Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Ru-Os-Ir alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1956 KiB  
Article
Nature and Regularities of the Orthorhombic α″-Phase Formation in Binary Titanium Alloys
by Arkadiy V. Dobromyslov
Alloys 2023, 2(3), 148-156; https://doi.org/10.3390/alloys2030011 - 11 Jul 2023
Cited by 4 | Viewed by 1951
Abstract
A systematic study of the phase composition of quenched binary titanium alloys with d-metals of groups 5–11 from periods four to six was carried out using the methods of X-ray diffraction analysis. It was found that the formation of the orthorhombic α″-phase [...] Read more.
A systematic study of the phase composition of quenched binary titanium alloys with d-metals of groups 5–11 from periods four to six was carried out using the methods of X-ray diffraction analysis. It was found that the formation of the orthorhombic α″-phase depends on the position of the alloying metal in the periodic table. The formation of the α″-phase occurs only in the systems Ti-V, Ti-Nb, Ti-Mo, Ti-Ru, Ti-Ta, Ti-W, Ti-Re, Ti-Os and Ti-Ir, and in other systems, it does not occur. It was found that the critical parameter for the formation of the α″-phase is the difference in the size of titanium atoms and those of the alloying metal {(rTi − rMe)/rTi 100%}. The formation of the α″-phase occurs only in systems where this value is lower than 9 at.%. Full article
Show Figures

Figure 1

13 pages, 4647 KiB  
Article
Electrocatalytic Reduction of CO2 to C1 Compounds by Zn-Based Monatomic Alloys: A DFT Calculation
by Yixin Wang, Ming Zheng, Xin Wang and Xin Zhou
Catalysts 2022, 12(12), 1617; https://doi.org/10.3390/catal12121617 - 9 Dec 2022
Cited by 15 | Viewed by 3040
Abstract
Electrocatalytic reduction of carbon dioxide to produce usable products and fuels such as alkanes, alkenes, and alcohols, is a very promising strategy. Recent experiments have witnessed great advances in precisely controlling the synthesis of single atom alloys (SAAs), which exhibit unique catalytic properties [...] Read more.
Electrocatalytic reduction of carbon dioxide to produce usable products and fuels such as alkanes, alkenes, and alcohols, is a very promising strategy. Recent experiments have witnessed great advances in precisely controlling the synthesis of single atom alloys (SAAs), which exhibit unique catalytic properties different from alloys and nanoparticles. However, only certain precious metals, such as Pd or Au, can achieve this transformation. Here, the density functional theory (DFT) calculations were performed to show that Zn-based SAAs are promising electrocatalysts for the reduction of CO2 to C1 hydrocarbons. We assume that CO2 reduction in Zn-based SAAs follows a two-step continuous reaction: first Zn reduces CO2 to CO, and then newly generated CO is captured by M and further reduced to C1 products such as methane or methanol. This work screens seven stable alloys from 16 SAAs (M = Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, V, Mo, Ti, Cr). Among them, Pd@Zn (101) and Cu@Zn (101) are promising catalysts for CO2 reduction. The reaction mechanisms of these two SAAs are discussed in detail. Both of them convert CO2 into methane via the same pathway. They are reduced by the pathway: *CO2 → *COOH → *CO + H2O; *CO → *CHO → *CH2O → *CH3O → *O + CH4 → *OH + CH4 → H2O + CH4. However, their potential determination steps are different, i.e., *CO2 → *COOH (ΔG = 0.70 eV) for Cu@Zn (101) and *CO → *CHO (ΔG = 0.72 eV) for Pd@Zn, respectively. This suggests that Zn-based SAAs can reduce CO2 to methane with a small overpotential. The solvation effect is simulated by the implicit solvation model, and it is found that H2O is beneficial to CO2 reduction. These computational results show an effective monatomic material to form hydrocarbons, which can stimulate experimental efforts to explore the use of SAAs to catalyze CO2 electrochemical reduction to hydrocarbons. Full article
(This article belongs to the Special Issue Heterogeneous Electrocatalysts for CO2 Reduction)
Show Figures

Graphical abstract

21 pages, 3031 KiB  
Review
Platinum Group Elements (PGE) Geochemistry and Mineralogy of Low Economic Potential (Rh-Pt-Pd)-Rich Chromitites from Ophiolite Complexes
by Federica Zaccarini, Maria Economou-Eliopoulos, Olga Kiseleva, Giorgio Garuti, Basilios Tsikouras, Evgenii Pushkarev and Arifudin Idrus
Minerals 2022, 12(12), 1565; https://doi.org/10.3390/min12121565 - 5 Dec 2022
Cited by 9 | Viewed by 6384
Abstract
This contribution provides an overview of platinum group elements (PGE) distribution and mineralogy in ophiolitic chromitites, which are unusually enriched in the low melting-point Rh, Pt and Pd (PPGE) compared with most chromite deposits associated with ophiolites, which are dominated by the refractory [...] Read more.
This contribution provides an overview of platinum group elements (PGE) distribution and mineralogy in ophiolitic chromitites, which are unusually enriched in the low melting-point Rh, Pt and Pd (PPGE) compared with most chromite deposits associated with ophiolites, which are dominated by the refractory Os, Ir and Ru (IPGE). The PPGE-rich chromitites examined in this paper have a PPGE/IPGE ratio equal to or higher than 1 and represent about 7% of the ophiolitic chromitite population. These chromitites occur in the mantle unit, in the mantle-transition zone (MTZ), as well as in the supra-Moho cumulate sequence of ophiolite complexes. The age of their host ophiolites varies from Proterozoic to Eocene and, based on their composition, the chromitites can be classified into Cr-rich and Al-rich categories. Mineralogical assemblages observed in this investigation suggest that the PPGE enrichment was achieved in the magmatic stage thanks to the formation of an immiscible sulfide liquid segregating during or immediately after chromite precipitation. The sulfide liquid collected the available chalcophile PPGE that precipitated as specific phases together with Ni-Cu-Fe sulfides in the host chromitite and the silicate matrix. After their magmatic precipitation, the PPGM and associated sulfides were altered during low-temperature serpentinization and hydrothermal processes. Therefore, the original high-temperature assemblage underwent desulfurization, generating awaruite and alloys characterized by variable Pt-Pd-Rh-Cu-Ni-Fe assemblages. The occurrence of secondary PPGM containing Sb, As, Bi, Te, Sn, Hg, Pb and Au suggests that these elements might have been originally present in the differentiating magmatic sulfide liquid or, alternatively, they were introduced by an external source transported by hydrothermal and hydrous fluids during the low-temperature evolution of the host ophiolite. Although the PGE content may be as high as 81,867 ppb, as was found in one sample from Shetland chromite deposits, the ophiolitic chromitites are not presently considered as a potential resource because of the following circumstances: (1) enrichment of PPGE in podiform chromitites is a local event that occurs randomly in ophiolite sequences, (2) ore deposits are small and characterized by uneven distribution and high discontinuity, (3) physical characters of the mineralization only allow poor recovery of the precious metals mainly due to the minute grain size, and (4) for these reasons, the PPGE reserves in ophiolitic chromitites cannot compete, at the moment, with those in chromite deposits of the Bushveld type that will supply world demands for centuries using current mining techniques. Full article
Show Figures

Figure 1

19 pages, 3905 KiB  
Article
A Combined Re-Os and Pt-Os Isotope and HSE Abundance Study of Ru-Os-Ir Alloys from the Kunar and Unga Placer Deposits, the Taimyr Peninsula, Polar Siberia
by Kreshimir N. Malitch, Igor S. Puchtel, Elena A. Belousova and Inna Yu. Badanina
Minerals 2022, 12(11), 1463; https://doi.org/10.3390/min12111463 - 19 Nov 2022
Cited by 4 | Viewed by 2244
Abstract
In order to provide further insights into the origin of Ru-Os-Ir alloys, this study presents new highly siderophile element (HSE: Re, Os, Ir, Ru, Pt, and Pd) abundance and 187Re-187Os and 190Pt-186Os isotope data for detrital grains [...] Read more.
In order to provide further insights into the origin of Ru-Os-Ir alloys, this study presents new highly siderophile element (HSE: Re, Os, Ir, Ru, Pt, and Pd) abundance and 187Re-187Os and 190Pt-186Os isotope data for detrital grains of native Ru-Os-Ir alloys in placer deposits of the Kunar and Unga Rivers, which display a close spatial association with the Kunar dunite–harzburgite complex in the northern part of the Taimyr Peninsula in the Polar Siberia. The study utilized electron microprobe analysis, negative thermal ionization mass-spectrometry (N-TIMS) and laser ablation multiple-collector inductively coupled plasma mass-spectrometry (LA MC-ICP-MS). The primary nature of the Ru-Os-Ir alloys is supported by the occurrence of euhedral inclusions of high-Mg olivine (Fo92–93) that fall within the compositional range of mantle olivine. The LA MC-ICP-MS data show similar average initial 187Os/188Os and γ187Os(740 Ma) values for PGM assemblages from the Kunar and Unga deposits of 0.1218 ± 0.0010, −0.18 ± 0.85, and 0.1222 ± 0.0025, +0.10 ± 2.1, respectively. These values are identical, within their respective uncertainties, to the initial 187Os/188Os value of the Ru-Os-Ir alloy grain measured by N-TIMS (0.1218463 ± 0.0000015, γ187Os(740 Ma) = −0.1500 ± 0.0012). The combined 187Re-187Os isotopic data for all studied grains (γ187Os(740 Ma) = −0.02 ± 1.6) indicate evolution of the Kunar and Unga mantle sources with a long-term chondritic 187Re/188Os ratio of 0.401 ± 0.030. In contrast to the 187Os/188Os data, the initial 186Os/188Os value of 0.1198409 ± 0.0000012 (µ186Os(740 Ma) = +34 ± 10) obtained for the same Ru-Os-Ir alloy grain by N-TIMS is suprachondritic and implies evolution of the Kunar and Unga mantle source(s) with a long-term suprachondritic 190Pt/188Os ratio of 0.00247 ± 0.00021. This value is ~40% higher than the average chondritic 190Pt/188Os ratio of 0.00180 and indicates long-term enrichment of the Kunar source in Pt over Os. Establishing the source of this enrichment requires further investigation. Full article
Show Figures

Figure 1

18 pages, 35157 KiB  
Article
Platinum-Group Minerals in the Placer of the Kitoy River, East Sayan, Russia
by Evgenia V. Airiyants, Olga N. Kiseleva, Sergey M. Zhmodik, Dmitriy K. Belyanin and Yuriy C. Ochirov
Minerals 2022, 12(1), 21; https://doi.org/10.3390/min12010021 - 23 Dec 2021
Cited by 8 | Viewed by 3565
Abstract
The platinum-group minerals (PGM) in placer deposits provide important information on the types of their primary source rocks and ores and formation and alteration conditions. The article shows for the first time the results of a study of placer platinum mineralization found in [...] Read more.
The platinum-group minerals (PGM) in placer deposits provide important information on the types of their primary source rocks and ores and formation and alteration conditions. The article shows for the first time the results of a study of placer platinum mineralization found in the upper reaches of the Kitoy River (the southeastern part of the Eastern Sayan (SEPES)). Using modern methods of analysis (scanning electron microscopy), the authors studied the microtextural features of platinum-group minerals (PGM), their composition, texture, morphology and composition of microinclusions, rims, and other types of changes. The PGM are Os-Ir-Ru alloys with a pronounced ruthenium trend. Many of the Os-Ir-Ru grains have porous, fractured, or altered rims that contain secondary PGE sulfides, arsenides, sulfarsenides, Ir-Ni-Fe alloys, and rarer selenides, arsenoselenides, and tellurides of the PGE. The data obtained made it possible to identify the root sources of PGM in the placer and to make assumptions about the stages of transformation of primary igneous Os-Ir-Ru alloys from bedrock to placer. We assume that there are several stages of alteration of high-temperature Os-Ir-Ru alloys. The late magmatic stage is associated with the effect of fluid-saturated residual melt enriched with S, As. The post-magmatic hydrothermal stage (under conditions of changing reducing conditions to oxidative ones) is associated with the formation of telluro-selenides and oxide phases of PGE. The preservation of poorly rounded and unrounded PGM grains in the placer suggests a short transport from their primary source. The source of the platinum-group minerals from the Kitoy River placer is the rocks of the Southern ophiolite branch of SEPES and, in particular, the southern plate of the Ospa-Kitoy ophiolite complex, and primarily chromitites. Full article
Show Figures

Figure 1

14 pages, 9554 KiB  
Article
Ferrotorryweiserite, Rh5Fe10S16, a New Mineral Species from the Sisim Placer Zone, Eastern Sayans, Russia, and the Torryweiserite–Ferrotorryweiserite Series
by Andrei Y. Barkov, Nadezhda D. Tolstykh, Nobumichi Tamura, Robert F. Martin, Andrew M. McDonald and Louis J. Cabri
Minerals 2021, 11(12), 1420; https://doi.org/10.3390/min11121420 - 15 Dec 2021
Cited by 3 | Viewed by 2826
Abstract
Ferrotorryweiserite, Rh5Fe10S16, occurs as small grains (≤20 µm) among droplet-like inclusions (up to 50 μm in diameter) of platinum-group minerals (PGM), in association with oberthürite or Rh-bearing pentlandite, laurite, and a Pt-Pd-Fe alloy (likely isoferroplatinum and Fe-Pd-enriched [...] Read more.
Ferrotorryweiserite, Rh5Fe10S16, occurs as small grains (≤20 µm) among droplet-like inclusions (up to 50 μm in diameter) of platinum-group minerals (PGM), in association with oberthürite or Rh-bearing pentlandite, laurite, and a Pt-Pd-Fe alloy (likely isoferroplatinum and Fe-Pd-enriched platinum), hosted by placer grains of Os-Ir alloy (≤0.5 mm) in the River Ko deposit. The latter is a part of the Sisim placer zone, which is likely derived from ultramafic units of the Lysanskiy layered complex, southern Krasnoyarskiy kray, Russia. The mineral is opaque, gray to brownish gray in reflected light, very weakly bireflectant, not pleochroic to weakly pleochroic (grayish to light brown tints), and weakly anisotropic. The calculated density is 5.93 g·cm–3. Mean results (and ranges) of four WDS analyses are: Ir 18.68 (15.55–21.96), Rh 18.34 (16.32–20.32), Pt 0.64 (0.19–1.14), Ru 0.03 (0.00–0.13), Os 0.07 (0.02–0.17), Fe 14.14 (13.63–14.64), Ni 13.63 (12.58–14.66), Cu 4.97 (3.42–6.41), Co 0.09 (0.07–0.11), S 29.06 (28.48–29.44), and total 99.66 wt.%. They correspond to the following formula calculated for a total of 31 atoms per formula unit: (Rh3.16Ir1.72Pt0.06Ru0.01Os0.01)Σ4.95(Fe4.48Ni4.11Cu1.38Co0.03)Σ10.00S16.05. The results of synchrotron micro-Laue diffraction studies indicate that ferrotorryweiserite is trigonal; its probable space group is R3¯m (#166) based on its Ni-analog, torryweiserite. The unit-cell parameters refined from 177 reflections are a = 7.069 (2) Å, c = 34.286 (11) Å, V = 1484 (1) Å3, and Z = 3. The c:a ratio is 4.8502. The strongest eight peaks in the X-ray diffraction pattern derived from results of micro-Laue diffraction study [d in Å(hkil)(I)] are 2.7950 (202¯5) (100); 5.7143 (0006) (60); 1.7671 (224¯0) (44.4); 3.0486 (202¯1) (39.4); 5.7650 (101¯2) (38.6); 2.5956 (202¯7) (37.8); 3.0058 (112¯6) (36.5); and 1.5029 (42¯ 2¯12) (35.3). Ferrotorryweiserite and the associated PGM crystallized from microvolumes of residual melt at late stages of crystallization of grains of Os- and Ir-dominant alloys occurred in lode zones of chromitites of the Lysanskiy layered complex. In a particular case, the residual melt is disposed peripherally around a core containing a disequilibrium association of magnesian olivine (Fo72.9–75.6) and albite (Ab81.6–86.4), with the development of skeletal crystals of titaniferous augite: Wo40.8–43.2En26.5–29.3Fs20.3–22.6Aeg6.9–9.5 (2.82–3.12 wt.% TiO2). Ferrotorryweiserite represents the Fe-dominant analog of torryweiserite. We also report occurrences of ferrotorryweiserite in the Marathon deposit, Coldwell Complex, Ontario, Canada, and infer the existence of the torryweiserite–ferrotorryweiserite solid solution in other deposits and complexes. Full article
Show Figures

Figure 1

15 pages, 3653 KiB  
Article
Effects of Transition Elements on the Structural, Elastic Properties and Relative Phase Stability of L12 γ′-Co3Nb from First-Principles Calculations
by Cuiping Wang, Chi Zhang, Yichun Wang, Jiajia Han, Weiwei Xu and Xingjun Liu
Metals 2021, 11(6), 933; https://doi.org/10.3390/met11060933 - 8 Jun 2021
Cited by 4 | Viewed by 3075
Abstract
In order to explore novel light-weight Co-Nb-based superalloys with excellent performance, we studied the effects of alloying elements including Sc, Ti, V, Cr, Mn, Fe, Ni, Y, Zr, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt on the [...] Read more.
In order to explore novel light-weight Co-Nb-based superalloys with excellent performance, we studied the effects of alloying elements including Sc, Ti, V, Cr, Mn, Fe, Ni, Y, Zr, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt on the structural stability, elastic and thermodynamic properties of γ′-Co3Nb through first-principles calculations. The results of transfer energy indicate that Y, Zr, Hf and Ta have a strong preference for Nb sites, while Ni, Rh, Pd, Ir and Pt have a strong tendency to occupy the Co sites. In the ground state, the addition of alloying elements plays a positive role in improving the stability of γ′-Co3Nb compound. The order of stabilizing effect is as follows: Ti > Ta > Hf > Pt > Ir > Zr > Rh > V > Ni > W > Sc > Mo > Pd > Re > Ru. Combining the calculation results of elastic properties and electronic structure, we found that the addition of alloying elements can strengthen the mechanical properties of γ′-Co3Nb, and the higher spatial symmetry of electrons accounts for improving the shear modulus of γ′-Co3Nb compound. At finite temperatures, Ti, Ta, Hf, Pt, Ir, Zr and V significantly expand the stabilization temperature range of the γ′ phase and are potential alloying elements to improve the high-temperature stability of the γ′-Co3Nb compounds. Full article
Show Figures

Graphical abstract

13 pages, 18948 KiB  
Article
Tamuraite, Ir5Fe10S16, a New Species of Platinum-Group Mineral from the Sisim Placer Zone, Eastern Sayans, Russia
by Andrei Y. Barkov, Nadezhda D. Tolstykh, Robert F. Martin and Andrew M. McDonald
Minerals 2021, 11(5), 545; https://doi.org/10.3390/min11050545 - 20 May 2021
Cited by 7 | Viewed by 3832
Abstract
Tamuraite, ideally Ir5Fe10S16, occurs as discrete phases (≤20 μm) in composite inclusions hosted by grains of osmium (≤0.5 mm across) rich in Ir, in association with other platinum-group minerals in the River Ko deposit of the Sisim [...] Read more.
Tamuraite, ideally Ir5Fe10S16, occurs as discrete phases (≤20 μm) in composite inclusions hosted by grains of osmium (≤0.5 mm across) rich in Ir, in association with other platinum-group minerals in the River Ko deposit of the Sisim Placer Zone, southern Krasnoyarskiy Kray, Russia. In droplet-like inclusions, tamuraite is typically intergrown with Rh-rich pentlandite and Ir-bearing members of the laurite–erlichmanite series (up to ~20 mol.% “IrS2”). Tamuraite is gray to brownish gray in reflected light. It is opaque, with a metallic luster. Its bireflectance is very weak to absent. It is nonpleochroic to slightly pleochroic (grayish to light brown tints). It appears to be very weakly anisotropic. The calculated density is 6.30 g·cm−3. The results of six WDS analyses are Ir 29.30 (27.75–30.68), Rh 9.57 (8.46–10.71), Pt 1.85 (1.43–2.10), Ru 0.05 (0.02–0.07), Os 0.06 (0.03–0.13), Fe 13.09 (12.38–13.74), Ni 12.18 (11.78–13.12), Cu 6.30 (6.06–6.56), Co 0.06 (0.04–0.07), S 27.23 (26.14–27.89), for a total of 99.69 wt %. This composition corresponds to (Ir2.87Rh1.75Pt0.18Ru0.01Os0.01)Σ4.82(Fe4.41Ni3.90Cu1.87Co0.02)Σ10.20S15.98, calculated based on a total of 31 atoms per formula unit. The general formula is (Ir,Rh)5(Fe,Ni,Cu)10S16. Results of synchrotron micro-Laue diffraction studies indicate that tamuraite is trigonal. Its probable space group is R3m (#166), and the unit-cell parameters are a = 7.073(1) Å, c = 34.277(8) Å, V = 1485(1) Å3, and Z = 3. The c:a ratio is 4.8462. The strongest eight peaks in the X-ray diffraction pattern [d in Å(hkl)(I)] are: 3.0106(216)(100), 1.7699(420)(71), 1.7583(2016)(65), 2.7994(205)(56), 2.9963(1010)(50), 5.7740(102)(45), 3.0534(201)(43) and 2.4948(208)(38). The crystal structure is derivative of pentlandite and related to that of oberthürite and torryweiserite. Tamuraite crystallized from a residual melt enriched in S, Fe, Ni, Cu, and Rh; these elements were incompatible in the Os–Ir alloy that nucleated in lode zones of chromitites in the Lysanskiy layered complex, Eastern Sayans, Russia. The name honors Nobumichi Tamura, senior scientist at the Advanced Light Source of the Lawrence Berkeley National Laboratory, Berkeley, California. Full article
Show Figures

Figure 1

30 pages, 8880 KiB  
Article
Podiform Chromitites and PGE Mineralization in the Ulan-Sar’dag Ophiolite (East Sayan, Russia)
by Olga N. Kiseleva, Evgeniya V. Airiyants, Dmitriy K. Belyanin and Sergey M. Zhmodik
Minerals 2020, 10(2), 141; https://doi.org/10.3390/min10020141 - 7 Feb 2020
Cited by 17 | Viewed by 4847
Abstract
In this paper, we present the first detailed study on the chromitites and platinum-group element mineralization (PGM) of the Ulan-Sar’dag ophiolite (USO), located in the Central Asian Fold Belt (East Sayan). Three groups of chrome spinels, differing in their chemical features and physical–chemical [...] Read more.
In this paper, we present the first detailed study on the chromitites and platinum-group element mineralization (PGM) of the Ulan-Sar’dag ophiolite (USO), located in the Central Asian Fold Belt (East Sayan). Three groups of chrome spinels, differing in their chemical features and physical–chemical parameters, under equilibrium conditions of the mantle mineral association, have been distinguished. The temperature and log oxygen fugacity values are, for the chrome spinels I, from 820 to 920 °C and from (−0.7) to (−1.5); for chrome spinels II, 891 to 1003 °C and (−1.1) to (−4.4); and for chrome spinels III, 738 to 846 °C and (−1.1) to (−4.4), respectively. Chrome spinels I were formed through the interaction of peridotites with mid-ocean ridge basalt (MORB)-type melts, and chrome spinels II were formed through the interaction of peridotites with boninite melts. Chrome spinels III were probably formed through the interaction of andesitic melts with rocks of an overlying mantle wedge. Chromitites demonstrate the fractionated form of the distribution of the platinum-group elements (PGE), which indicates a high degree of partial melting at 20–24% of the mantle source. Two assemblages of PGM have been distinguished: The primary PGE assemblage of Os-Ir-Ru alloys-I, (Os,Ru)S2, and IrAsS, and the secondary PGM assemblage of Os-Ir-Ru alloys-II, Os0, Ru0, RuS2, OsS2, IrAsS, RhNiAs with Ni, Fe, and Cu sulfides. The formation of the secondary phases of PGE occurred upon exposure to a reduced fluid, with a temperature range of 300–700 °C, log sulfur fugacity of (−20), and pressure of 0.5 kbar. We have proposed a scheme for the sequence of the formation and transformation of the PGMs at various stages of the evolution of the Ulan-Sar’dag ophiolite. Full article
Show Figures

Figure 1

18 pages, 3649 KiB  
Article
Occurrence of Graphite-Like Carbon in Podiform Chromitites of Greece and Its Genetic Significance
by Maria Economou-Eliopoulos, George Tsoupas and Vasilis Skounakis
Minerals 2019, 9(3), 152; https://doi.org/10.3390/min9030152 - 3 Mar 2019
Cited by 9 | Viewed by 4774
Abstract
The role of post-magmatic processes in the composition of chromitites hosted in ophiolite complexes, the origin of super-reduced phases, and factors controlling the carbon recycling in a supra-subduction zone environment are still unclear. The present contribution compiles the first scanning electron microscope/energy-dispersive (SEM/EDS) [...] Read more.
The role of post-magmatic processes in the composition of chromitites hosted in ophiolite complexes, the origin of super-reduced phases, and factors controlling the carbon recycling in a supra-subduction zone environment are still unclear. The present contribution compiles the first scanning electron microscope/energy-dispersive (SEM/EDS) data on graphite-like amorphous carbon, with geochemical and mineral chemistry data, from chromitites of the Skyros, Othrys, Pindos, and Veria ophiolites (Greece). The aim of this study was the delineation of potential relationships between the modified composition of chromite and the role of redox conditions, during the long-term evolution of chromitites in a supra-subduction zone environment. Chromitites are characterized by a strong brittle (cataclastic) texture and the presence of phases indicative of super-reducing phases, such as Fe–Ni–Cr-alloys, awaruite (Ni3Fe), and heazlewoodite (Ni3S2). Carbon-bearing assemblages are better revealed on Au-coated unpolished sections. Graphite occurs in association with hydrous silicates (chlorite, serpentine) and Fe2+-chromite, as inclusions in chromite, filling cracks within chromite, or as nodule-like graphite aggregates. X-ray spectra of graphite–silicate aggregates showed the presence of C, Si, Mg, Al, O in variable proportions, and occasionally K and Ca. The extremely low fO2 during serpentinization facilitated the occurrence of methane in microfractures of chromitites, the precipitation of super-reducing phases (metal alloys, awaruite, heazlewoodite), and graphite. In addition, although the origin of Fe–Cu–Ni-sulfides in ultramafic parts of ophiolite complexes is still unclear, in the case of the Othrys chromitites, potential reduction-induced sulfide and/or carbon saturation may drive formation of sulfide ores and graphite-bearing chromitites. The presented data on chromitites covering a wide range in platinum-group element (PGE) content, from less than 100 ppb in the Othrys to 25 ppm ΣPGE in the Veria ores, showed similarity in the abundance of graphite-like carbon. The lack of any relationship between graphite (and probably methane) and the PGE content may be related to the occurrence of the (Ru–Os–Ir) minerals in chromitites, which occur mostly as oxides/hydroxides, and to lesser amounts of laurite, with pure Ru instead activating the stable CO2 molecule and reducing it to methane (experimental data from literature). Full article
(This article belongs to the Special Issue Spinel Group Minerals)
Show Figures

Figure 1

25 pages, 16411 KiB  
Article
Platinum-Group Minerals of Pt-Placer Deposits Associated with the Svetloborsky Ural-Alaskan Type Massif, Middle Urals, Russia
by Sergey Yu. Stepanov, Roman S. Palamarchuk, Aleksandr V. Kozlov, Dmitry A. Khanin, Dmitry A. Varlamov and Daria V. Kiseleva
Minerals 2019, 9(2), 77; https://doi.org/10.3390/min9020077 - 28 Jan 2019
Cited by 23 | Viewed by 6889
Abstract
The alteration of platinum group minerals (PGM) of eluval, proximal, and distal placers associated with the Ural-Alaskan type clinopyroxenite-dunite massifs were studied. The Isovsko-Turinskaya placer system is unique regarding its size, and was chosen as research object as it is PGM-bearing for more [...] Read more.
The alteration of platinum group minerals (PGM) of eluval, proximal, and distal placers associated with the Ural-Alaskan type clinopyroxenite-dunite massifs were studied. The Isovsko-Turinskaya placer system is unique regarding its size, and was chosen as research object as it is PGM-bearing for more than 70 km from its lode source, the Ural-Alaskan type Svetloborsky massif, Middle Urals. Lode chromite-platinum ore zones located in the Southern part of the dunite “core” of the Svetloborsky massif are considered as the PGM lode source. For the studies, PGM concentrates were prepared from the heavy concentrates which were sampled at different distances from the lode source. Eluvial placers are situated directly above the ore zones, and the PGM transport distance does not exceed 10 m. Travyanistyi proximal placer is considered as an example of alluvial ravine placer with the PGM transport distance from 0.5 to 2.5 km. The Glubokinskoe distal placer located in the vicinity of the Is settlement are chosen as the object with the longest PGM transport distance (30–35 km from the lode source). Pt-Fe alloys, and in particular, isoferroplatinum prevail in the lode ores and placers with different PGM transport distance. In some cases, isoferroplatinum is substituted by tetraferroplatinum and tulameenite in the grain marginal parts. Os-Ir-(Ru) alloys, erlichmanite, laurite, kashinite, bowieite, and Ir-Rh thiospinels are found as inclusions in Pt-Fe minerals. As a result of the study, it was found that the greatest contribution to the formation of the placer objects is made by the erosion of chromite-platinum mineralized zones in dunites. At a distance of more than 10 km, the degree of PGM mechanical attrition becomes significant, and the morphological features, characteristic of lode platinum, are practically not preserved. One of the signs of the significant PGM transport distance in the placers is the absence of rims composed of the tetraferroplatinum group minerals around primary Pt-Fez alloys. The sie of the nuggets decreases with the increasing transport distance. The composition of isoferroplatinum from the placers and lode chromite-platinum ore zones are geochemically similar. Full article
Show Figures

Figure 1

18 pages, 7007 KiB  
Article
Platinum-Group Mineral Occurrences and Platinum-Group Elemental Geochemistry of the Xiadong Alaskan-Type Complex in the Southern Central Asian Orogenic Belt
by Sai-Hong Yang, Ben-Xun Su, Xiao-Wen Huang, Dong-Mei Tang, Ke-Zhang Qin, Yang Bai, Patrick Asamoah Sakyi and Melesse Alemayehu
Minerals 2018, 8(11), 494; https://doi.org/10.3390/min8110494 - 1 Nov 2018
Cited by 11 | Viewed by 4550
Abstract
Alaskan-type complexes commonly contain primary platinum-group element (PGE) alloys and lack base-metal sulfides in their dunite and chromite-bearing rocks. They could therefore host PGE deposits with rare sulfide mineralization. A detailed scanning electron microscope investigation on dunites from the Xiadong Alaskan-type complex in [...] Read more.
Alaskan-type complexes commonly contain primary platinum-group element (PGE) alloys and lack base-metal sulfides in their dunite and chromite-bearing rocks. They could therefore host PGE deposits with rare sulfide mineralization. A detailed scanning electron microscope investigation on dunites from the Xiadong Alaskan-type complex in the southern Central Asian Orogenic Belt revealed: various occurrences of platinum-group minerals (PGMs) that are dominated by inclusions in chromite grains containing abundant Ru, Os, S and a small amount of Pd and Te, indicating that they mainly formed prior to or simultaneously with the crystallization of the host minerals; A few Os–Ir–Rurich phases with iridium/platinum-group element (IPGE) alloy, anduoite (Ru,Ir,Ni)(As,S)2−x and irarsite (IrAsS) were observed in chromite fractures, and as laurite (RuS2) in clinopyroxene, which was likely related to late-stage hydrothermal alteration. The rocks in the Xiadong complex display large PGE variations with ∑PGE of 0.38–112 ppb. The dunite has the highest PGE concentrations (8.69–112 ppb), which is consistent with the presence of PGMs. Hornblende clinopyroxenite, hornblendite and hornblende gabbro were all depleted in PGEs, indicating that PGMs were likely already present at an early phase of magma and were mostly collected afterward in dunites during magma differentiation. Compared with the regional mafic–ultramafic intrusions in Eastern Tianshan, the Xiadong complex show overall higher average PGE concentration. This is consistent with the positive PGE anomalies revealed by regional geochemical surveys. The Xiadong complex, therefore, has potential for PGE exploration. Full article
Show Figures

Figure 1

21 pages, 4246 KiB  
Article
Origin of Platinum Group Minerals (PGM) Inclusions in Chromite Deposits of the Urals
by Federica Zaccarini, Giorgio Garuti, Evgeny Pushkarev and Oskar Thalhammer
Minerals 2018, 8(9), 379; https://doi.org/10.3390/min8090379 - 31 Aug 2018
Cited by 42 | Viewed by 6505
Abstract
This paper reviews a database of about 1500 published and 1000 unpublished microprobe analyses of platinum-group minerals (PGM) from chromite deposits associated with ophiolites and Alaskan-type complexes of the Urals. Composition, texture, and paragenesis of unaltered PGM enclosed in fresh chromitite of the [...] Read more.
This paper reviews a database of about 1500 published and 1000 unpublished microprobe analyses of platinum-group minerals (PGM) from chromite deposits associated with ophiolites and Alaskan-type complexes of the Urals. Composition, texture, and paragenesis of unaltered PGM enclosed in fresh chromitite of the ophiolites indicate that the PGM formed by a sequence of crystallization events before, during, and probably after primary chromite precipitation. The most important controlling factors are sulfur fugacity and temperature. Laurite and Os–Ir–Ru alloys are pristine liquidus phases crystallized at high temperature and low sulfur fugacity: they were trapped in the chromite as solid particles. Oxygen thermobarometry supports that several chromitites underwent compositional equilibration down to 700 °C involving increase of the Fe3/Fe2 ratio. These chromitites contain a great number of PGM including—besides laurite and alloys—erlichmanite, Ir–Ni–sulfides, and Ir–Ru sulfarsenides formed by increasing sulfur fugacity. Correlation with chromite composition suggests that the latest stage of PGM crystallization might have occurred in the subsolidus. If platinum-group elements (PGE) were still present in solid chromite as dispersed atomic clusters, they could easily convert into discrete PGM inclusions splitting off the chromite during its re-crystallization under slow cooling-rate. The presence of primary PGM inclusions in fresh chromitite of the Alaskan-type complexes is restricted to ore bodies crystallized in equilibrium with the host dunite. The predominance of Pt–Fe alloys over sulfides is a strong indication for low sulfur fugacity, thereby early crystallization of laurite is observed only in one deposit. In most cases, Pt–Fe alloys crystallized and were trapped in chromite between 1300 and 1050 °C. On-cooling equilibration to ~900 °C may produce lamellar unmixing of different Pt–Fe phases and osmium. Precipitation of the Pt–Fe alloys locally is followed by an increase of sulfur fugacity leading to crystallize erlichmanite and Ir–Rh–Ni–Cu sulfides, occurring as epitaxic overgrowth on the alloy. There is evidence that the system moved quickly into the stabilization field of Pt–Fe alloys by an increase of the oxygen fugacity marked by an increase of the magnetite component in the chromite. In summary, the data support that most of the primary PGM inclusions in the chromitites of the Urals formed in situ, as part of the chromite precipitation event. However, in certain ophiolitic chromitites undergoing annealing conditions, there is evidence for subsolidus crystallization of discrete PGM from PGE atomic-clusters occurring in the chromite. This mechanism of formation does not require a true solid solution of PGE in the chromite structure. Full article
Show Figures

Figure 1

24 pages, 9256 KiB  
Article
Mineralogy of Platinum-Group Elements and Gold in the Ophiolite-Related Placer of the River Bolshoy Khailyk, Western Sayans, Russia
by Andrei Y. Barkov, Gennadiy I. Shvedov, Sergey A. Silyanov and Robert F. Martin
Minerals 2018, 8(6), 247; https://doi.org/10.3390/min8060247 - 12 Jun 2018
Cited by 21 | Viewed by 6589
Abstract
We describe assemblages of platinum-group minerals (PGM) and associated PGE–Au phases found in alluvium along the River Bolshoy Khailyk, in the western Sayans, Russia. The river drains the Aktovrakskiy ophiolitic complex, part of the Kurtushibinskiy belt, as does the Zolotaya River ~15 km [...] Read more.
We describe assemblages of platinum-group minerals (PGM) and associated PGE–Au phases found in alluvium along the River Bolshoy Khailyk, in the western Sayans, Russia. The river drains the Aktovrakskiy ophiolitic complex, part of the Kurtushibinskiy belt, as does the Zolotaya River ~15 km away, the site of other placer deposits. Three groups of alloy minerals are described: (1) Os–Ir–Ru compositions, which predominate, (2) Pt–Fe compositions of a Pt3Fe stoichiometry, and (3) Pt–Au–Cu alloys, which likely crystallized in the sequence from Au–(Cu)-bearing platinum, Pt(Au,Cu), Pt(Cu,Au), and PtAuCu2, to PtAu4Cu5. The general trends of crystallization of PGM appear to be: [Os–Ir–Ru alloys] → Pt3Fe-type alloy (with inclusions of Ru-dominant alloy formed by exsolution or via replacement of the host Pt–Fe phase) → Pt–Au–Cu alloys. We infer that Rh and Co mutually substitute for Fe, not Ni, and are incorporated into the pentlandite structure via a coupled mechanism of substitution: [Rh3+ + Co3+ + □ → 3Fe2+]. Many of the Os–Ir–Ru and Pt–Fe grains have porous, fractured or altered rims that contain secondary PGE sulfide, arsenide, sulfarsenide, sulfoantimonide, gold, Pt–Ir–Ni-rich alloys, and rarer phases like Cu-rich bowieite and a Se-rich sulfarsenide of Pt. The accompanying pyroxene, chromian spinel and serpentine are highly magnesian, consistent with a primitive ultramafic source-rock. Whereas the alloy phases indicate a highly reducing environment, late assemblages indicate an oxygenated local environment leading to Fe-bearing Ru–Os oxide (zoned) and seleniferous accessory phases. Full article
Show Figures

Figure 1

19 pages, 1959 KiB  
Article
PGE–(REE–Ti)-Rich Micrometer-Sized Inclusions, Mineral Associations, Compositional Variations, and a Potential Lode Source of Platinum-Group Minerals in the Sisim Placer Zone, Eastern Sayans, Russia
by Andrei Y. Barkov, Gennadiy I. Shvedov and Robert F. Martin
Minerals 2018, 8(5), 181; https://doi.org/10.3390/min8050181 - 27 Apr 2018
Cited by 13 | Viewed by 4612
Abstract
We report the results of a mineralogical investigation of placer samples from the upper reaches of the Sisim watershed, near Krasnoyarsk, in Eastern Sayans, Russia. The placer grains are predominantly Os–Ir–(Ru) alloys (80%) that host various inclusions (i.e., platinum-group elements (PGE)-rich monosulfide, PGE-rich [...] Read more.
We report the results of a mineralogical investigation of placer samples from the upper reaches of the Sisim watershed, near Krasnoyarsk, in Eastern Sayans, Russia. The placer grains are predominantly Os–Ir–(Ru) alloys (80%) that host various inclusions (i.e., platinum-group elements (PGE)-rich monosulfide, PGE-rich pentlandite, Ni–Fe–(As)-rich laurite, etc.) and subordinate amounts of Pt–Fe alloys. Analytical data (wavelength- and energy-dispersive X-ray spectroscopy) are presented for all the alloy minerals and the suite of micrometer-sized inclusions that they contain, as well as associated grains of chromian spinel. The assemblage was likely derived from chromitite units of the Lysanskiy mafic–ultramafic complex, noted for its Ti–(V) mineralization. In the Os–Ir–(Ru) alloys, the ratio Ru/Ir is ≤1, Ir largely substitutes for Os, and compositional variations indicate the scheme [Ir + Ru] → 2Os. In contrast, in the laurite–erlichmanite series, Ir and Os are strongly and positively correlated, whereas Ir and Ru are negatively correlated; Ru and Os are inversely correlated. These compositions point to the scheme [Os2+ + 2Ir3+ + □] → 4Ru2+ or alternatively, to Os2+ + Ir2+ → 2Ru2+. We deduce a potential sequence of crystallization in the parental rock and address the effects of decreasing temperature and increasing fugacity of sulfur and arsenic on the assemblage. Inclusions of Ti-rich minerals in the alloy grains are consistent with the Lysanskiy setting; the complete spectrum of chromite–magnesiochromite compositions indicates that an important part of that complex was eroded. A localized fluid-dominated micro-environment produced the unique association of laurite with monazite-(Ce), again considered a reflection of the special attributes of the Lysanskiy complex. Full article
Show Figures

Figure 1

Back to TopTop