Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Rnq1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2246 KiB  
Article
On the Significance of the Terminal Location of Prion-Forming Regions of Yeast Proteins
by Arthur A. Galliamov, Valery N. Urakov, Alexander A. Dergalev and Vitaly V. Kushnirov
Int. J. Mol. Sci. 2025, 26(4), 1637; https://doi.org/10.3390/ijms26041637 - 14 Feb 2025
Viewed by 730
Abstract
The prion-forming regions (PFRs) of yeast prion proteins are usually located at either the N- or C-terminus of a protein. In the Sup35 prion, the main prion structure contains 71 N-terminal residues. Here, we investigated the importance of the terminal PFR location for [...] Read more.
The prion-forming regions (PFRs) of yeast prion proteins are usually located at either the N- or C-terminus of a protein. In the Sup35 prion, the main prion structure contains 71 N-terminal residues. Here, we investigated the importance of the terminal PFR location for prion properties. Two prionogenic sequences of 29 and 30 residues and two random sequences of 23 and 15 residues were added to the Sup35 N-terminus, making the original PFR internal. These proteins were overproduced in yeast with two variants of the Sup35 prion. Mapping of the prion-like structures of these proteins by partial proteinase K digestion showed that in most cases, the extensions acquired an amyloid fold, and, strikingly, the prion structure was no longer present or was substantially altered at its original location. The addition of two to five residues to the Sup35 N-terminus often resulted in prion instability and loss when the respective genes were used to replace chromosomal SUP35. The structures of yeast prions Mot3, Swi1, Lsb2, candidate prions Asm4, Nsp1, Cbk1, Cpp1, and prions based on scrambled Sup35 PFRs were mapped. The mapping showed that the N-terminal location of a QN-rich sequence predisposes to, but does not guarantee, the formation of a prion structure by it and that the prion structure located near a terminus does not always include the actual terminus, as in the cases of Sup35 and Rnq1. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

15 pages, 2104 KiB  
Article
Mapping of Prion Structures in the Yeast Rnq1
by Arthur A. Galliamov, Alena D. Malukhina and Vitaly V. Kushnirov
Int. J. Mol. Sci. 2024, 25(6), 3397; https://doi.org/10.3390/ijms25063397 - 17 Mar 2024
Cited by 1 | Viewed by 1704
Abstract
The Rnq1 protein is one of the best-studied yeast prions. It has a large potentially prionogenic C-terminal region of about 250 residues. However, a previous study indicated that only 40 C-terminal residues form a prion structure. Here, we mapped the actual and potential [...] Read more.
The Rnq1 protein is one of the best-studied yeast prions. It has a large potentially prionogenic C-terminal region of about 250 residues. However, a previous study indicated that only 40 C-terminal residues form a prion structure. Here, we mapped the actual and potential prion structures formed by Rnq1 and its variants truncated from the C-terminus in two [RNQ+] strains using partial proteinase K digestion. The location of these structures differed in most cases from previous predictions by several computer algorithms. Some aggregation patterns observed microscopically for the Rnq1 hybrid proteins differed significantly from those previously observed for Sup35 prion aggregates. The transfer of a prion from the full-sized Rnq1 to its truncated versions caused substantial alteration of prion structures. In contrast to the Sup35 and Swi1, the terminal prionogenic region of 72 residues was not able to efficiently co-aggregate with the full-sized Rnq1 prion. GFP fusion to the Rnq1 C-terminus blocked formation of the prion structure at the Rnq1 C-terminus. Thus, the Rnq1-GFP fusion mostly used in previous studies cannot be considered a faithful tool for studying Rnq1 prion properties. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Advances in Biochemistry)
Show Figures

Figure 1

12 pages, 535 KiB  
Article
\({\ell_0}\) Optimization with Robust Non-Oracular Quantum Search
by Tianyi Zhang  and Yuan Ke
Technologies 2023, 11(5), 148; https://doi.org/10.3390/technologies11050148 - 19 Oct 2023
Viewed by 2274
Abstract
In this article, we introduce an innovative hybrid quantum search algorithm, the Robust Non-oracle Quantum Search (RNQS), which is specifically designed to efficiently identify the minimum value within a large set of random numbers. Distinct from the Grover’s algorithm, the proposed RNQS algorithm [...] Read more.
In this article, we introduce an innovative hybrid quantum search algorithm, the Robust Non-oracle Quantum Search (RNQS), which is specifically designed to efficiently identify the minimum value within a large set of random numbers. Distinct from the Grover’s algorithm, the proposed RNQS algorithm circumvents the need for an oracle function that describes the true solution state, a feature often impractical for data science applications. Building on existing non-oracular quantum search algorithms, RNQS enhances robustness while substantially reducing running time. The superior properties of RNQS have been demonstrated through careful analysis and extensive empirical experiments. Our findings underscore the potential of the RNQS algorithm as an effective and efficient solution to combinatorial optimization problems in the realm of quantum computing. Full article
(This article belongs to the Section Quantum Technologies)
Show Figures

Figure 1

19 pages, 3063 KiB  
Article
[PRION+] States Are Associated with Specific Histone H3 Post-Translational Modification Changes
by Samantha N. Cobos, Chaim Janani, Gabriel Cruz, Navin Rana, Elizaveta Son, Rania Frederic, Jailene Paredes Casado, Maliha Khan, Seth A. Bennett and Mariana P. Torrente
Pathogens 2022, 11(12), 1436; https://doi.org/10.3390/pathogens11121436 - 29 Nov 2022
Cited by 1 | Viewed by 2874
Abstract
Prions are proteins able to take on alternative conformations and propagate them in a self-templating process. In Saccharomyces cerevisiae, prions enable heritable responses to environmental conditions through bet-hedging mechanisms. Hence, [PRION+] states may serve as an atypical form of epigenetic [...] Read more.
Prions are proteins able to take on alternative conformations and propagate them in a self-templating process. In Saccharomyces cerevisiae, prions enable heritable responses to environmental conditions through bet-hedging mechanisms. Hence, [PRION+] states may serve as an atypical form of epigenetic control, producing heritable phenotypic change via protein folding. However, the connections between prion states and the epigenome remain unknown. Do [PRION+] states link to canonical epigenetic channels, such as histone post-translational modifications? Here, we map out the histone H3 modification landscape in the context of the [SWI+] and [PIN+] prion states. [SWI+] is propagated by Swi1, a subunit of the SWI/SNF chromatin remodeling complex, while [PIN+] is propagated by Rnq1, a protein of unknown function. We find [SWI+] yeast display decreases in the levels of H3K36me2 and H3K56ac compared to [swi] yeast. In contrast, decreases in H3K4me3, H3K36me2, H3K36me3 and H3K79me3 are connected to the [PIN+] state. Curing of the prion state by treatment with guanidine hydrochloride restored histone PTM to [prion] state levels. We find histone PTMs in the [PRION+] state do not match those in loss-of-function models. Our findings shed light into the link between prion states and histone modifications, revealing novel insight into prion function in yeast. Full article
Show Figures

Figure 1

12 pages, 2391 KiB  
Article
Dangerous Stops: Nonsense Mutations Can Dramatically Increase Frequency of Prion Conversion
by Alexander A. Dergalev, Valery N. Urakov, Michael O. Agaphonov, Alexander I. Alexandrov and Vitaly V. Kushnirov
Int. J. Mol. Sci. 2021, 22(4), 1542; https://doi.org/10.3390/ijms22041542 - 3 Feb 2021
Cited by 3 | Viewed by 2534
Abstract
Amyloid formation is associated with many incurable diseases. For some of these, sporadic cases are much more common than familial ones. Some reports point to the role of somatic cell mosaicism in these cases via origination of amyloids in a limited number of [...] Read more.
Amyloid formation is associated with many incurable diseases. For some of these, sporadic cases are much more common than familial ones. Some reports point to the role of somatic cell mosaicism in these cases via origination of amyloids in a limited number of cells, which can then spread through tissues. However, specific types of sporadic mutations responsible for such effects are unknown. In order to identify mutations capable of increasing the de novo appearance of amyloids, we searched for such mutants in the yeast prionogenic protein Sup35. We introduced to yeast cells an additional copy of the SUP35 gene with mutated amyloidogenic domain and observed that some nonsense mutations increased the incidence of prions by several orders of magnitude. This effect was related to exposure at the C-terminus of an internal amyloidogenic region of Sup35. We also discovered that SUP35 mRNA could undergo splicing, although inefficiently, causing appearance of a shortened Sup35 isoform lacking its functional domain, which was also highly prionogenic. Our data suggest that truncated forms of amyloidogenic proteins, resulting from nonsense mutations or alternative splicing in rare somatic cells, might initiate spontaneous localized formation of amyloids, which can then spread, resulting in sporadic amyloid disease. Full article
(This article belongs to the Special Issue Amyloids, Prions and Related Phenomena)
Show Figures

Figure 1

13 pages, 2499 KiB  
Review
Extracellular Vesicles-Encapsulated Yeast Prions and What They Can Tell Us about the Physical Nature of Propagons
by Mehdi Kabani
Int. J. Mol. Sci. 2021, 22(1), 90; https://doi.org/10.3390/ijms22010090 - 23 Dec 2020
Cited by 4 | Viewed by 3567
Abstract
The yeast Saccharomyces cerevisiae hosts an ensemble of protein-based heritable traits, most of which result from the conversion of structurally and functionally diverse cytoplasmic proteins into prion forms. Among these, [PSI+], [URE3] and [PIN+] are [...] Read more.
The yeast Saccharomyces cerevisiae hosts an ensemble of protein-based heritable traits, most of which result from the conversion of structurally and functionally diverse cytoplasmic proteins into prion forms. Among these, [PSI+], [URE3] and [PIN+] are the most well-documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Yeast prions propagate by molecular chaperone-mediated fragmentation of these aggregates, which generates small self-templating seeds, or propagons. The exact molecular nature of propagons and how they are faithfully transmitted from mother to daughter cells despite spatial protein quality control are not fully understood. In [PSI+] cells, Sup35p forms detergent-resistant assemblies detectable on agarose gels under semi-denaturant conditions and cytosolic fluorescent puncta when the protein is fused to green fluorescent protein (GFP); yet, these macroscopic manifestations of [PSI+] do not fully correlate with the infectivity measured during growth by the mean of protein infection assays. We also discovered that significant amounts of infectious Sup35p particles are exported via extracellular (EV) and periplasmic (PV) vesicles in a growth phase and glucose-dependent manner. In the present review, I discuss how these vesicles may be a source of actual propagons and a suitable vehicle for their transmission to the bud. Full article
(This article belongs to the Special Issue Clearance, Degradation and Transport of Protein Aggregates)
Show Figures

Figure 1

19 pages, 1898 KiB  
Article
Yeast Sup35 Prion Structure: Two Types, Four Parts, Many Variants
by Alexander A. Dergalev, Alexander I. Alexandrov, Roman I. Ivannikov, Michael D. Ter-Avanesyan and Vitaly V. Kushnirov
Int. J. Mol. Sci. 2019, 20(11), 2633; https://doi.org/10.3390/ijms20112633 - 29 May 2019
Cited by 28 | Viewed by 4743
Abstract
The yeast [PSI+] prion, formed by the Sup35 (eRF3) protein, has multiple structural variants differing in the strength of nonsense suppressor phenotype. Structure of [PSI+] and its variation are characterized poorly. Here, we mapped Sup35 amyloid cores [...] Read more.
The yeast [PSI+] prion, formed by the Sup35 (eRF3) protein, has multiple structural variants differing in the strength of nonsense suppressor phenotype. Structure of [PSI+] and its variation are characterized poorly. Here, we mapped Sup35 amyloid cores of 26 [PSI+] ex vivo prions of different origin using proteinase K digestion and mass spectrometric identification of resistant peptides. In all [PSI+] variants the Sup35 amino acid residues 2–32 were fully resistant and the region up to residue 72 was partially resistant. Proteinase K-resistant structures were also found within regions 73–124, 125–153, and 154–221, but their presence differed between [PSI+] isolates. Two distinct digestion patterns were observed for region 2–72, which always correlated with the “strong” and “weak” [PSI+] nonsense suppressor phenotypes. Also, all [PSI+] with a weak pattern were eliminated by multicopy HSP104 gene and were not toxic when combined with multicopy SUP35. [PSI+] with a strong pattern showed opposite properties, being resistant to multicopy HSP104 and lethal with multicopy SUP35. Thus, Sup35 prion cores can be composed of up to four elements. [PSI+] variants can be divided into two classes reliably distinguishable basing on structure of the first element and the described assays. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

14 pages, 878 KiB  
Review
Impact of Amyloid Polymorphism on Prion-Chaperone Interactions in Yeast
by Andrea N. Killian, Sarah C. Miller and Justin K. Hines
Viruses 2019, 11(4), 349; https://doi.org/10.3390/v11040349 - 16 Apr 2019
Cited by 15 | Viewed by 5358
Abstract
Yeast prions are protein-based genetic elements found in the baker’s yeast Saccharomyces cerevisiae, most of which are amyloid aggregates that propagate by fragmentation and spreading of small, self-templating pieces called propagons. Fragmentation is carried out by molecular chaperones, specifically Hsp104, Hsp70, and [...] Read more.
Yeast prions are protein-based genetic elements found in the baker’s yeast Saccharomyces cerevisiae, most of which are amyloid aggregates that propagate by fragmentation and spreading of small, self-templating pieces called propagons. Fragmentation is carried out by molecular chaperones, specifically Hsp104, Hsp70, and Hsp40. Like other amyloid-forming proteins, amyloid-based yeast prions exhibit structural polymorphisms, termed “strains” in mammalian systems and “variants” in yeast, which demonstrate diverse phenotypes and chaperone requirements for propagation. Here, the known differential interactions between chaperone proteins and yeast prion variants are reviewed, specifically those of the yeast prions [PSI+], [RNQ+]/[PIN+], and [URE3]. For these prions, differences in variant-chaperone interactions (where known) with Hsp104, Hsp70s, Hsp40s, Sse1, and Hsp90 are summarized, as well as some interactions with chaperones of other species expressed in yeast. As amyloid structural differences greatly impact chaperone interactions, understanding and accounting for these variations may be crucial to the study of chaperones and both prion and non-prion amyloids. Full article
(This article belongs to the Special Issue Deciphering the Molecular Targets of Prion and Prion-Like Strains)
Show Figures

Figure 1

11 pages, 1593 KiB  
Brief Report
Using High Performance Thin Layer Chromatography-Densitometry to Study the Influence of the Prion [RNQ+] and Its Determinant Prion Protein Rnq1 on Yeast Lipid Profiles
by Quang Bui, Joseph Sherma and Justin K. Hines
Separations 2018, 5(1), 6; https://doi.org/10.3390/separations5010006 - 16 Jan 2018
Cited by 7 | Viewed by 4120
Abstract
The baker’s yeast Saccharomyces cerevisiae harbors multiple prions that allow for the creation of heterogeneity within otherwise clonal cell populations. However, in many cases, the consequences of prion infection are entirely unclear. Predictions of prion-induced changes in cell physiology are complicated by pleotropic [...] Read more.
The baker’s yeast Saccharomyces cerevisiae harbors multiple prions that allow for the creation of heterogeneity within otherwise clonal cell populations. However, in many cases, the consequences of prion infection are entirely unclear. Predictions of prion-induced changes in cell physiology are complicated by pleotropic effects, and detection is often limited to relatively insensitive cell growth assays that may obscure many physiological changes. We previously showed that silica gel high performance thin-layer chromatography-densitometry (HPTLC) can be used to empirically determine prion-induced changes in lipid content in yeast. Here, we conduct pair-wise quantifications of the relative levels of free sterols, free fatty acids, and triacylglycerols [petroleum ether-diethyl ether-glacial acetic acid (80:20:1, v/v/v) mobile phase and phosphomolybdic acid (PMA) detection reagent]; steryl esters, methyl esters, and squalene [hexane-petroleum ether-diethyl ether-glacial acetic acid (50:20:5:1, v/v/v/v) and PMA]; and phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol (chloroform-diethyl ether-acetic acid (65:25:4.5, v/v/v) and cupric sulfate-phosphoric acid) in otherwise clonal prion-infected ([RNQ+]) and prion-free ([rnq]) cells in both stationary- and logarithmic-growth phases. We detected multiple statistically significant differences between prion-infected and prion-free cells that varied by growth phase, confirming our pr evious observations that prions exert distinct influences on cell physiology between stationary- and log-phase growth. We also found significant differences between cells expressing or lacking the Rnq1 protein which forms the [RNQ+] prion, providing new clues to the as yet unresolved normal biological function of this prion-forming protein. This investigation further emphasizes the utility of HPTLC-densitometry to empirically determine the effects of prions and other presumed innocuous gene deletions on lipid content in yeast, and we expect that additional analyses will continue to resolve the physiological effects of prion infection. Full article
Show Figures

Figure 1

Back to TopTop