SPH Simulations of Solute Transport in Flows with Steep Velocity and Concentration Gradients
Abstract
:1. Introduction
2. Methodology
2.1. Shallow Water Equations
2.2. Advection–Diffusion Equations
2.3. SPH-SWEs-ADEs Model
2.3.1. Smoothed Particle Hydrodynamics (SPH) Formulation
2.3.2. Approximated Momentum Equations
2.3.3. Water Depth Evaluation
2.3.4. Approximated Advection–Diffusion Equations
2.3.5. Time Integration Scheme
2.4. Boundary Conditions
2.4.1. In/Out-Flow Boundaries
2.4.2. Wall Boundary
3. Results and Discussion
3.1. Steep Concentration Gradients
3.1.1. A Top Hat Tracer in a 1D Uniform Flow
3.1.2. A Unit-Step Tracer in a 1D Uniform Flow
3.1.3. A Circular Tracer in a 2D Uniform Flow
3.2. Steep Concentration Gradients Coupled with Steep Velocity Gradients
3.2.1. A Periodic Top Hat Tracer in a 1D Transcritical Flow
3.2.2. A Unit-Step Tracer in a 1D Dambreak Flow
3.2.3. A Circular Tracer in a 2D Dambreak Flow
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zang, R.; Huang, K.; van Genuchten, M.T. An efficient Eulerian–Lagrangian method for solving solute transport problems in steady and transient flow fields. Water Resour. Res. 1993, 29, 4131–4138. [Google Scholar] [CrossRef]
- Leonard, B.P. The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comput. Methods Appl. Mech. Eng. 1991, 88, 17–74. [Google Scholar] [CrossRef]
- Yeh, G.T.; Chang, J.R.; Thomas, E.S. An exact peak capturing and oscillation-free scheme to solve advection-dispersion transport equations. Water Resour. Res. 1992, 28, 2937–2951. [Google Scholar] [CrossRef]
- Emmanuel, A.; Bristeau, M.O. Transport of pollutant in shallow water: A two time steps kinetic method. ESAIM Math. Model. Numer. Anal. 2003, 37, 389–416. [Google Scholar]
- Begnudelli, L.; Sanders, B.F. Unstructured grid finite-volume algorithm for shallow-water flow and solute transport with wetting and drying. J. Hydraul. Eng. 2006, 132, 371–384. [Google Scholar] [CrossRef]
- Murillo, J.; García-Navarro, P.; Burguete, J. Analysis of a second-order upwind method for the simulation of solute transport in 2D shallow water flow. Int. J. Numer. Meth. Fluids 2008, 56, 661–686. [Google Scholar] [CrossRef]
- Burguete, J.; García-Navarro, P.; Murillo, J. Preserving bounded and conservative solutions of transport in one-dimensional shallow-water flow with upwind numerical schemes: Application to fertigation and solute transport in rivers. Int. J. Numer. Meth. Fluids 2008, 56, 1731–1764. [Google Scholar] [CrossRef]
- Fernández-Nieto, E.D.; Narbona-Reina, G. Extension of WAF type methods to non-homogeneous shallow water equations with pollutant. SIAM J. Sci. Comput. 2008, 36, 193–217. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Q.; Wang, Y.; Yin, J. A robust coupled model for solute transport driven by severe flow conditions. J. Hydro-Environ. Res. 2015, 9, 49–60. [Google Scholar] [CrossRef]
- Russell, T.; Celia, M. An overview of research on Eulerian–Lagrangian localized adjoint methods (ELLAM). Adv. Water Resour. 2002, 25, 1215–1231. [Google Scholar] [CrossRef]
- Obi, E.; Blunt, M. Streamline-based simulation of advective–dispersive solute transport. Adv. Water Resour. 2004, 27, 913–924. [Google Scholar] [CrossRef]
- Herrera, P.A.; Massabó, M.; Beckie, R.D. A meshless method to simulate solute transport in heterogenous porous media. Adv. Water Res. 2009, 32, 413–442. [Google Scholar] [CrossRef]
- Liu, G.R.; Liu, M.B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method; World Scientific: Singapore, 2003. [Google Scholar]
- Devkota, B.H.; Imberger, J. Lagrangian modeling of advection-diffusion transport in open channel flow. Water Resour. Res. 2009, 45, W12406. [Google Scholar] [CrossRef]
- Chang, T.J.; Kao, H.M.; Chang, K.H. A new approach to model weakly nonhydroststic shallow water flows in open channels with smoothed particle hydrodynamics. J. Hydrol. 2014, 519, 1010–1019. [Google Scholar] [CrossRef]
- Chang, K.H.; Chang, T.J.; Chiang, Y.M. A novel SPH-SWEs approach for modelling supercritical and subcritical flows at open-channel junctions. J. Hydro-Environ. Res. 2016, 13, 76–88. [Google Scholar] [CrossRef]
- Ata, R.; Soulaïmani, A. A stabilized SPH method for inviscid shallow water flows. Int. J. Numer. Meth. Fluids 2005, 47, 139–159. [Google Scholar] [CrossRef]
- Rodriguez-Paz, M.; Bonet, J. A corrected smooth particle hydrodynamics formulation of the shallow-water equations. Comput. Struct. 2005, 83, 1396–1410. [Google Scholar] [CrossRef]
- Vacondio, R.; Rogers, B.D.; Stansby, P.K. Smoothed particle hydrodynamics: Approximated zero-consistent 2-D boundary conditions and still shallow-water tests. Int. J. Numer. Meth. Fluids 2012, 69, 226–253. [Google Scholar] [CrossRef]
- Vacondio, R.; Rogers, B.D.; Stansby, P.K. Accurate particle splitting smoothed particle hydrodynamics in shallow water with shock capturing. Int. J. Numer. Meth. Fluids 2012, 69, 1377–1410. [Google Scholar] [CrossRef]
- Vacondio, R.; Rogers, B.D.; Stansby, P.K.; Mignosa, P. SPH modeling of shallow flow with open boundaries for practical flood simulation. J. Hydraul. Eng. 2012, 138, 530–541. [Google Scholar] [CrossRef]
- Chang, T.J.; Kao, H.M.; Chang, K.H.; Hsu, M.H. Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics. J. Hydrol. 2011, 48, 78–90. [Google Scholar] [CrossRef]
- Kao, H.M.; Chang, T.J. Numerical modeling of dambreak-induced flood and inundation using smoothed particle hydrodynamics. J. Hydrol. 2012, 448–449, 232–244. [Google Scholar] [CrossRef]
- Jian, W.; Liang, D.; Shao, S.; Chen, R.; Liu, X. SPH study of the evolution of water–water interfaces in dam break flows. Nat. Hazards 2015, 78, 531–553. [Google Scholar] [CrossRef]
- Pu, J.H.; Shao, S.; Huang, Y.; Hussain, K. Evaluations of SWEs and SPH numerical modelling techniques for dam break flows. Eng. Appl. Comp. Fluid 2013, 7, 544–563. [Google Scholar]
- Chang, T.J.; Chang, K.H. SPH modeling of one-dimensional nonrectangular and nonprismatic channel flows with open boundaries. J. Hydraul. Eng. 2013, 139, 1142–1149. [Google Scholar] [CrossRef]
- Chang, K.H.; Chang, T.J.; Sheu, T.W.H. Development of an upwinding kernel in SPH-SWEs model for 1D-trans-critical open channel flows. J. Hydro-Environ. Res. 2017, 15, 13–26. [Google Scholar] [CrossRef]
- Cleary, P.W.; Monaghan, J.J. Conduction modelling using smoothed particle hydrodynamics. J. Comput. Phys. 1999, 148, 227–264. [Google Scholar] [CrossRef]
- Tartakovskym, A.M.; Meakin, P.; Scheibe, T.D.; West, R.M.E. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J. Comput. Phys. 2007, 222, 654–672. [Google Scholar] [CrossRef]
- Zhu, Y.; Fox, P.J. Smoothed particle hydrodynamics model for diffusion through porous media. Transp. Porous Med. 2001, 43, 441–471. [Google Scholar] [CrossRef]
- Monaghan, J.J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 2005, 68, 1703–1759. [Google Scholar] [CrossRef]
- Hirschler, M.; Säckel, W.; Nieken, U. On Maxwell–Stefan diffusion in smoothed particle hydrodynamics. Int. J. Heat Mass Transf. 2016, 103, 548–554. [Google Scholar] [CrossRef]
- Aristodemo, F.; Federico, I.; Veltri, P.; Panizzo, A. Two-phase SPH modeling of advective diffusion processes. Environ. Fluid Mech. 2010, 10, 451–470. [Google Scholar] [CrossRef]
- Mayoral-Villa, E.; Alvarado-Rodríguez, C.E.; Klapp, J.; Gómez-Gesteira, M.; Sigalotti, L.D.G. Smoothed particle hydrodynamics: Applications to migration of radionuclides in confined aqueous systems. J. Contam. Hydrol. 2016, 187, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Mead, J.L. The shallow water equations in Lagrangian coordinates. J. Comput. Phys. 2004, 200, 654–669. [Google Scholar] [CrossRef]
- Fischer, H.B.; List, E.J.; Koh, R.C.Y.; Imberger, J.; Brooks, N.H. Mixing in Inland and Coastal Waters; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Price, D.J. Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 2012, 231, 759–794. [Google Scholar] [CrossRef]
- Bonet, J.; Lok, T.S.L. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput. Methods Appl. Mech. Eng. 1999, 180, 97–115. [Google Scholar] [CrossRef]
- Chang, T.J.; Chang, Y.S.; Chang, K.H. Modeling rainfall-runoff process using smoothed particle hydrodynamics with mass-varied particles. J. Hydrol. 2016, 543, 749–758. [Google Scholar] [CrossRef]
- Shao, S.; Lo, E.Y.M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour. 2003, 26, 787–800. [Google Scholar] [CrossRef]
- Federico, I.; Marrone, S.; Colagrossi, A.; Aristodemo, F.; Antuono, M. Simulating 2D open-channel flows through an SPH model. Eur. J. Mech. B Fluids 2012, 34, 35–46. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-S.; Chang, T.-J. SPH Simulations of Solute Transport in Flows with Steep Velocity and Concentration Gradients. Water 2017, 9, 132. https://doi.org/10.3390/w9020132
Chang Y-S, Chang T-J. SPH Simulations of Solute Transport in Flows with Steep Velocity and Concentration Gradients. Water. 2017; 9(2):132. https://doi.org/10.3390/w9020132
Chicago/Turabian StyleChang, Yu-Sheng, and Tsang-Jung Chang. 2017. "SPH Simulations of Solute Transport in Flows with Steep Velocity and Concentration Gradients" Water 9, no. 2: 132. https://doi.org/10.3390/w9020132