resources and Electric Power, Qinghai University, Xining 810016, China
2
School of Energy, Construction and Environment & Centre for Agroecology, Water and Resilience, Coventry University, Coventry CV1 5FB, UK
3
State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
4
Transportation Bureau, Haiyan County, Jiaxing 812200, China
5
College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
6
Qinghai University-Tsinghua University, Sanjiangyuan University, Sanjiangyuan Research Institute, Qinghai University, Xinning 810016, China
7
School of Highway, Chang’an University, Xi’an 710064, China
*
Author to whom correspondence should be addressed.
Water 2020, 12(5), 1395; https://doi.org/10.3390/w12051395
Received: 7 April 2020 / Revised: 7 May 2020 / Accepted: 8 May 2020 / Published: 14 May 2020
(This article belongs to the Special Issue Advances in Modelling and Prediction on the Impact of Human Activities and Extreme Events on Environments)
Due to its Lagrangian nature, Smoothed Particle Hydrodynamics (SPH) has been used to solve a variety of fluid-dynamic processes with highly nonlinear deformation such as debris flows, wave breaking and impact, multi-phase mixing processes, jet impact, flooding and tsunami inundation, and fluid–structure interactions. In this study, the SPH method is applied to solve the two-dimensional Shallow Water Equations (SWEs), and the solution proposed was validated against two open-source case studies of a 2-D dry-bed dam break with particle splitting and a 2-D dam break with a rectangular obstacle downstream. In addition to the improvement and optimization of the existing algorithm, the CPU-OpenMP parallel computing was also implemented, and it was proven that the CPU-OpenMP parallel computing enhanced the performance for solving the SPH-SWE model, after testing it against three large sets of particles involved in the computational process. The free surface and velocities of the experimental flows were simulated accurately by the numerical model proposed, showing the ability of the SPH model to predict the behavior of debris flows induced by dam-breaks. This validation of the model is crucial to confirm its use in predicting landslides’ behavior in field case studies so that it will be possible to reduce the damage that they cause. All the changes made in the SPH-SWEs method are made open-source in this paper so that more researchers can benefit from the results of this research and understand the characteristics and advantages of the solution proposed.
View Full-Text
Keywords:
dam break; SWE; SPH; openMP; numerical modelling; computational time
▼
Show Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
MDPI and ACS Style
Wu, Y.; Tian, L.; Rubinato, M.; Gu, S.; Yu, T.; Xu, Z.; Cao, P.; Wang, X.; Zhao, Q. A New Parallel Framework of SPH-SWE for Dam Break Simulation Based on OpenMP. Water 2020, 12, 1395. https://doi.org/10.3390/w12051395
AMA Style
Wu Y, Tian L, Rubinato M, Gu S, Yu T, Xu Z, Cao P, Wang X, Zhao Q. A New Parallel Framework of SPH-SWE for Dam Break Simulation Based on OpenMP. Water. 2020; 12(5):1395. https://doi.org/10.3390/w12051395
Chicago/Turabian StyleWu, Yushuai; Tian, Lirong; Rubinato, Matteo; Gu, Shenglong; Yu, Teng; Xu, Zhongliang; Cao, Peng; Wang, Xuhao; Zhao, Qinxia. 2020. "A New Parallel Framework of SPH-SWE for Dam Break Simulation Based on OpenMP" Water 12, no. 5: 1395. https://doi.org/10.3390/w12051395
Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.
Search more from Scilit