Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = S-methylmethionine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5659 KiB  
Article
Intensification of the Dimethyl Sulfide Precursor Conversion Reaction: A Retrospective Analysis of Pilot-Scale Brewer’s Wort Boiling Experiments Using Hydrodynamic Cavitation
by Francesco Meneguzzo and Lorenzo Albanese
Beverages 2025, 11(1), 22; https://doi.org/10.3390/beverages11010022 - 5 Feb 2025
Cited by 1 | Viewed by 1687
Abstract
Dimethyl sulfide (DMS), a low-boiling compound generated during barley germination and wort boiling from the conversion of its main precursor S-methylmethionine (SMM), a functional biomolecule, is detrimental to beer flavor. Vigorous and prolonged boiling, a time-consuming and energy-intensive process, is required to decrease [...] Read more.
Dimethyl sulfide (DMS), a low-boiling compound generated during barley germination and wort boiling from the conversion of its main precursor S-methylmethionine (SMM), a functional biomolecule, is detrimental to beer flavor. Vigorous and prolonged boiling, a time-consuming and energy-intensive process, is required to decrease the content of SMM and remove free DMS. The standard model, further validated in this study, assumed wort temperature and pH as the limiting factors of the SMM conversion reaction. This study aimed to assess the specific effect of hydrodynamic cavitation (HC) on the SMM conversion rate in pilot-scale experiments of brewer’s wort boiling. For the first time, the SMM conversion rate was shown to be significantly affected by HC processes. The SMM half-life was reduced by up to 70% and showed remarkable sensitivity to HC regimes. The intensification of the SMM conversion reaction could be attributed to the HC-based generation of hydroxyl radicals. Other wort processes unfolded in compliance with standard specifications, such as the removal of free DMS, the isomerization of hop alpha-acids, and the change in wort color. In conclusion, evidence supported HC for a substantial saving in process time and energy consumption in the brewer’s wort boiling step. Full article
Show Figures

Graphical abstract

13 pages, 2063 KiB  
Article
Intake of S-Methylmethionine Alters Glucose Metabolism and Hepatic Gene Expression in C57BL/6J High-Fat-Fed Mice
by Mariana Buranelo Egea, Gavin Pierce and Neil Shay
Foods 2025, 14(1), 34; https://doi.org/10.3390/foods14010034 - 26 Dec 2024
Cited by 1 | Viewed by 1323
Abstract
A diet containing foods that are sources of S-methylmethionine (SMM), and its use as a dietary supplement, have demonstrated beneficial health effects. Thus, the objective of this work was to evaluate the inclusion of SMM as a dietary supplement in C57BL/6J high-fat-fed mice [...] Read more.
A diet containing foods that are sources of S-methylmethionine (SMM), and its use as a dietary supplement, have demonstrated beneficial health effects. Thus, the objective of this work was to evaluate the inclusion of SMM as a dietary supplement in C57BL/6J high-fat-fed mice to verify whether this compound alone would be responsible for these positive effects. Mice were divided into three groups: LF (low-fat diet), HF (high-fat diet), and HF+SMM (high-fat diet plus SMM), and maintained for 10 weeks with water and food provided ad libitum. Body weight and food intake were measured weekly, and food efficiency was calculated. In addition, at week 9, fasting glucose was measured and, after necropsy, at week 10, liver, inguinal adipose, and kidney weights were measured; triglycerides, histology, liver gene expression, serum insulin, and MCP-1 levels were also determined. Final body weight, average weight gain, and the liver/body weight of the SMM group showed a significant difference with the LF group. HF+SMM-fed mice show improved regulation in glucose metabolism, demonstrated by the assessment of fasting glucose, insulin concentration, and HOMA-IR, compared with the HF-fed group. Liver triglycerides and MCP-1 levels showed no significant differences between fed groups. By the positive gene regulation of Sult1e1, Phlda1, and Ciart, we hypothesized that SMM administration to mice may have regulated xenobiotic, glucose, and circadian rhythm pathways. Full article
(This article belongs to the Special Issue Bioactive Compounds in Food: From Molecule to Biological Function)
Show Figures

Figure 1

35 pages, 947 KiB  
Review
Foliar Application of Sulfur-Containing Compounds—Pros and Cons
by Dimitris L. Bouranis and Styliani N. Chorianopoulou
Plants 2023, 12(22), 3794; https://doi.org/10.3390/plants12223794 - 7 Nov 2023
Cited by 13 | Viewed by 7037
Abstract
Sulfate is taken up from the soil solution by the root system; and inside the plant, it is assimilated to hydrogen sulfide, which in turn is converted to cysteine. Sulfate is also taken up by the leaves, when foliage is sprayed with solutions [...] Read more.
Sulfate is taken up from the soil solution by the root system; and inside the plant, it is assimilated to hydrogen sulfide, which in turn is converted to cysteine. Sulfate is also taken up by the leaves, when foliage is sprayed with solutions containing sulfate fertilizers. Moreover, several other sulfur (S)-containing compounds are provided through foliar application, including the S metabolites hydrogen sulfide, glutathione, cysteine, methionine, S-methylmethionine, and lipoic acid. However, S compounds that are not metabolites, such as thiourea and lignosulfonates, along with dimethyl sulfoxide and S-containing adjuvants, are provided by foliar application—these are the S-containing agrochemicals. In this review, we elaborate on the fate of these compounds after spraying foliage and on the rationale and the efficiency of such foliar applications. The foliar application of S-compounds in various combinations is an emerging area of agricultural usefulness. In the agricultural practice, the S-containing compounds are not applied alone in spray solutions and the need for proper combinations is of prime importance. Full article
Show Figures

Figure 1

20 pages, 2242 KiB  
Article
S-Methylmethionine Effectively Alleviates Stress in Szarvasi-1 Energy Grass by Reducing Root-to-Shoot Cadmium Translocation
by Deepali Rana, Vitor Arcoverde Cerveira Sterner, Aravinda Kumar Potluri, Zoltán May, Brigitta Müller, Ádám Solti, Szabolcs Rudnóy, Gyula Sipos, Csaba Gyuricza and Ferenc Fodor
Plants 2022, 11(21), 2979; https://doi.org/10.3390/plants11212979 - 4 Nov 2022
Cited by 4 | Viewed by 2168
Abstract
S-methylmethionine (SMM) is a universal metabolite of higher plants derived from L-methionine that has an approved priming effect under different types of abiotic and biotic stresses. Szarvasi-1 energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1) is a biomass plant increasingly applied in [...] Read more.
S-methylmethionine (SMM) is a universal metabolite of higher plants derived from L-methionine that has an approved priming effect under different types of abiotic and biotic stresses. Szarvasi-1 energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1) is a biomass plant increasingly applied in phytoremediation to stabilize or extract heavy metals. In this study, Szarvasi-1 was grown in a nutrient solution. As a priming agent, SMM was applied in 0.02, 0.05 and 0.1 mM concentrations prior to 0.01 mM Cd addition. The growth and physiological parameters, as well as the accumulation pattern of Cd and essential mineral nutrients, were investigated. Cd exposure decreased the root and shoot growth, chlorophyll concentration, stomatal conductance, photosystem II function and increased the carotenoid content. Except for stomatal conductance, SMM priming had a positive effect on these parameters compared to Cd treatment without priming. In addition, it decreased the translocation and accumulation of Cd. Cd treatment decreased K, Mg, Mn, Zn and P in the roots, and K, S, Cu and Zn in the shoots compared to the untreated control. SMM priming changed the pattern of nutrient uptake, of which Fe showed characteristic accumulation in the roots in response to increasing SMM concentrations. We have concluded that SMM priming exerts a positive effect on Cd-stressed Szarvasi-1 plants, which retained their physiological performance and growth. This ameliorative effect is suggested to be based on, at least partly, the lower root-to-shoot Cd translocation by the upregulated Fe uptake and transport. Full article
(This article belongs to the Special Issue Evaluation of Stress Factors in Crops’ Life)
Show Figures

Figure 1

22 pages, 2926 KiB  
Article
Dietary Omega-3 Polyunsaturated Fatty-Acid Supplementation Upregulates Protective Cellular Pathways in Patients with Type 2 Diabetes Exhibiting Improvement in Painful Diabetic Neuropathy
by Alfonso M. Durán, W. Lawrence Beeson, Anthony Firek, Zaida Cordero-MacIntyre and Marino De León
Nutrients 2022, 14(4), 761; https://doi.org/10.3390/nu14040761 - 11 Feb 2022
Cited by 28 | Viewed by 5953
Abstract
Background: Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to improve chronic neuroinflammatory diseases in peripheral and central nervous systems. For instance, docosahexaenoic acid (DHA) protects nerve cells from noxious stimuli in vitro and in vivo. Recent reports link PUFA supplementation to improving [...] Read more.
Background: Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to improve chronic neuroinflammatory diseases in peripheral and central nervous systems. For instance, docosahexaenoic acid (DHA) protects nerve cells from noxious stimuli in vitro and in vivo. Recent reports link PUFA supplementation to improving painful diabetic neuropathy (pDN) symptoms, but cellular mechanisms responsible for this therapeutic effect are not well understood. The objective of this study is to identify distinct cellular pathways elicited by dietary omega-3 PUFA supplementation in patients with type 2 diabetes mellitus (T2DM) affected by pDN. Methods: Forty volunteers diagnosed with type 2 diabetes were enrolled in the “En Balance-PLUS” diabetes education study. The volunteers participated in weekly lifestyle/nutrition education and daily supplementation with 1000 mg DHA and 200 mg eicosapentaenoic acid. The Short-Form McGill Pain Questionnaire validated clinical determination of baseline and post-intervention pain complaints. Laboratory and untargeted metabolomics analyses were conducted using blood plasma collected at baseline and after three months of participation in the dietary regimen. The metabolomics data were analyzed using random forest, hierarchical clustering, ingenuity pathway analysis, and metabolic pathway mapping. Results: The data show that metabolites involved in oxidative stress and glutathione production shifted significantly to a more anti-inflammatory state post supplementation. Example of these metabolites include cystathionine (+90%), S-methylmethionine (+9%), glycine cysteine-glutathione disulfide (+157%) cysteinylglycine (+19%), glutamate (−11%), glycine (+11%), and arginine (+13.4%). In addition, the levels of phospholipids associated with improved membrane fluidity such as linoleoyl-docosahexaenoyl-glycerol (18:2/22:6) (+253%) were significantly increased. Ingenuity pathway analysis suggested several key bio functions associated with omega-3 PUFA supplementation such as formation of reactive oxygen species (p = 4.38 × 10−4, z-score = −1.96), peroxidation of lipids (p = 2.24 × 10−5, z-score = −1.944), Ca2+ transport (p = 1.55 × 10−4, z-score = −1.969), excitation of neurons (p = 1.07 ×10−4, z-score = −1.091), and concentration of glutathione (p = 3.06 × 10−4, z-score = 1.974). Conclusion: The reduction of pro-inflammatory and oxidative stress pathways following dietary omega-3 PUFA supplementation is consistent with the promising role of these fatty acids in reducing adverse symptoms associated with neuroinflammatory diseases and painful neuropathy. Full article
(This article belongs to the Special Issue Neuroprotection with Bioactive Compounds)
Show Figures

Figure 1

13 pages, 2255 KiB  
Article
Molecular Evolution and Expression Divergence of HMT Gene Family in Plants
by Man Zhao, Peng Chen, Wenyi Wang, Fengjie Yuan, Danhua Zhu, Zhao Wang and Xiangxian Ying
Int. J. Mol. Sci. 2018, 19(4), 1248; https://doi.org/10.3390/ijms19041248 - 20 Apr 2018
Cited by 13 | Viewed by 4994
Abstract
Homocysteine methyltransferase (HMT) converts homocysteine to methionine using S-methylmethionine (SMM) or S-adenosylmethionine (SAM) as methyl donors in organisms, playing an important role in supplying methionine for the growth and the development of plants. To better understand the functions of the HMT [...] Read more.
Homocysteine methyltransferase (HMT) converts homocysteine to methionine using S-methylmethionine (SMM) or S-adenosylmethionine (SAM) as methyl donors in organisms, playing an important role in supplying methionine for the growth and the development of plants. To better understand the functions of the HMT genes in plants, we conducted a wide evolution and expression analysis of these genes. Reconstruction of the phylogenetic relationship showed that the HMT gene family was divided into Class 1 and Class 2. In Class 1, HMTs were only found in seed plants, while Class 2 presented in all land plants, which hinted that the HMT genes might have diverged in seed plants. The analysis of gene structures and selection pressures showed that they were relatively conserved during evolution. However, type I functional divergence had been detected in the HMTs. Furthermore, the expression profiles of HMTs showed their distinct expression patterns in different tissues, in which some HMTs were widely expressed in various organs, whereas the others were highly expressed in some specific organs, such as seeds or leaves. Therefore, according to our results in the evolution, functional divergence, and expression, the HMT genes might have diverged during evolution. Further analysis in the expression patterns of AthHMTs with their methyl donors suggested that the diverged HMTs might be related to supply methionine for the development of plant seeds. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

13 pages, 2217 KiB  
Article
The Photoprotective Effect of S-Methylmethionine Sulfonium in Skin
by Won-Serk Kim, Hyun-Min Seo, Wang-Kyun Kim, Joon-Seok Choi, Ikyon Kim and Jong-Hyuk Sung
Int. J. Mol. Sci. 2015, 16(8), 17088-17100; https://doi.org/10.3390/ijms160817088 - 28 Jul 2015
Cited by 15 | Viewed by 7043
Abstract
S-Methylmethionine sulfonium (SMMS) was reported to have wound-healing effects; we therefore have investigated the photoprotective effect of SMMS in the present study. SMMS increased the viability of keratinocyte progenitor cells (KPCs) and human dermal fibroblasts (hDFs) following ultraviolet B (UVB) irradiation, and [...] Read more.
S-Methylmethionine sulfonium (SMMS) was reported to have wound-healing effects; we therefore have investigated the photoprotective effect of SMMS in the present study. SMMS increased the viability of keratinocyte progenitor cells (KPCs) and human dermal fibroblasts (hDFs) following ultraviolet B (UVB) irradiation, and reduced the UVB-induced apoptosis in these cells. SMMS increased the phosphorylation of extracellular signal-regulated kinases (ERK), and the inhibitor of the mitogen-activated protein kinase pathway significantly decreased the SMMS-induced viability of KPCs and hDFs. In addition, SMMS attenuated the UVB-induced reactive oxygen species (ROS) generation in KPCs and hDFs. SMMS induced the collagen synthesis and reduced the matrix metalloproteinase-1 expression in UVB-irradiated hDFs. In animal studies, application of 5% and 10% SMMS before and after UVB-irradiation significantly decreased the UVB-induced erythema index and depletion of Langerhans cells. In summary, SMMS protects KPCs and hDFs from UVB irradiation, and reduces UVB-induced skin erythema and immune suppression. Therefore, SMMS can be used as a cosmetic raw material, and protect skin from UVB. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop