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Abstract: Alaskan-type complexes commonly contain primary platinum-group element (PGE) alloys
and lack base-metal sulfides in their dunite and chromite-bearing rocks. They could therefore
host PGE deposits with rare sulfide mineralization. A detailed scanning electron microscope
investigation on dunites from the Xiadong Alaskan-type complex in the southern Central Asian
Orogenic Belt revealed: various occurrences of platinum-group minerals (PGMs) that are dominated
by inclusions in chromite grains containing abundant Ru, Os, S and a small amount of Pd and Te,
indicating that they mainly formed prior to or simultaneously with the crystallization of the host
minerals; A few Os–Ir–Rurich phases with iridium/platinum-group element (IPGE) alloy, anduoite
(Ru,Ir,Ni)(As,S)2−x and irarsite (IrAsS) were observed in chromite fractures, and as laurite (RuS2)
in clinopyroxene, which was likely related to late-stage hydrothermal alteration. The rocks in the
Xiadong complex display large PGE variations with ∑PGE of 0.38–112 ppb. The dunite has the highest
PGE concentrations (8.69–112 ppb), which is consistent with the presence of PGMs. Hornblende
clinopyroxenite, hornblendite and hornblende gabbro were all depleted in PGEs, indicating that
PGMs were likely already present at an early phase of magma and were mostly collected afterward
in dunites during magma differentiation. Compared with the regional mafic–ultramafic intrusions
in Eastern Tianshan, the Xiadong complex show overall higher average PGE concentration. This is
consistent with the positive PGE anomalies revealed by regional geochemical surveys. The Xiadong
complex, therefore, has potential for PGE exploration.
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1. Introduction

Platinum-group element (PGE) mineralization in Alaskan-type complexes is invariably present
in dunite units [1,2], occasionally in the vein-type settings associated with bodies of magnetite-rich
clinopyroxenite in the dunite or peridotite core, in pegmatitic and micaceous rocks [3]. Previous studies
revealed general enrichments in Pt, Pd and Rh relative to Ru, Ir and Os in Alaskan-type complexes [4,5].
Platinum-rich minerals, mainly Pt–Fe alloys are thought to form in the early stages of magmatic
evolution and are associated with chromite formation [6]. Palladium-rich minerals on the other hand
form at later stages and are associated with Cu–Fe–V–Ti metal formation [4,7]. As the Alaskan-type
complexes originated from highly oxidizing and low-sulfur magmatism [8], they commonly occur
with the presence of PGE alloys and lack base-metal sulfides [8]. However, sulfide mineralization
coupled with chromite and/or PGE mineralization was explored in a few Alaskan-type complexes
(e.g., Turnagain, British Columbia; and Duke Island, Alaska) [9,10]. This discrepancy is not well
understood. Further investigation into the occurrences and geochemical histories of chromites,
platinium-group minerals (PGMs) and sulfides is required in these Alaskan-type complexes.

Geological survey mapping of ultralow density using chemical spectrometry analysis of Pt,
Pd and Au from floodplain overbank sediment samples revealed PGE anomalies in the Eastern
Tianshan orogen for a long time [11]. Platinum-group element deposits are yet to be found in this area,
although an increasing number of Ni–Cu sulfide deposits were identified in Permian mafic–ultramafic
intrusions [12–14]. The Xiadong mafic–ultramafic complex in the Mid-Tianshan Terrane, the southern
part of the Eastern Tianshan orogen, differs from the Ni–Cu sulfide deposit-hosting mafic–ultramafic
intrusions in terms of its geochronology, petrology, mineralogy and geochemistry [15–20]. It is
composed of dunite, hornblende clinopyroxenite, hornblendite and hornblende gabbro. These rocks are
characterized by cumulate textures, high Mg contents, low trace–element abundances, flat rare-earth
element (REE) and arc-magma-type trace-element patterns, and considerable Mg isotopic variations at
both mineral and whole-rock scales [15,17–20]. The Xiadong complex was formed following multiple
magmatic pulses according to zircon U–Pb ages (479, 477, 379, and 313 Ma) of four hornblende
gabbros [17]. It was been identified as a typical Alaskan-type complex showing potential chromite
mineralization [15]. A more recent study reported the discovery of base-metal minerals in ultramafic
rocks of the Xiadong Alaskan-type complex [18]. In order to investigate potential PGE and metal
sulfide mineralization in the Xiadong complex, we present the observations of PGMs and sulfides
as well as PGE whole-rock geochemistry of Xiadong intrusive rocks. The Xiadong complex shows
variable but relatively higher PGE concentrations when compared with regional mafic–ultramafic
intrusions. The complex, thus, has potential for PGE exploration. The PGM and sulfide segregations in
this Alaskan-type complex are also discussed.

2. Geological Background

The Eastern Tianshan and Beishan orogens are located in the southern part of the Central
Asian Orogenic Belt (CAOB) (Figure 1A). Numerous mafic–ultramafic intrusions are widespread
in the orogens and they host the major Ni–Cu sulfide deposits in China [14,21,22] (Figure 1B).
These mafic–ultramafic intrusions formed mostly at the post-orogenic extensional setting in the
early Permian [12–15]. Results of geochemical exploration revealed that the positive PGE anomalies
(0.4–0.6 ppb Pt and 0.4–1.0 ppb Pd) are spatially related with the mafic–ultramafic intrusions in the
Eastern Tianshan and Beishan [11,23]. However, progress is yet to be made on PGE deposit exploration
in this area.
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Figure 1. (A) Location map of the study area in the Central Asian Orogenic Belt. (B) Geological map 
of the Eastern Tianshan and Beishan orogens showing the distribution of Paleozoic mafic–ultramafic 
complexes (modified from References [15,17]). The reported numbers represent the ages of known 
intrusions. 

The Xiadong mafic–ultramafic complex is situated in the Mid-Tianshan Terrane (Figure 1B), 
which is interpreted as a continental arc from the Ordovician to the Carboniferous. The complex was 
formed by multiple pulses of magma via high-degree melting of the lithospheric mantle, most likely 
related to subduction of the South Tianshan ocean and subsequent subduction of the Junggar ocean. 
The detailed geology was summarized by Tang et al. and Su et al. [17,24]. The Xiadong complex 
stretches east–west and covers an area measuring 7 km in length with a maximum width of 0.5 km. It 
has distinctive petrological and mineralogical features relative to the Permian mafic–ultramafic 
intrusions in Eastern Tianshan and Beishan. The Xiadong complex is composed of dunite in the core 
and surrounded by hornblende clinopyroxenite, hornblendite and hornblende gabbro (Figure 2), 
representing a complete set of rock suites compared with other Alaskan-type complexes worldwide 
[15,18]. These rock units are characterized by cumulate textures and display intrusive contacts with 
the country rocks [15]. 

Figure 1. (A) Location map of the study area in the Central Asian Orogenic Belt. (B) Geological map
of the Eastern Tianshan and Beishan orogens showing the distribution of Paleozoic mafic–ultramafic
complexes (modified from References [15,17]). The reported numbers represent the ages of
known intrusions.

The Xiadong mafic–ultramafic complex is situated in the Mid-Tianshan Terrane (Figure 1B),
which is interpreted as a continental arc from the Ordovician to the Carboniferous. The complex was
formed by multiple pulses of magma via high-degree melting of the lithospheric mantle, most likely
related to subduction of the South Tianshan ocean and subsequent subduction of the Junggar ocean.
The detailed geology was summarized by Tang et al. and Su et al. [17,24]. The Xiadong complex
stretches east–west and covers an area measuring 7 km in length with a maximum width of 0.5 km.
It has distinctive petrological and mineralogical features relative to the Permian mafic–ultramafic
intrusions in Eastern Tianshan and Beishan. The Xiadong complex is composed of dunite in
the core and surrounded by hornblende clinopyroxenite, hornblendite and hornblende gabbro
(Figure 2), representing a complete set of rock suites compared with other Alaskan-type complexes
worldwide [15,18]. These rock units are characterized by cumulate textures and display intrusive
contacts with the country rocks [15].
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Figure 2. Geological map of the Xiadong mafic–ultramafic complex, accompanied by a horizontal 
profile along A to B showing its rock units and sampling positions (modified from References [15,17]). 
Isotopic ages are the U–Pb ages of zircons from four hornblende gabbros. 

3. Materials and Analytical Methods 

3.1. Sample Description 

The studied rocks were mostly fresh with slight alteration. The minerals in the complex are 
dominated by olivine, clinopyroxene, and hornblende with accessory chromite and magnetite. 
Orthopyroxene is very rare in all of the rock units. Plagioclase is absent in the dunite and hornblende 
clinopyroxenite. The dunite is made up of olivine (90–98 vol.%) and chromite (0.5–8 vol.%) with 
accessory hornblende and clinopyroxene (<1–2 vol.%). The Fo content of olivine in the dunites ranges 
from 92 to 96.7 [15,18]. Subhedral to euhedral interstitial chromite occurs in elongated crystal or 
rounded shapes. 

3.2. Sample Preparation 

Samples were collected using a hammer before polishing thin sections for optical microscopy 
work. From the samples, 14 polished thin sections including eight dunite samples, two hornblende 
clinopyroxenite samples, two hornblendite samples, and two hornblende gabbro samples were 
prepared for electron microscopy work. The thin sections were then coated with the carbon with ~10 
nm thickness using a Leica EM ACE200 coating equipment (Leica, Vienna, Austria). Sixteen samples 
extracted from the different rock units were also crushed into powder with 200 mesh for measuring 
PGE concentrations. 

3.3. Sample Analyses 

The thin sections were studied using a FEI Nova Nano450 scanning electron microscope (SEM) 
equipped with an energy dispersive X-ray spectrometer (EDS) from Oxford Instruments (High 
Wycombe, UK) at the Institute of Geology and Geophysics, Chinese Academy of Sciences. 
Backscattered electron (BSE) images were obtained at an accelerating voltage of 10 kV and a beam 
current of 3.0 nA. The acquisition time of one BSE image was ~1 min. Semi-quantitative spot analyses 
and EDS mapping were obtained at an accelerating voltage of 20 kV and a beam current of 8.8 nA. 
The acquisition time of each spot was about 15 s, ensuring the spectrum area exceeded 2.5 × 106 counts. 
The mapping determination of each grain took about 5 min, with a dwell time of 5 µs for each pixel. 

Figure 2. Geological map of the Xiadong mafic–ultramafic complex, accompanied by a horizontal
profile along A to B showing its rock units and sampling positions (modified from References [15,17]).
Isotopic ages are the U–Pb ages of zircons from four hornblende gabbros.

3. Materials and Analytical Methods

3.1. Sample Description

The studied rocks were mostly fresh with slight alteration. The minerals in the complex
are dominated by olivine, clinopyroxene, and hornblende with accessory chromite and magnetite.
Orthopyroxene is very rare in all of the rock units. Plagioclase is absent in the dunite and hornblende
clinopyroxenite. The dunite is made up of olivine (90–98 vol.%) and chromite (0.5–8 vol.%) with
accessory hornblende and clinopyroxene (<1–2 vol.%). The Fo content of olivine in the dunites ranges
from 92 to 96.7 [15,18]. Subhedral to euhedral interstitial chromite occurs in elongated crystal or
rounded shapes.

3.2. Sample Preparation

Samples were collected using a hammer before polishing thin sections for optical microscopy
work. From the samples, 14 polished thin sections including eight dunite samples, two hornblende
clinopyroxenite samples, two hornblendite samples, and two hornblende gabbro samples were
prepared for electron microscopy work. The thin sections were then coated with the carbon with ~10 nm
thickness using a Leica EM ACE200 coating equipment (Leica, Vienna, Austria). Sixteen samples
extracted from the different rock units were also crushed into powder with 200 mesh for measuring
PGE concentrations.

3.3. Sample Analyses

The thin sections were studied using a FEI Nova Nano450 scanning electron microscope
(SEM) equipped with an energy dispersive X-ray spectrometer (EDS) from Oxford Instruments
(High Wycombe, UK) at the Institute of Geology and Geophysics, Chinese Academy of Sciences.
Backscattered electron (BSE) images were obtained at an accelerating voltage of 10 kV and a beam
current of 3.0 nA. The acquisition time of one BSE image was ~1 min. Semi-quantitative spot analyses
and EDS mapping were obtained at an accelerating voltage of 20 kV and a beam current of 8.8 nA.
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The acquisition time of each spot was about 15 s, ensuring the spectrum area exceeded 2.5 × 106 counts.
The mapping determination of each grain took about 5 min, with a dwell time of 5 µs for each pixel.

Whole-rock PGE concentrations were measured at the State Key Laboratory of Ore Deposit
Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences. The concentrations were
determined by isotope dilution (ID) inductively coupled plasma (ICP)-MS using a modified digestion
method [25,26]. Five grams of rock powder (>200 mesh) and appropriate amounts of 101Ru, 193Ir,
105Pd and 194Pt isotope spikes were used. The PGE measurements were made with a Perkin Elmer
Elan DRC-e ICP-MS. Ir, Ru, Pt and Pd concentrations were measured by isotope dilution, and Rh
concentrations were calculated using 194Pt as an internal standard [27]. The analyses were monitored
using the standard reference materials, WGB-1 (gabbro) and TDB-1 (diabase). Measured values were
in good agreement with certified values. The total procedural blanks were lower than 0.009 ng for Ru,
Rh, and Ir, and 0.030 ng for Pt and Pd.

4. Results

4.1. Occurrences of PGM and Sulfide

Fourteen samples were investigated using SEM. PGMs were only found in dunite sample.
The number of identified grains per sample was different. There were about nineteen grains with
sizes of less than one micron, as well as two grains of about four microns, from eight dunite samples.
Limited by the resolution of SEM, some micro-scale individual grains with PGE elements detected by
EDS could not be imaged. Some of the back scattered electron images and EDS analyses are shown in
Figures 3–7 and Table 1.

Platinum-group minerals mostly occur as inclusions in chromite from sub-micrometer to several
tens of nanometers in size (Figures 3–5 and Figure 6a). These PGM inclusions are composed of
PGE sulfides and tellurides, dominated by Os–Ru–S with seven grains discovered in five samples
(Figure 3a–c), Ru–S with six grains discovered in five samples (Figure 3d) and Os–Ru–Pd–Te with
threee grains discovered in two samples (Figure 3e,f).

Two PGMs were observed in fractures of chromite in one sample. One grain was only about
ten nanometers in size, appearing irregular in shape. The larger grain forming composite grain with
a maximum diameter of 4 × 3 microns, displays a well-defined contact with chromite (Figure 4a).
The BSE image and EDX maps in Figure 4 show that the Ir and Pt distributions positively correlate with
S in the grain, whilst Ru and Ni positively correlate with As distribution (Figure 4c–i). The average
composition measured by EDS on the basis of a total of 3 number of atoms in one molecule or
formula unit (apfu). gave (Ru0.89Ir0.27Ni0.10Pt0.08)Σ1.3(As1.36S0.30)Σ1.7 (Table 1) and Ir0.77Ru0.08As0.76S,
corresponding to the formula (Ru,Ir,Ni)(As,S)2−x likely to be anduoite [28] and IrAsS, known as irarsite,
respectively. Osmium was concentrated in a local area (Figure 4c), measuring 52.9 wt.% Os, 11.6 wt.%
Ir and 34.5 wt.% Ru (Table 1), indicating that it was an alloy.

An elliptical grain of laurite (about 5 µm in size) was observed in clinopyroxene (Figure 5).
This grain contained S, Ru, and Se with small amounts of Os, Ir, and Ni. The average composition of
the laurite from EDS was Ru0.47Fe0.09Os0.03Ir0.03Ni0.02)0.53(Se0.08S) on the basis of 1 S, with an empirical
formula of RuS2.
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Figure 3. Energy dispersive X-ray spectrometry (EDS) and backscattered electron (BSE) images of 
platinum-group mineral (PGM) inclusions in chromite in the Xiadong dunites. (a–c) Ru–Os–S; (d) Ru–
S; (e,f) Os–Ru–Pd–Te. 

 
Figure 4. BSE images and S, As, Ir, Ru, Pt, Os, and Ni element maps of a three-phas PGM grain from 
the chromite fracture. (a,b) BSE images; (c–i) Os, S, Ir, Pt, As, Ru, and Ni element maps. Chr: chromite; 
numbers represent-the positions of semi-quantitative spot analyses listed in Table 1. 

Figure 3. Energy dispersive X-ray spectrometry (EDS) and backscattered electron (BSE) images of
platinum-group mineral (PGM) inclusions in chromite in the Xiadong dunites. (a–c) Ru–Os–S; (d) Ru–S;
(e,f) Os–Ru–Pd–Te.
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Figure 4. BSE images and S, As, Ir, Ru, Pt, Os, and Ni element maps of a three-phas PGM grain from
the chromite fracture. (a,b) BSE images; (c–i) Os, S, Ir, Pt, As, Ru, and Ni element maps. Chr: chromite;
numbers represent-the positions of semi-quantitative spot analyses listed in Table 1.
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Figure 5. BSE images and S, Ru, Se, Os, Ir, and Ni element maps of a single phase of PGM grain from 
the silicate matrix of clinopyroxene. (a) BSE image; (b) the EDS spectrum of spot 6; (c–h) S, Ru, Se, Os, 
Ir, and Ni element maps. Cpx: clinopyroxene; 6: the position of semi-quantitative spot analysis of spot 
6 in Table 1. 

A variety of sulfides and sulfarsenide occur as inclusions within chromite (Figure 6) and 
serpentinized olivine (Figure 7), as well as in fractures of chromite (Figure 6). Chemically, they are 
maucherite (Ni11As8), pentlandite ((Fe,Ni)9S8), millerite (NiS), heazlewoodite (Ni3S2), jaipurite (CoS), 
and galena (PbS). The largest grain size was 10 µm. Maucherite enclosed in chromite was mostly 
associated with heazlewoodite (Figure 6b,c), whereas those in the serpentinized olivine mostly 
occurred as single mineral phases (Figure 7a), occasionally associated with pentlandite (Figure 7b). 
Pentlandite phases also mainly occurred as single grains (Figure 6i–l) and were sometimes associated 
with galena in chromite (Figure 6g,h), and maucherite in serpentinized olivine (Figure 7b,d). 

Figure 5. BSE images and S, Ru, Se, Os, Ir, and Ni element maps of a single phase of PGM grain from
the silicate matrix of clinopyroxene. (a) BSE image; (b) the EDS spectrum of spot 6; (c–h) S, Ru, Se,
Os, Ir, and Ni element maps. Cpx: clinopyroxene; 6: the position of semi-quantitative spot analysis of
spot 6 in Table 1.

A variety of sulfides and sulfarsenide occur as inclusions within chromite (Figure 6) and
serpentinized olivine (Figure 7), as well as in fractures of chromite (Figure 6). Chemically, they are
maucherite (Ni11As8), pentlandite ((Fe,Ni)9S8), millerite (NiS), heazlewoodite (Ni3S2), jaipurite (CoS),
and galena (PbS). The largest grain size was 10 µm. Maucherite enclosed in chromite was mostly
associated with heazlewoodite (Figure 6b,c), whereas those in the serpentinized olivine mostly occurred
as single mineral phases (Figure 7a), occasionally associated with pentlandite (Figure 7b). Pentlandite
phases also mainly occurred as single grains (Figure 6i–l) and were sometimes associated with galena
in chromite (Figure 6g,h), and maucherite in serpentinized olivine (Figure 7b,d).
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Note: 1 and 2—Os–Ir–Ru alloys; 3—(Ru, Ir, Pt, Ni)0.81(As4.58S); 4 and 5—irarsite; 6—laurite. Element 
(wt.%); element * (number of atoms). 

Figure 6. BSE images of base-metal minerals in chromite. (a) PGM of Os–Ru–Pd–S–Te; (b,c) heazlewoodite
associated with maucherite; (d) heazlewoodite occurring as a single mineral phase; (e,f) galena
occurring as a single mineral phase; (g,h) pentlandites associated with galena; (i–l) pentlandites
occurring as a single mineral phase. Ni–As: maucherite; Hzl: heazlewoodite; Gn: galena; Pn:pentlandite.

Table 1. Representative energy dispersive spectrometry (EDS) analyses of platinum-group minerals
from the Xiadong Alaskan-type complex.

Element/
Spot Os Ir Ru Pt Fe Ni Se As S Total

(wt.%) Os * Ir * Ru * Pt * Fe * Ni * Se * As * S *

1 52.9 11.6 34.5 - - 1.0 - - - 100 0.40 0.09 0.49 - - 0.03 - - -
2 54.2 11.3 34.5 - - - - - - 100 0.42 0.09 0.50 - - - - - -
3 - 18.9 32.9 5.50 - 2.20 - 37.1 3.50 100 - 0.91 3.01 0.26 - 0.34 - 4.58 1.00
4 - 60.6 3.10 - - - - 23.3 13.1 100 - 0.77 0.08 - - - - 0.76 1.00
5 - 60.0 3.40 - - - - 23.4 13.1 100 - 0.77 0.08 - - - - 0.77 1.00
6 5.60 5.30 44.2 - 4.70 0.90 5.70 - 33.6 100 0.03 0.03 0.47 - 0.09 0.02 0.08 - 1.00

Note: 1 and 2—Os–Ir–Ru alloys; 3—(Ru, Ir, Pt, Ni)0.81(As4.58S); 4 and 5—irarsite; 6—laurite. Element (wt.%); element
* (number of atoms).
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Figure 7. BSE images of base-metal minerals in serpentinized olivine. (a) Euhedral maucherite
occurring as a single mineral phase; (b) pentlandites associated with maucherite; (c) pentlandites
occurring as a single mineral phase; (d) heazlewoodite associated with millerite; (e) galena occurring
as a single mineral phase; (f) galena occurring at the boundary of jaipurite. Ol: olivine; Mlr: millerite;
Co–S: cobaltous sulfide.

4.2. Whole-Rock PGE Geochemistry

The PGE concentrations in dunite, hornblende clinopyroxenite, hornblendite, and hornblende
gabbro from the Xiadong complex are reported in Table 2. These rocks show a wide range in total
PGE concentrations from 8.69 to 112 ppb for dunite, 3.41 ppb for hornblende clinopyroxenite, 0.38 to
2.08 ppb for hornblendite, and 0.41 to 6.98 ppb for hornblende gabbro.

Irridium concentrations in the dunites varied between 0.80 and 5.02 ppb, whilst the other rock
types had relatively low Ir concentrations (<0.1 ppb). Ruthenium concentrations of the dunites varied
between 3.27 and 11.0 ppb, which was higher than those of the hornblende clinopyroxenite (2.64 ppb),
hornblendites (0.03 to 0.05 ppb), and hornblende gabbros (0.04 to 0.61 ppb). Rhodium concentrations of
the dunites varied between 0.63 and 3.34 ppb, whilst the other rock types had lower Rh concentrations
(<0.2 ppb). The dunites had a large variation and overall higher Pt concentrations of 0.92 to 50.4 ppb
than hornblende clinopyroxenite (0.32 ppb), hornblendite (0.20 to 1.63 ppb), and hornblende gabbro
(0.23 to 5.89 ppb). Palladium concentrations in the dunites showed large variation from 0.16 to
42.2 ppb, whilst the other rocks showed limited Pd variations (hornblende clinopyroxenite: 0.23 ppb;
hornblendite: 0.12 to 0.38 ppb; hornblende gabbro: 0.10 to 0.47 ppb).
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Table 2. Platinum-group element (PGE) concentrations (ppb, except where specified) of the rocks from the Xiadong Alaskan-type complex.
PPGE—Pd–PGE; IPGE—Ir–PGE.

Sample Rock Type Ir Ru Rh Pt Pd Cu (ppm) ∑∑∑PGE IPGE PPGE PPGE/IPGE Pd/Ir Cu/Pd (×103)

09XDTC1-35 Dunite 5.02 11.0 3.34 50.4 42.2 - 112 16.0 95.9 5.98 8.40 -
09XDTC1-36 Dunite 0.80 4.23 2.02 14.6 12.0 3.37 33.6 5.03 28.6 5.68 15.00 0.28
09XDTC1-15 Dunite 1.28 5.00 0.71 1.49 0.39 246 8.87 6.28 2.59 0.41 0.31 627
09XDTC1-28 Dunite 1.54 3.27 0.75 2.05 1.09 4.73 8.69 4.81 3.88 0.81 0.70 4.35
09XDTC1-29 Dunite 2.61 7.87 0.63 2.09 0.71 - 13.9 10.5 3.44 0.33 0.27 -
09XDTC1-24 Dunite 1.76 5.55 0.78 1.27 0.16 - 9.52 7.31 2.21 0.30 0.09 -
09XDTC1-25 Dunite 1.12 4.82 0.79 2.09 2.80 7.32 11.6 5.95 5.68 0.96 2.49 2.61
09XDTC1-32 Dunite 1.38 5.38 0.79 0.92 1.31 8.35 9.78 6.76 3.02 0.45 0.95 6.38
09XDTC1-10 Hornblende clinopyroxenite 0.07 2.64 0.14 0.32 0.23 9.63 3.41 2.71 0.69 0.26 3.17 41.7
09XDTC1-21 Hornblendite 0.01 0.05 0.04 1.63 0.34 8.91 2.08 0.06 2.02 32.3 26.5 26.2
09XDTC1-37 Hornblendite 0.02 0.05 0.01 0.24 0.38 8.54 0.70 0.07 0.64 9.75 23.4 22.4
09XDTC1-44 Hornblendite 0.01 0.03 0.01 0.20 0.12 7.31 0.38 0.04 0.33 7.50 11.9 59.1
09XDTC1-8 Hornblende gabbro 0.01 0.04 0.01 0.23 0.24 15.0 0.54 0.05 0.49 9.36 19.0 61.5

09XDTC1-12 Hornblende gabbro 0.02 0.05 0.01 0.23 0.10 88.8 0.41 0.07 0.34 4.94 6.61 890
09XDTC1-22 Hornblende gabbro 0.01 0.05 0.03 1.07 0.47 67.2 1.63 0.06 1.57 26.4 41.9 143

XDE2 Hornblende gabbro 0.09 0.61 0.19 5.89 0.20 1.81 6.98 0.70 6.28 9.01 2.27 9.00
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5. Discussion

5.1. Primary and Late-Stage Generation of PGM and Sulfide

The PGMs in the Xiadong Alaskan-type complex were mainly PGE sulfides with a few
iridium/platinum-group element (IPGE) alloys, PGE sulfarsenides, and tellurides. The inclusion
size in chromite was much smaller, usually not exceeding 1 µm, with mainly micro-scale individual
grains. Additionally, some inclusions showed euhedral crystals (Figure 3a,b). Some other base
metal-minerals including maucherite, pentlandite, millerite, cobaltous sulfide, and galena were also
observed. These are different from Alaskan-type complexes found worldwide that are typified by
the presence of PGE alloys and the lack of base-metal sulfides [6]. The Pt–Fe alloys, including
silicate minerals from Uralian–Alaskan-type intrusion, are formed after the crystallization of chromite,
clinopyroxene, and albite. The formation temperature of Pt–Fe alloys is estimated at about 900 ◦C [5].
In most cases, the inclusions in chromite (Figures 3 and 6), clinopyroxene (Figure 5) and olivine
(Figure 7) in the Xiadong Alaskan-type complex were dominated by high-temperature sulfide minerals
(e.g., Os–Ru–S, Os–Ru–Pd–Te, Os alloy, and laurite), and would have crystallized from magmas
prior to or simultaneously with the formation of the host minerals. A general consensus is that
PGMs crystallize prior to or simultaneously with chromite, and deposit from the primary melt in
the following order: IPGE alloys, followed by Ru-rich laurite, Os-rich laurite, and finally, base-metal
mineral phases [29,30]. The temperature decreases and ƒS2 increases [31]. The maximum thermal
stability of RuS2 is experimentally indeed high (1275 ◦C), consistent with a magmatic crystallization
temperature [29]. This crystallization order and the occurrence of high-temperature sulfide minerals
suggested for the Xiadong dunites would imply that the PGMs and chromite formed under relatively
high ƒS2 and temperature conditions. The model for PGE concentration in the Merensky Reef of
the Bushveld Complex in South Africa indicates that a silicate melt coexisting with a PGE-enriched
sulfide melt with high temperatures of 1200–1400 ◦C, would be oversaturated by the least soluble
PGE upon cooling [32]. With the cooling of a mafic magma, silicate minerals and chromite start
crystallizing at some stage and trap some of the PGE “nuggets” [32]. A combined focused ion beam
and high-resolution transmission electron microscopy (FIB/HRTEM) investigation of PGE-rich samples
from the Merensky Reef suggests that the PGE-rich nanophases found in the base metal sulfide might
represent an early phase of magmatic PGM that formed from the silicate melt to be later collected by
the sulfide melt [33]. The occurrence of PGE-rich nano inclusions in chromite (Figures 3 and 6) in our
study requires that PGMs were already formed in the silicate melt and were subsequently incorporated
into the growing chromite grains.

The anduoite–irarsite intergrowth in the cracks of chromite (Figure 4) could be related to late-stage
hydrothermal alteration [18]. The incompatible As could have accumulated along with the late-stage
PGE sulfides deposited as interstitial phases in the chromitite at a postmagmatic hydrothermal stage of
crystallization [34]. Augé et al. [35] affirmed that hydrothermal laurite typically has more As content
(1.01–5.97 wt.%) than magmatic laurite. The unidentified phase (Ru, Ir, Pt, Ni)0.81(As4.58S), as well as
the occurrence of irarsite, at the margins of PGM grains (Figure 4) indicates the interaction of PGMs
with late-stage As- and S-rich fluids. In addition, the laurite in the Xiadong dunite had significantly
lower IrS2 content (<5.3 mol.%; Table 1) than that in ophiolitic chromitite (ca. 15 mol.%) [36], suggesting
the limited solubility of Ir in RuS2. The laurite in clinopyroxene (Figure 5) likely reflects a process
of ultimate S loss and Se incorporation into RuS2 during a late-stage evolution of the H2O-bearing
fluid [37]. Laurite is normally depleted in Se with hundreds of ppm of Se [38].

Heazlewoodite crystallizes under a wide range of T and ƒS2 conditions [39]. However, primary
heazlewoodite inclusions within the chromite grains (Figure 6b–d) indicate a magmatic origin.
Furthermore, the inclusion relationship texturally suggests that the heazlewoodite crystallized prior
to or simultaneously with the chromite crystals. Some of the base-metal minerals such as millerite,
pentlandite, and galena in the cracks of chromite (Figure 6) or serpentinized olivine (Figure 7) are
medium- or low-temperature minerals, and are known to form in hydrothermal systems.
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5.2. Relationship between PGM Occurrences and Bulk PGE Concentrations

The rocks of the Xiadong complex displayed large variation in PGE concentration with ∑PGE
of 0.38–112 ppb, which is slightly lower than that of Ural–Alaskan-type complexes with ∑PGE
of 9.1–196.1 ppb [40]. The highest PGE concentration in the dunite was 112 ppb, indicating PGE
enrichment in the parental magma of the Xiadong complex. The dunite samples displayed primitive
mantle-normalized PGE patterns with a weakly positive slope from Ir to Pd [41] (Figure 8). It is
noteworthy that six dunite samples showed negative slopes from Rh to Pt and had a large variationin
Pd (Figure 8). The PGE patterns ranged from nearly unfractionated in the dunites (Pd/Ir = 0.09–15)
to mildly fractionated in the hornblende clinopyroxenite, hornblendite, and hornblende gabbro
(Pd/Ir = 2.27–41.9). This distinct geochemical behavior was emphasized by the Pd/lr ratio, considered
as the “index of fractionation” of the PGE, during petrological processes [40]. Having a chalcophile and
siderophile nature, PGEs are mostly concentrated in the earth’s core and mantle, but are remarkably low
in the crustal “Clarke” values or frequently close to the detection limits [40]. Because of various melting
temperatures, PGEs are present in several sulfide phases in the mantle and are incorporated into the
melts depending on the degree of partial melting in the mantle [42]. Compared to the mid-ocean range
basalt (MORB) PGE concentration with the low degree of partial melting in the range of 2–15% [43],
the Xiadong complex showed the higher PGE concentration (Figure 8), suggesting that both IPGEs
(Os, Ir, and Ru) and palladium/platinum-group elements (PPGE: Rh, Pt, and Pd) transferred to the
melt with high-degree of melting. A higher degree of partial melting can transfer IPGEs from the
mantle rocks to the formed melt [44]. On the other hand, a low degree partial melting only transfers
PPGEs to the formed melt due to the varying sulfide melt/silicate liquid partition coefficients [45,46].
Quantitative simulation studies indicated that the primitive magma of the Xiadong complex was
derived from 24% bulk partial melting of primitive mantle [47]. Whole-rock high-Mg features indicate
that they formed from a depleted mantle source under a high degree of partial melting [17].
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complex. Primitive mantle-normalized values were sourced from Reference [41]. Mid-ocean range
basalt (MORB) values were sourced from Reference [43].

Platinum-group elements are commonly found in the form of discrete chromite-hosted PGMs [48].
As discussed above, PGEs are known to be mostly present as micron-sized or nanometer-sized
inclusions forming prior to or simultaneously with chromite formation from the silicate magma.
Dunite had the highest PGE concentrations (8.69–112 ppb) (Table 2), which is generally consistent with
the presence of PGMs. Many laurite and irarsite grains were observed either as euhedral inclusions
or along fractures in chromite grains, consistent with IPGE enrichment in all dunites. A few PPGMs
were observed with a wide range of concentrations of Pt (0.92 to 50.4) and Pd (0.16 to 42.2) in most
dunites (Table 2), suggesting that Pt and Pd were likely to be mobilized during late alteration processes
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resulting in differing slopes on the primitive mantle-normalized diagrams (Figure 8). The presence
of abundant Pd-bearing PGM is consistent with a pronounced Pd anomaly from chromitites of the
Butyrin vein compared with dunite-hosted chromitites at Kytlym, indicating that a high fugacity of
sulfur and high-temperature fluids enriched in Hg, Te and Cu play an important roles during the
formation of the mineralization in the Butyrin vein [49]. Hornblende clinopyroxenite, hornblendite
and hornblende gabbro were all depleted in PGEs, indicating that PGEs were already formed the early
solid phases prior to the crystallization of chromite and were mostly collected afterward in dunites
during magma differentiation. This is consistent with the identification of only one laurite inclusion in
hornblende clinopyroxene (Figure 5).

5.3. Implications on PGE Mineralization in Eastern Tianshan

The formation of PGE-bearing sulfide deposits mainly depends on two conditions: (1) the
availability of PGE-rich primary magma and (2) an immiscible sulfide liquid separation and segregation
during magma evolution [50]. Palladium and Cu are both considered as incompatible elements
with silicate melt [51]. The Pd minimum partition coefficient of 17,000 in sulfide/silicate liquid is
considerably higher than the Cu partition coefficient (1000) in sulfide/silicate [46]. Palladium has a
stronger sulfide affinity than Cu when sulfide immiscibility occurs [46]. Cu/Pd ratios would remain
constant in basaltic magmas during S-undersaturated fractional crystallization [51]. Therefore, the
depletion in Pd relative to Cu can provide an estimation of the percentage of crystal fractionation under
sulfide saturated conditions required to deplete the magma in PGEs and other chalcophile elements.
The Cu/Pd ratio is an important evaluation parameter of magma evolution, and is widely used in
the study of PGE deposits [52]. In magma evolution processes, sulfide separation under saturation
would result in the significant depletion of Pd relative to Cu in the residual magma, subsequently
giving rise to the observed Cu/Pd ratio. In the Xiadong complex, most dunite samples had Cu/Pd
ratios (2815–6377) lower than that of the primary mantle (6364) [52], except for one sample having
a significantly higher Cu/Pd ratio (627,000). Along with fractional crystallization, Cu/Pd ratios of
clinopyroxenite, hornblendite and gabbro in the range of 9000–142,516 were clearly higher than the
primary mantle value, indicating that PGE sulfide separation took place prior to or simultaneously
with the formation of the dunite.

The PGEs had similar partition coefficients in both sulfide and silicate melts, with a strong
preference for the sulfide melt. The crystallization of PGMs in a PGE-rich primary magma indicates
that sulfur saturation occurred during the formation of chromite. In addition, the occurrence of a
large number of base metal-sulfides as disseminated accessory grains in all dunites indicates that
they formed prior to olivine and chromite crystallization. In the early stage of magma crystallization,
enrichment of Ni in the rocks depends on the sulfur fugacity [8,18]. Meanwhile, the crystallization
of large amounts of chromite and ilmenite results in the loss of Fe2+ in the melt leading to sulfur
saturation [50]. The availability of sufficient S, As, Te, and PGEs facilitates the formation of PGE
sulfides prior to silicate mineral crystallization. The country rocks of the Xiadong complex are
dominated by schists, gneisses and marbles, and their occurrences may reduce the oxygen fugacity of
the magmas. It was been demonstrated that an increase in the f O2 in melt results in the increase in
the degree of partitioning of Ir, Ru, and Rh into spinel [29]. Accordingly, PGEs would not be soluble
and could form PGM under reducing f O2. In addition, the generally small sizes of the Alaskan-type
complexes (a few to hundreds of km2) [53] are preferable for sulfur saturation. The Xiadong complex
is relatively smaller than most Alaskan-type complexes worldwide and could, therefore, facilitate
sulfur saturation.

The Eastern Tianshan is one of the most important Ni–Cu metallogenic provinces in
China [21,54]. Abundant mafic–ultramafic complexes are distributed mainly along deep fractures
in the Kangguer–Huangshan ductile shear zone in the Jueluotage Belt in the north of Eastern
Tianshan (Figure 1B). They are mostly explored for magmatic Ni–Cu sulfide deposits. The two largest
Ni–Cu sulfide deposits of Huangshandong and Tulaergen have very low PGE total concentrations
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(<5 ppb) [12,55,56]. The Tudun, Hulu, and Xiangshan Ni–Cu sulfide deposits have total PGE
concentrations varying from 0.99 ppb to 2.57 ppb [57], 1.98 ppb to 26.6 ppb [58], and 1.21 ppb to
3.26 ppb [55], respectively. The total PGE concentrations of the Baishiquan [59] and Tianyu [60] Ni-Cu
sulfide deposits along the northern margin of the Middle Tianshan terrane are relatively high and
close to that of the Xiadong complex (Figure 9). The Luodong and Poyi mafic–ultramafic intrusions
in the Beishan terrane have low total PGE concentrations with a maximum of 3.18 ppb and 18.8 ppb,
respectively [61,62]. In the Kalatongke Ni–Cu sulfide deposit in the northern margin of the Junggar
terrane, the total PGE concentrations vary from 0.23 ppb to 43.6 ppb [63]. The Xiarihamu magmatic
Fe–Ni–Cu sulfide deposit is the largest magmatic Ni–Cu deposit ever discovered in an arc setting
worldwide and is hosted in a small ultramafic body in the Eastern Kunlun Orogenic Belt of the
northern Tibet–Qinghai Plateau in western China. The total concentrations of PGEs in the host
rocks of the Xiarihamu deposit vary from 0.09 to 1.45 ppb [64]. When compared with other regional
mafic–ultramafic complexes (Figure 9), the total concentrations of PGE in the Xiadong Alaskan-type
complex are significantly higher than in other intrusions. Furthermore, PGE mineralization was
found in a few Cu–Ni sulfide deposits in Eastern Tianshan [65]. In addition, regional geochemical
exploration led to the discovery of PGE anomalies in Middle Tianshan terrane [9], whilst sulfide was
also discovered in the Xiadong complex [18]. Therefore, the Xiadong Alaskan-type complex could
have potential at least the regional anomalies for PGE as well as Ni sulfide exploration.
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6. Conclusions

1. Platinum-group minerals in the dunite from the Xiadong Alaskan-type complex are mainly
PGE sulfide and sulfarsenide and occur as inclusions in chromite and clinopyroxene or as
interstitial grains along fractures in chromite. The occurrence of PGE-rich inclusions such as
laurite in chromite indicates that PGMs already have formed in the silicate melt and subsequently
incorporated in the growing chromite grains. The occurrence of interstitial anduoite-irarsite
grains along fractures of chromite and Se incorporation in laurite in clinopyroxene are ikely
related to late-stage hydrothermal alteration.

2. The dunites have the highest PGE concentrations relative to other lithologies of the Xiadong
complex, which is generally consistent with the presence of PGMs. Many laurite and irarsite
grains were observed either as euhedral inclusions or along fractures in chromite grains, consistent
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with IPGE enrichment in all dunites. A few PPGMs were observed with a wide range of Pt and
Pd concentrations in most dunite samples. Hornblende clinopyroxenite, hornblendite and
hornblende gabbro are all depleted in PGEs, consistent with the identification of only one laurite
inclusion in hornblende clinopyroxene. They also suggest that PGEs had already formed the
early solid phases prior to the crystallization of chromite and mostly afterwards were collected in
dunites during magma differentiation.

3. Compared to the MORB PGE concentration with the low degree of partial melting, the Xiadong
complex shows higher PGE concentration, suggesting that both IPGE and PPGE transferred to the
melt with a high-degree of melting. When compared with the regional mafic–ultramafic intrusions
in Eastern Tianshan, the Xiadong complex has the greatest PGE enrichment. This is consistent
with the identification of PGE anomalies by regional geochemical surveys, demonstrating the
potential for PGE mineralization in this region.
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