Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = SUNSPACE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4950 KiB  
Article
Study on Comprehensive Benefit Evaluation of Rural Houses with an Additional Sunroom in Cold Areas—A Case Study of Hebei Province, China
by Xinyu Zhu, Tiantian Duan, Yang Yang and Chaohong Wang
Buildings 2025, 15(13), 2343; https://doi.org/10.3390/buildings15132343 - 3 Jul 2025
Viewed by 182
Abstract
To address the issues of poor thermal performance and high energy consumption in rural dwellings in cold regions of China, this study investigates multi-type energy-efficient retrofitting strategies for rural houses in the Hebei–Tianjin region. By utilizing a two-step cluster analysis method, 458 rural [...] Read more.
To address the issues of poor thermal performance and high energy consumption in rural dwellings in cold regions of China, this study investigates multi-type energy-efficient retrofitting strategies for rural houses in the Hebei–Tianjin region. By utilizing a two-step cluster analysis method, 458 rural dwellings from 32 villages were classified based on household demographics, architectural features, and energy consumption patterns, identifying three typical categories: pre-1980s adobe dwellings, 1980s–1990s brick–wood structures, and post-1990s brick–concrete houses. Tailored sunspace design strategies were proposed through simulation: low-cost plastic film sunspaces for adobe dwellings (dynamic payback period: 2.8 years; net present value: CNY 2343), 10 mm hollow polycarbonate (PC) panels for brick–wood structures (cost–benefit ratio: 1.72), and high-efficiency broken bridge aluminum Low-e sunspaces for brick–concrete houses (annual natural gas savings: 345.24 m3). Economic analysis confirmed the feasibility of the selected strategies, with positive net present values and cost–benefit ratios exceeding 1. The findings demonstrate that classification-based retrofitting strategies effectively balance energy-saving benefits with economic costs, providing a scientific hierarchical implementation framework for rural residential energy efficiency improvements in cold regions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

29 pages, 6510 KiB  
Article
Energy-Efficient Design of Immigrant Resettlement Housing in Qinghai: Solar Energy Utilization, Sunspace Temperature Control, and Envelope Optimization
by Bo Liu, Yu Liu, Qianlong Xin, Xiaomei Kou and Jie Song
Buildings 2025, 15(9), 1434; https://doi.org/10.3390/buildings15091434 - 24 Apr 2025
Viewed by 399
Abstract
Qinghai Province urgently requires the development of adaptive energy-efficient rural housing construction to address resettlement needs arising from hydropower projects, given the region’s characteristic combination of high solar irradiance resources and severe cold climate conditions. This research establishes localized retrofit strategies through systematic [...] Read more.
Qinghai Province urgently requires the development of adaptive energy-efficient rural housing construction to address resettlement needs arising from hydropower projects, given the region’s characteristic combination of high solar irradiance resources and severe cold climate conditions. This research establishes localized retrofit strategies through systematic field investigations and Rhinoceros modeling simulations of five representative rural residences across four villages. The key findings reveal that comprehensive building envelope retrofits achieve an 80% reduction in energy consumption. South-facing sunspaces demonstrate effective thermal buffering capacity, though their spatial depth exhibits negligible correlation with heating energy requirements. An optimized hybrid shading system combining roof overhangs and vertical louvers demonstrates critical efficacy in summer overheating mitigation, with vertical louvers demonstrating superior thermal and luminous regulation precision. Architectural orientation analysis identifies an optimal alignment within ±10° of true south, emphasizing the functional zoning principle of positioning primary living spaces in south-oriented ground floor areas while locating auxiliary functions in northeastern/northwestern zones. The integrated design framework synergizes three core components: passive solar optimization, climate-responsive shading mechanisms, and performance-enhanced envelope systems, achieving simultaneous improvements in energy efficiency and thermal comfort within resettlement housing constraints. This methodology establishes a replicable paradigm for climate-resilient rural architecture in high-altitude, solar-intensive cold regions, effectively reconciling community reconstruction needs with low-carbon development imperatives through context-specific technical solutions. Full article
Show Figures

Figure 1

21 pages, 10818 KiB  
Article
Research on Design of Collective Housing with Air-Circulation Central Air-Conditioning System Based on Solar Energy Utilization
by Chuan Shi, Zhen Wang, Qian Liang, Ziwei Wan and Qingsong Ma
Sustainability 2025, 17(5), 2089; https://doi.org/10.3390/su17052089 - 28 Feb 2025
Viewed by 621
Abstract
The article presents an innovative design schema for air circulation within collective housing, which effectively reduces energy consumption and improves the indoor environment. It also solves the problem of the high operating and maintenance costs caused by the simultaneous installation of air conditioners [...] Read more.
The article presents an innovative design schema for air circulation within collective housing, which effectively reduces energy consumption and improves the indoor environment. It also solves the problem of the high operating and maintenance costs caused by the simultaneous installation of air conditioners and radiators. Employing dynamic energy consumption calculation software THERB for HAM, the energy-saving benefits of this design are simulated. The strategy involves capturing heat within the sunspace and transferring it to the conditioning chamber, from where the air is tempered and circulated throughout the habitable spaces to minimize heating. The findings suggest that by strategically using sunspace heat, heating energy can be significantly reduced by 43%. It helps to promote the development of sustainable building design. A comparative analysis of window materials in the sunspace, including single glazing, double glazing, and low-e double glazing, indicates that windows with enhanced insulation properties can substantially decrease the heating energy. Considering both energy efficiency and economic feasibility, low-e double glazing is identified as a particularly advantageous choice. Full article
Show Figures

Figure 1

35 pages, 16410 KiB  
Review
Development of Wall-Integrated Solar Energy Technologies
by Renhua Liu, Wentao Duan, Guoqing He and Qikun Wang
Energies 2025, 18(4), 952; https://doi.org/10.3390/en18040952 - 17 Feb 2025
Cited by 1 | Viewed by 849
Abstract
Rising global energy demand, particularly in the building sector, has catalyzed a shift toward sustainable building practices. Buildings are now being redefined from mere energy consumers to potential energy providers, with building façades offering extensive areas for solar installations. This paper reviews recent [...] Read more.
Rising global energy demand, particularly in the building sector, has catalyzed a shift toward sustainable building practices. Buildings are now being redefined from mere energy consumers to potential energy providers, with building façades offering extensive areas for solar installations. This paper reviews recent advances in Wall-Integrated Solar Energy (WISE) systems that produce heat and electricity. A detailed comparison of their structures and performance is provided for various WISE systems, including building-integrated photovoltaic/thermal (BIPV/T) systems, attached sunspaces, Trombe walls, solar thermal collectors (STCs), PV–Trombe, Bio–PV, etc. The goal of this review is to understand the capacity of these technologies to produce energy via walls. The review concludes with key findings and future recommendations, aiming to guide the sustainable evolution of the building industry. Data from the literature suggest that building walls can be a promising energy source with the appropriate integration of solar energy. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

25 pages, 4688 KiB  
Article
Multi-Objective Optimization with Active–Passive Technology Synergy for Rural Residences in Northern China
by Huan Zhang, Yajie Wang, Xianze Liu, Fujing Wan and Wandong Zheng
Energies 2024, 17(7), 1539; https://doi.org/10.3390/en17071539 - 23 Mar 2024
Cited by 2 | Viewed by 1137
Abstract
Due to the serious problems with energy efficiency, carbon emissions, and thermal comfort of rural residences in northern China, an optimization of active and passive heating technologies for rural residences is necessary. In this paper, an optimization for rural residences in northern China [...] Read more.
Due to the serious problems with energy efficiency, carbon emissions, and thermal comfort of rural residences in northern China, an optimization of active and passive heating technologies for rural residences is necessary. In this paper, an optimization for rural residences in northern China is conducted with four objectives: the whole life cycle carbon emission; the annual energy consumption through heating, ventilation, and air conditioning systems; the annual cost; and thermal comfort. In addition, the optimization model with active–passive heating technology synergy is resolved by NSGA-II genetic algorithm. The active and passive design variables, including the type of air source heat pump, orientation, the type and thickness of envelope insulation, the layer of window glass, the window-to-wall area ratio, as well as sunspace parameters are preferred to obtain the optimal solution. The results indicate that the optimal solution obtained by the ideal point method gives the most outstanding performance. Compared with the prototype, the optimized carbon emissions in severe cold and cold regions decreased by 56.1% and 54.6%, respectively. The annual energy consumption decreased by 59.7% and 62.2%. Finally, the roof insulation thickness is the most sensitive design variable in Pareto-optimal solution sets. This paper offers significant guidance in the application of the optimization method of active–passive technology synergy to the energy-saving design of buildings. Full article
Show Figures

Figure 1

22 pages, 4559 KiB  
Article
Optimization Analysis of an Energy-Saving Renovation Scheme for Building Envelopes of Existing Rural Houses Based on a Comprehensive Benefit Evaluation
by Ping Cao, Qingshi Sun, Huajun Li and Yuanhang Jiao
Buildings 2024, 14(2), 454; https://doi.org/10.3390/buildings14020454 - 6 Feb 2024
Cited by 6 | Viewed by 1867
Abstract
In the cold regions of China, the existing rural houses are widely distributed and in large numbers. There are widespread problems such as low thermal performance of building envelopes, high building energy consumption, and poor indoor thermal environments. Reducing the energy consumption of [...] Read more.
In the cold regions of China, the existing rural houses are widely distributed and in large numbers. There are widespread problems such as low thermal performance of building envelopes, high building energy consumption, and poor indoor thermal environments. Reducing the energy consumption of building heating by reforming the envelope structure can reduce the environmental pollution caused by heating. In this paper, the existing rural houses in Tongchuan City, Shaanxi Province are taken as the research object, and EnergyPlus software is used to calculate building heating energy consumption, and the schemes are compared and selected via the entropy value method. Based on a comprehensive benefit evaluation, the best scheme for the renovation of building envelopes of rural houses in Tongchuan City is put forward. The research results show that the energy saving rate of buildings can reach more than 50% after renovation. In the evaluation of energy saving, incremental cost, return on investment, carbon emission reduction and unguaranteed hours, the weights are 0.1915, 0.2104, 0.2312, 1755, and 0.187, respectively. The best renovation scheme for rural housing is as follows: the thickness of the XPS board is 90 mm for exterior wall insulation; the thickness of the XPS board is 80 mm for roof insulation; the window-to-wall ratio of additional sunspace is 0.6; and the type of exterior windows is a broken-bridge hollow aluminum window of 6 + 12A + 6 (mm). Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

26 pages, 7305 KiB  
Article
Optimising Mechanical Ventilation for Indoor Air Quality and Thermal Comfort in a Mediterranean School Building
by Krista Rizzo, Mark Camilleri, Damien Gatt and Charles Yousif
Sustainability 2024, 16(2), 766; https://doi.org/10.3390/su16020766 - 16 Jan 2024
Cited by 5 | Viewed by 4465
Abstract
The growing concern over indoor air quality (IAQ) and thermal comfort in classrooms, especially post-COVID-19, underscores the critical need for optimal ventilation systems to bolster students’ health and academic performance. This study explores the potential for improving indoor air quality and thermal comfort [...] Read more.
The growing concern over indoor air quality (IAQ) and thermal comfort in classrooms, especially post-COVID-19, underscores the critical need for optimal ventilation systems to bolster students’ health and academic performance. This study explores the potential for improving indoor air quality and thermal comfort in the most energy- and cost-optimal manner using a demand-controlled ventilation (DCV) system coupled with a carbon dioxide control sensor. This is achieved through precooling via night purging in summer and by introducing warmer corridor air into the classroom in winter. The methodology employs both computer simulation and a real-world case study. The findings reveal that while natural ventilation in winter can achieve IAQ standard (EN 16798-1) thresholds for classrooms under favourable outdoor conditions, it results in uncontrolled and excessive energy loss. The retrofitted DCV system, however, maintained CO2 levels below the recommended thresholds for at least 76% of the year depending on classroom orientation and only exceeded 1000 ppm for a maximum of 6% of the year. This study also indicates that utilising the external corridor as a sunspace can further enhance the system’s efficiency by preheating incoming air. This comprehensive study highlights the significant potential for integrating mechanical and passive solutions in school ventilation systems. This contributes to the attainment of the United Nations Sustainable Development Goal 11 and ensures healthier and more energy-efficient learning environments that benefit both students and the environment. Full article
(This article belongs to the Special Issue Advances in Sustainability Research at the University of Malta)
Show Figures

Figure 1

43 pages, 11346 KiB  
Article
Characterization of the Thermal Behavior of Semi-Exterior Laundry Spaces in an Overheating Passivhaus Residential Building in Bilbao, Spain
by Jorge Otaegi, Rufino J. Hernández-Minguillón and Iñigo Rodríguez-Vidal
Sustainability 2024, 16(2), 470; https://doi.org/10.3390/su16020470 - 5 Jan 2024
Cited by 3 | Viewed by 1648
Abstract
Overheating in buildings is a growing challenge in temperate climates, even in those where the traditional design focus was on protecting from cold and winter energy savings. This paper addresses a collateral problem that arose during the study of overheating in a residential [...] Read more.
Overheating in buildings is a growing challenge in temperate climates, even in those where the traditional design focus was on protecting from cold and winter energy savings. This paper addresses a collateral problem that arose during the study of overheating in a residential Passivhaus building in Bilbao, northern Spain. Specifically, the local climate of three laundry spaces was investigated, where high daytime and nighttime temperatures were recorded. An extensive monitoring campaign was carried out with different durations up to more than 21,000 h over four years, and the collected data were compared with outdoor climatic conditions. The results allowed for characterizing the thermal behavior of these semi-outdoor spaces and show the magnitude of the problem, quantifying it. Laundry spaces were confirmed to be hotter and dryer than the outdoor climate almost always. The mean average difference between the monitored rooms and the exterior was quantified to be around positive 5 °C during both daytime and nighttime. Extreme heat events were documented, with maximum temperatures above 50 °C and temperature differentials of up to 15.85 °C. In addition, this article comments on the impact of overheating these laundry spaces on the interior of the dwellings, pointing out the differences between the assumptions made during the design phase of the project and the observed or measured reality. Questions were raised about the possible implications of the peculiar performance of these semi-outdoor spaces on the mechanical heat recovery ventilation system (MHRV). The data presented in this article revealed and quantified a design flaw that went unnoticed by all agents involved in the planning, design, and construction of the 361-apartment project. The inability to predict the behavior of the studied spaces has had a negative impact on building performance during the summer months and has prevented the implementation of strategies that could have been beneficial in other periods. A thorough analysis of the thermal behavior of similar spaces becomes essential to prevent performance gaps in future projects and to inform adequate building modeling in the design stages. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

24 pages, 31950 KiB  
Article
Passive Energy Conservation Strategies for Mitigating Energy Consumption and Reducing CO2 Emissions in Traditional Dwellings of Peking Area, China
by Liang Xie, Lai Fan, Dayu Zhang and Jixin Liu
Sustainability 2023, 15(23), 16459; https://doi.org/10.3390/su152316459 - 30 Nov 2023
Cited by 1 | Viewed by 1689
Abstract
Within China, brick dwellings stand as archetypal relics of traditional habitation, embodying a “living fossil” status. The sustainability of these dwellings is contingent upon the integration of energy-conservation strategies. This study scrutinized and empirically assessed a representative dwelling in the Peking area. Using [...] Read more.
Within China, brick dwellings stand as archetypal relics of traditional habitation, embodying a “living fossil” status. The sustainability of these dwellings is contingent upon the integration of energy-conservation strategies. This study scrutinized and empirically assessed a representative dwelling in the Peking area. Using numerical simulations, the impact on energy consumption of factors such as insulation and glazing type, external wall thickness, insulation thickness, and solar energy utilization was evaluated. The outcomes reveal that introducing external thermal insulation—specifically, expanded polystyrene panels with a thickness of 60 mm and 40 mm for the roof and exterior walls, respectively—along with a sunspace of depth 1.5 m yielded superior energy efficiency. Additionally, substituting conventional roofing with solar tiles exhibited a potential annual electricity generation coupled with an annual solar radiation conversion efficiency of 17%. Collectively, these strategies induced a substantial reduction in annual energy consumption. This study presents tailored energy-conservation measures and provides design decision support for architects’ practical recommendations on thermal environment control of passive traditional dwellings in the Peking area. Full article
(This article belongs to the Special Issue Renewable Energies in the Built Environment)
Show Figures

Figure 1

21 pages, 5781 KiB  
Article
Experimental and Simulation Research on the Energy-Saving Potential of a Sunspace—Taking an Apartment in Qingdao as an Example
by Qingsong Ma, Cui Xu, Xiaofei Chen, Weijun Gao and Xindong Wei
Sustainability 2023, 15(1), 176; https://doi.org/10.3390/su15010176 - 22 Dec 2022
Cited by 2 | Viewed by 1983
Abstract
This paper investigates the thermal performance and energy-saving potential of the sunspace of an old apartment building in Qingdao through experiments and software simulations. This study found that different modes of user behavior can have a substantial impact on the thermal performance of [...] Read more.
This paper investigates the thermal performance and energy-saving potential of the sunspace of an old apartment building in Qingdao through experiments and software simulations. This study found that different modes of user behavior can have a substantial impact on the thermal performance of the studied sunspace in winter. The bedroom with a non-ventilated sunspace showed a higher average temperature than the bedroom without the sunspace. However, the bedroom with the sunspace had more heat loss than the bedroom without the sunspace when the sunspace was naturally ventilated, especially at night. In Delta temperature (DT)-controlled ventilation mode, the heating load of a bedroom can be reduced by 2.94 kWh/m2 compared with the non-ventilated mode. Simply optimizing the roof configuration of the sunspace can significantly improve the heat gain of the non-ventilated sunspace and reduce the energy consumption for heating by 26 kWh/m2. Compared with the unoptimized sunspace, the optimized ventilated sunspace can reduce the heating load of the bedroom by 38.82 kWh/m2. In addition, the overheating of the room in summer can be solved by opening the exterior windows of the sunspace for ventilation during the day and leaving the door of the sunspace open at night. Full article
Show Figures

Figure 1

25 pages, 42196 KiB  
Article
An Amateur-Radio-Based Open-Source (HW/SW) VLF/LF Receiver for Lower Ionosphere Monitoring, Examples of Identified Perturbations
by Filopimin Malkotsis, Dimitrios Z. Politis, Dionisis Dimakos and Stelios M. Potirakis
Foundations 2022, 2(3), 639-663; https://doi.org/10.3390/foundations2030044 - 5 Aug 2022
Cited by 2 | Viewed by 5365
Abstract
The ground-based monitoring of the lower ionosphere by studying the perturbations of the subionospheric propagation of very-low-frequency/low-frequency (VLF/LF) signals is important in the research of a wide variety of geophysical and Sun/space extreme phenomena. Such perturbations are identified as anomalies in the signal [...] Read more.
The ground-based monitoring of the lower ionosphere by studying the perturbations of the subionospheric propagation of very-low-frequency/low-frequency (VLF/LF) signals is important in the research of a wide variety of geophysical and Sun/space extreme phenomena. Such perturbations are identified as anomalies in the signal received from the VLF/LF transmitters operating worldwide for military purposes, time code broadcasting, etc. Especially for the study of local ionosphere-influencing phenomena, such as earthquakes, volcanoes, typhoons, etc., the monitoring of several subionospheric propagation paths is necessary. However, it is very difficult to find in the market (or reproduce) hardware (HW) for wide-band VLF/LF receivers that could receive many different transmitters, while the involved software (SW) is mainly proprietary. Aiming to provide a low-cost and easy-to-build alternative for the scientists involved in this research field, we suggest a VLF/LF receiver setup based on amateur radio open-source HW and SW. Its key components are the so-called “mini-whip” active antenna and the freeware “SpectrumLab” and “GPS2Time”. The full HW schematics and all settings of the employed SW configuration for the proposed VLF/LF receiver setup are provided in the article. To check the reliability of the proposed receiver setup, two almost identical VLF/LF radio receivers were installed in the prefecture of Attica in Greece, in June and September of 2021, respectively. Examples of ionospheric perturbations due to different phenomena (solar flares, earthquakes, and a magnetic storm) are provided to show the ability of the proposed receiver setup to provide reliable data for ionosphere-related research. Full article
Show Figures

Figure 1

16 pages, 5213 KiB  
Article
Quality Analysis on Indoor Thermal Comfort and Energy-Saving Improvement Strategy of Slate Dwellings, China
by Juan Xu, Wenting Yang, Ziliang Lu, Yan Wu, Chaoping Hou and Dan Liu
Buildings 2022, 12(4), 468; https://doi.org/10.3390/buildings12040468 - 11 Apr 2022
Cited by 3 | Viewed by 2654
Abstract
Slate dwellings are known as the “living fossil of primitive dwellings” in China. Energy-saving strategies are crucial to slate dwellings for sustainability as well as maintaining thermal comfort. In this research, a subjective satisfaction analysis on the indoor thermal environment in Daziliang village, [...] Read more.
Slate dwellings are known as the “living fossil of primitive dwellings” in China. Energy-saving strategies are crucial to slate dwellings for sustainability as well as maintaining thermal comfort. In this research, a subjective satisfaction analysis on the indoor thermal environment in Daziliang village, China, was conducted. It was found that neutral temperature is 20.92 °C in summer, 8.92 °C in winter, and the actual operating temperature in winter is too low to meet the 80% acceptable range. Therefore, a series of improvement strategies in winter were proposed. The results showed that adding external thermal insulation material—expanded polystyrene board with a thickness of 80 mm on the roof and outside walls—and sunspace depth of 1.5 m are better in terms of energy-saving effects. In addition, the slate dwelling’s daily energy-saving rate of the heating day is 44.26% lower than the original state through these strategies. The air temperature of Bedroom D in winter non-heating days increases by 3.82 °C after improvement and the mean radiant temperature increased by 2.54 °C. Our approach puts forward specific energy-saving improvement measures and provides feasible suggestions for the protection and development of slate dwellings in this area. Full article
(This article belongs to the Special Issue Thermal Comfort in Built Environment)
Show Figures

Figure 1

22 pages, 10720 KiB  
Article
Research on the Indoor Thermal Environment of Attached Sunspace Passive Solar Heating System Based on Zero-State Response Control Strategy
by Jing Zhao, Dehan Liu and Shilei Lu
Appl. Sci. 2022, 12(2), 855; https://doi.org/10.3390/app12020855 - 14 Jan 2022
Cited by 8 | Viewed by 2044
Abstract
The application of attached sunspace passive solar heating systems (ASPSHS) for farmhouses can improve building performance, reduce heating energy consumption and carbon dioxide emissions. In order to take better use of the attached sunspace to prevent heat transfer or promote natural ventilation, this [...] Read more.
The application of attached sunspace passive solar heating systems (ASPSHS) for farmhouses can improve building performance, reduce heating energy consumption and carbon dioxide emissions. In order to take better use of the attached sunspace to prevent heat transfer or promote natural ventilation, this paper presented a zero-state response control strategy for the opening and closing time of active interior window in the ASPSHS. In order to verify the application of this strategy, an attached sunspace was built in an actual farmhouse. A natural ventilation heat exchange model was built based on the farmhouse with attached sunspace. The proposed zero-state response control strategy was implemented in TRNSYS software. Field measurement in living lab was carried out to inspect the distribution of the thermal environment in the farmhouse with attached sunspace under a zero-state response control strategy in the cold region of northern China. The experimental results show that, even under −5.0–2.5 °C ambient temperature, the application of zero-state response control strategy effectively increases the internal temperature to an average of 25.45 °C higher than the outside, with 23% indoor discernible temperature differential in the sample daytime. The whole-season heating performance was evaluated by simulating the model for the heating season in 2020–2021. The simulation demonstrates that the ASPSHS under zero-state response control strategy can maintain a basic indoor temperature of 14 °C for 1094 h during the heating season, with a daytime heating guarantee rate of 73.33%, thus ensuring higher indoor heating comfort during the day. When compared to a farmhouse with an attached sunspace under the zero-state response control strategy, the energy savings rate can be enhanced by 20.88%, and carbon emissions can be reduced by 51.73%. Overall, the attached sunspace with the zero-state response control strategy can effectively increase the indoor temperature when the solar radiation is intensive and create a suitable thermal environment for the farmhouse in the cold region of northern China. Full article
(This article belongs to the Special Issue Indoor Environmental Quality and Thermal Comfort)
Show Figures

Figure 1

17 pages, 4419 KiB  
Article
Thermal and Optical Properties of the Sunspace Casing as Factors Influencing Temperature Rise in Greenhouse Systems
by Magdalena Grudzińska
Materials 2021, 14(23), 7411; https://doi.org/10.3390/ma14237411 - 3 Dec 2021
Cited by 6 | Viewed by 1742
Abstract
In sunspaces, there is an observable temperature rise above the external air temperature, caused by solar gains and the buffering effect of their enclosure. In addition, their external partitions form a barrier preventing the direct influence of the external environment and delaying the [...] Read more.
In sunspaces, there is an observable temperature rise above the external air temperature, caused by solar gains and the buffering effect of their enclosure. In addition, their external partitions form a barrier preventing the direct influence of the external environment and delaying the natural deterioration of elevation surface. In the paper, the temperature rise in a glazed balcony attached to a typical flat in a multifamily building, together with the energy demand in the living zone, were assessed with the use of dynamic computer simulations. Ten variants of the sunspace casing were analysed, with different thermal and solar energy transmittance of the glazing (which is a novel subject in the research area). This enabled us to evaluate average values of the temperature reduction factor during the year and to choose the most efficient variant of the sunspace external partitions. It turned out to be an insulated, double-glazed casing with a spectrally selective coating (type O 21), combining high insulative properties with high solar transmittance. These features allowed the temperature in the sunspace to rise by almost 10°C (compared with the external air) and lower total energy demand in the flat by 33% (compared with a flat with an open balcony). Full article
Show Figures

Figure 1

11 pages, 2862 KiB  
Article
The Reuse of Industrial By-Products for the Synthesis of Innovative Porous Materials, with the Aim to Improve Urban Air Quality
by Antonella Cornelio, Alessandra Zanoletti, Roberto Braga, Laura Eleonora Depero and Elza Bontempi
Appl. Sci. 2021, 11(15), 6798; https://doi.org/10.3390/app11156798 - 23 Jul 2021
Cited by 3 | Viewed by 2726
Abstract
This works concerns the characterization and the evaluation of adsorption capability of innovative porous materials synthesized by using alginates and different industrial by-products: silica fume and bottom ash. Hydrogen peroxide was used as pore former to generate a porosity able to trap particulate [...] Read more.
This works concerns the characterization and the evaluation of adsorption capability of innovative porous materials synthesized by using alginates and different industrial by-products: silica fume and bottom ash. Hydrogen peroxide was used as pore former to generate a porosity able to trap particulate matter (PM). These new materials are compared with the reference recently proposed porous SUNSPACE hybrid material, which was obtained in a similar process, by using silica fume. Structural, morphological, colorimetric and porosimetric analyses were performed to evaluate the differences between the obtained SUNSPACE typologies. The sustainability of the proposed materials was evaluated in terms of the Embodied Energy and Carbon Footprint to quantify the benefits of industrial by-products reuse. Adsorption tests were also performed to compare the ability of samples to trap PM. For this aim, titania suspension, with particles size about 300 nm, was used to simulate PM in the nanoparticle range. The results show that the material realized with bottom ash has the best performance. Full article
(This article belongs to the Special Issue Recent Advances in Energy Efficiency of Buildings)
Show Figures

Graphical abstract

Back to TopTop