Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (158)

Search Parameters:
Keywords = Retinoic acid metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2361 KiB  
Article
Abelmoschus esculentus Ameliorates Cognitive Impairment in Hyperlipidemic ApoE−/− Mice via Modulation of Oxidative Stress and Neuronal Differentiation
by Chiung-Huei Peng, Hsin-Wen Liang, Chau-Jong Wang, Chien-Ning Huang and Huei-Jane Lee
Antioxidants 2025, 14(8), 955; https://doi.org/10.3390/antiox14080955 - 4 Aug 2025
Viewed by 187
Abstract
Cardiovascular disease (CVD) and dementia may share common pathogenic factors such as atherosclerosis and hyperlipoproteinemia. Dyslipidemia-induced oxidative stress contributes to dementia comorbidity in CVD. Abelmoschus esculentus (AE, okra) potentiates in alleviating hyperlipidemia and diabetes-related cognitive impairment. This study evaluated the effects of AE [...] Read more.
Cardiovascular disease (CVD) and dementia may share common pathogenic factors such as atherosclerosis and hyperlipoproteinemia. Dyslipidemia-induced oxidative stress contributes to dementia comorbidity in CVD. Abelmoschus esculentus (AE, okra) potentiates in alleviating hyperlipidemia and diabetes-related cognitive impairment. This study evaluated the effects of AE in hyperlipidemic ApoE−/− mice treated with streptozotocin (50 mg/kg) and fed a high-fat diet (17% lard oil, 1.2% cholesterol). AE fractions F1 or F2 (0.65 mg/kg) were administered for 8 weeks. AE significantly reduced serum LDL-C, HDL-C, triglycerides, and glucose, improved cognitive and memory function, and protected hippocampal neurons. AE also lowered oxidative stress markers (8-hydroxy-2′-deoxyguanosine, 8-OHdG) and modulated neuronal nuclei (NeuN) and doublecortin (DCX) expression. In vitro, AE promoted neurite outgrowth and neuronal differentiation in retinoic acid (RA)-differentiated human SH-SY5Y cells under metabolic stress (glucose and palmitate), alongside the upregulation of heme oxygenase-1 (HO-1), Nuclear factor-erythroid 2-related factor 2 (Nrf2), and brain-derived neurotrophic factor (BDNF). These findings suggest AE may counter cognitive decline via oxidative stress regulation and the enhancement of neuronal differentiation. Full article
Show Figures

Graphical abstract

30 pages, 2301 KiB  
Review
Retinoic Acid Induced 1 and Smith–Magenis Syndrome: From Genetics to Biology and Possible Therapeutic Strategies
by Jasmine Covarelli, Elisa Vinciarelli, Alessandra Mirarchi, Paolo Prontera and Cataldo Arcuri
Int. J. Mol. Sci. 2025, 26(14), 6667; https://doi.org/10.3390/ijms26146667 - 11 Jul 2025
Viewed by 381
Abstract
Haploinsufficiency disorders are genetic diseases caused by reduced gene expression, leading to developmental, metabolic, and tumorigenic abnormalities. The dosage-sensitive Retinoic Acid Induced 1 (RAI1) gene, located within the 17p11.2 region, is central to the core features of Smith––Magenis syndrome (SMS) and [...] Read more.
Haploinsufficiency disorders are genetic diseases caused by reduced gene expression, leading to developmental, metabolic, and tumorigenic abnormalities. The dosage-sensitive Retinoic Acid Induced 1 (RAI1) gene, located within the 17p11.2 region, is central to the core features of Smith––Magenis syndrome (SMS) and Potocki––Lupski syndrome (PTLS), caused by the reciprocal microdeletions and microduplications of this region, respectively. SMS and PTLS present contrasting phenotypes. SMS is characterized by severe neurobehavioral manifestations, sleep disturbances, and metabolic abnormalities, and PTLS shows milder features. Here, we detail the molecular functions of RAI1 in its wild-type and haploinsufficiency conditions (RAI1+/−), as studied in animal and cellular models. RAI1 acts as a transcription factor critical for neurodevelopment and synaptic plasticity, a chromatin remodeler within the Histone 3 Lysine 4 (H3K4) writer complex, and a regulator of faulty 5′-capped pre-mRNA degradation. Alterations of RAI1 functions lead to synaptic scaling and transcriptional dysregulation in neural networks. This review highlights key molecular mechanisms of RAI1, elucidating its role in the interplay between genetics and phenotypic features and summarizes innovative therapeutic approaches for SMS. These data provide a foundation for potential therapeutic strategies targeting RAI1, its mRNA products, or downstream pathways. Full article
(This article belongs to the Special Issue Gene Therapy Approaches in Haploinsufficiency Disorders)
Show Figures

Figure 1

23 pages, 8906 KiB  
Article
9-cis-Retinoic Acid Improves Disease Modelling in iPSC-Derived Liver Organoids
by Mina Kazemzadeh Dastjerd, Vincent Merens, Ayla Smout, Rebeca De Wolf, Christophe Chesné, Catherine Verfaillie, Stefaan Verhulst and Leo A. van Grunsven
Cells 2025, 14(13), 983; https://doi.org/10.3390/cells14130983 - 26 Jun 2025
Viewed by 827
Abstract
Liver fibrosis majorly impacts global health, necessitating the development of in vitro models to study disease mechanisms and develop drug therapies. Relevant models should at least include hepatocytes and hepatic stellate cells (HSCs) and ideally use three-dimensional cultures to mimic in vivo conditions. [...] Read more.
Liver fibrosis majorly impacts global health, necessitating the development of in vitro models to study disease mechanisms and develop drug therapies. Relevant models should at least include hepatocytes and hepatic stellate cells (HSCs) and ideally use three-dimensional cultures to mimic in vivo conditions. Induced pluripotent stem cells (iPSCs) allow for patient-specific liver modelling, but current models based on iPSC-derived hepatocytes (iHepatocytes) and HSCs (iHSCs) still lack key functions. We developed organoids of iHepatocytes and iHSCs and compared them to HepaRG and primary HSC organoids. RNA sequencing analysis comparison of these cultures identified a potential role for the transcription factor RXRA in hepatocyte differentiation and HSC quiescence. Treating cells with the RXRA ligand 9-cis-retinoic acid (9CRA) promoted iHepatocyte metabolism and iHSC quiescence. In organoids, 9CRA enhanced fibrotic response to TGF-β and acetaminophen, highlighting its potential for refining iPSC-based liver fibrosis models to more faithfully replicate human drug-induced liver injury and fibrotic conditions. Full article
(This article belongs to the Special Issue Organoids as an Experimental Tool)
Show Figures

Graphical abstract

15 pages, 2030 KiB  
Article
Transcriptomic Responses of Blue Bat Star Patiria pectinifera to Sediment Burial
by Han Dong, Linli Wan, Chunsheng Wang, Cong Sun, Xiaogu Wang and Lin Xu
Int. J. Mol. Sci. 2025, 26(11), 5208; https://doi.org/10.3390/ijms26115208 - 28 May 2025
Viewed by 430
Abstract
Sediment burial generated by deep-sea mining is usually lethal to echinoderms, which are ecologically important in marine environments. However, their molecular mechanisms responding to sediment burial are still rarely investigated. In this study, Patiria pectinifera was investigated for sediment burial research to analyze [...] Read more.
Sediment burial generated by deep-sea mining is usually lethal to echinoderms, which are ecologically important in marine environments. However, their molecular mechanisms responding to sediment burial are still rarely investigated. In this study, Patiria pectinifera was investigated for sediment burial research to analyze its gene expression variations by using comparative transcriptomes and to probe into shared molecular mechanisms of echinoderms under sediment burial. During sediment burial experiments, dissolved oxygen continuously decreased, which had a significant impact on Patiria pectinifera, which suffered from hypoxic stress. Based on functional annotations of differentially expressed genes (DEGs), its metabolic patterns altered with the upregulated DEGs related to glycolysis and fatty acid degradation and the downregulated ones in the citrate cycle, and its immune responses also varied with the upregulated DEGs of apoptosis and the downregulated ones defending against pathogens. Meanwhile, the peroxisome proliferator-activated receptor signaling pathway and retinoic acid-inducible gene I-like receptor signaling pathway were also upregulated, indicating metabolic and immune changes. Furthermore, combined with functional annotations of twelve echinoderm reference genomes, those DEGs related to lipid metabolism and the immune response were also universally present in the echinoderm genomes. Our study probes into shared molecular mechanisms of echinoderms under sediment burial, which advances our understanding of echinoderms affected by deep-sea mining. Full article
Show Figures

Figure 1

24 pages, 1724 KiB  
Review
Therapeutic Uses of Retinol and Retinoid-Related Antioxidants
by Janka Vašková, Marek Stupák, Martina Vidová Ugurbaş, Jozef Židzik and Helena Mičková
Molecules 2025, 30(10), 2191; https://doi.org/10.3390/molecules30102191 - 16 May 2025
Viewed by 1594
Abstract
Retinol and retinol-related compounds are essential for human health, particularly in cellular protection, skin health, and the management of medical conditions. Retinol—a vital form of vitamin A—is obtained through the diet as preformed vitamin A or provitamin A carotenoids, retinyl esters. These compounds [...] Read more.
Retinol and retinol-related compounds are essential for human health, particularly in cellular protection, skin health, and the management of medical conditions. Retinol—a vital form of vitamin A—is obtained through the diet as preformed vitamin A or provitamin A carotenoids, retinyl esters. These compounds are indispensable for vision, immune function, and skin health. While retinoic acid has important known biological roles, its presence is limited in the body as it is rapidly metabolized rather than stored, emphasizing the need for sufficient dietary intake. This paper is divided into chapters that highlight important aspects of retinol and retinoid-related compounds, such as their sufficient intake through food sources. The nutritional value of carotenoids is influenced by the balance between trans- and cis-isomers in food, with food processing affecting their bioactivity. Next, it is metabolism in the digestive tract. The bioavailability and efficacy of retinoids are further influenced by gut microbiota, which can modulate immune function and the expression of the genes involved in retinoid metabolism. A third important property greatly influencing their biological function is their structure, predisposing them to certain biological activities. Both retinoids and carotenoids exert key antioxidant functions by protecting cells from oxidative damage, quenching singlet oxygen, and stabilizing free radicals. However, the oxidation of carotenoids can result in various metabolites, such as epoxides and hydroxyketones, that further create a higher demand for antioxidant defenses. Additionally, carotenoids interact with lipoxygenases (LOXs), thus influencing oxidative stress, although this interaction may reduce their antioxidant efficacy. First- and second-generation retinoids regulate gene expression related to skin cell function and oncological diseases. Despite their therapeutic benefits, long-term use carries risks, such as teratogenicity. Ongoing research should aim to enhance the safety, precision, and effectiveness of retinoid therapies, expanding their therapeutic potential. Full article
(This article belongs to the Special Issue 10th Anniversary of the Bioorganic Chemistry Section of Molecules)
Show Figures

Figure 1

13 pages, 2715 KiB  
Article
Retinal Production by Precision Fermentation of Saccharomyces cerevisiae
by Hye-Seon Hwang, Kwang-Rim Baek and Seung-Oh Seo
Fermentation 2025, 11(4), 214; https://doi.org/10.3390/fermentation11040214 - 14 Apr 2025
Viewed by 935
Abstract
Retinoids, including retinol, retinal, and retinoic acid, are a group of vitamin A derivatives with skin-improving effects. Retinoic acid is highly effective for skin anti-aging but can cause irritation, requiring a prescription. Retinol, a less irritating alternative, needs conversion to retinal and then [...] Read more.
Retinoids, including retinol, retinal, and retinoic acid, are a group of vitamin A derivatives with skin-improving effects. Retinoic acid is highly effective for skin anti-aging but can cause irritation, requiring a prescription. Retinol, a less irritating alternative, needs conversion to retinal and then retinoic acid in the skin, whereas direct absorption of retinal enhances efficacy by bypassing this conversion process. This study aimed to produce retinal through precision fermentation using metabolically engineered Saccharomyces cerevisiae. The introduction of heterologous retinal biosynthetic genes and overexpression of the truncated HMG-CoA reductase (tHMG1) and acetyl-CoA acetyltransferase (ERG10) genes in the mevalonate (MVA) pathway increased retinal production up to 10.2 mg/L. At the same time, ethanol was produced as a major byproduct in S. cerevisiae. To address this, a pyruvate decarboxylase (Pdc)-deficient S. cerevisiae strain, incapable of producing ethanol, was employed. Overexpression of ERG10 and tHMG1 in the Pdc-deficient S. cerevisiae harboring the retinal biosynthetic plasmids achieved a retinal production up to 117.4 mg/L in the dodecane layer without ethanol through a two-phase in situ fermentation and extraction. This study demonstrates that eliminating pyruvate decarboxylase activity effectively redirects carbon flux toward retinal biosynthesis in the recombinant S. cerevisiae, offering a promising approach for sustainable retinal production through precision fermentation. Full article
Show Figures

Figure 1

16 pages, 3655 KiB  
Article
Decreased PAX6 and DSG1 Protein Expression in Corneal Epithelium of Patients with Epithelial Basal Membrane Dystrophy, Salzmann Nodular Degeneration, and Pterygium
by Tanja Stachon, Fabian N. Fries, Zhen Li, Loay Daas, Zoltán Zsolt Nagy, Berthold Seitz and Nóra Szentmáry
J. Clin. Med. 2025, 14(5), 1456; https://doi.org/10.3390/jcm14051456 - 21 Feb 2025
Viewed by 656
Abstract
Background/Objectives: Evaluation of stem cell, keratin, retinoic acid metabolism markers and non-coding micro-RNAs (miRNAs) in conjunctival and corneal samples of patients with epithelial basal membrane dystrophy (EBMD), Salzmann nodular degeneration (SND), pterygium and congenital aniridia (CA), to detect similarities and differences in [...] Read more.
Background/Objectives: Evaluation of stem cell, keratin, retinoic acid metabolism markers and non-coding micro-RNAs (miRNAs) in conjunctival and corneal samples of patients with epithelial basal membrane dystrophy (EBMD), Salzmann nodular degeneration (SND), pterygium and congenital aniridia (CA), to detect similarities and differences in their pathogenesis. Methods: Impression cytology (IC) samples and corneal epithelial samples (CEs) of patients with EBMD, SND, pterygium, congenital aniridia, and healthy control subjects have been analyzed. The IC samples were subjected to qPCR, and the epithelial samples were subjected to qPCR and WB. Limbal epithelial stem cell markers, keratins, retinoic acid metabolism markers, and miRNAs were analyzed. Results: In conjunctival IC samples, PAX6 mRNA expression was significantly lower in EBMD, SND, pterygium, and CA compared to healthy controls (p ≤ 0.02). KRT13 mRNA expression was significantly higher in EBMD, SND, and pterygium (p ≤ 0.018), and FABP5 was increased in pterygium samples (p = 0.007). MiRNA-138-5p was significantly higher in aniridia samples than in normal controls (p = 0.037). In corneal epithelial samples, PAX6 protein, DSG1 mRNA and protein, miRNA-138-5p, and miR-204-5p expression were significantly lower in EBMD, SND, and pterygium samples than in controls (p ≤ 0.02). ALDHA1 mRNA expression was significantly lower (p < 0.0001), and FABP5 mRNA expression was significantly higher (p = 0.014) in pterygium samples than in controls. Conclusions: PAX6, DSG1, miR-138-5p, and miR-204-5p expression is decreased in the corneal epithelium of epithelial basal membrane dystrophy, Salzmann nodular degeneration, and pterygium subjects. In addition, there is a dysregulation of markers of the retinoic acid signaling pathway, such as ADH1A1 and FABP5, in the corneal epithelium of pterygium subjects. These changes may offer therapeutic targets in the treatment of these ocular surface diseases. Full article
(This article belongs to the Special Issue Clinical Updates in Corneal Transplantation)
Show Figures

Figure 1

17 pages, 4608 KiB  
Article
Proteomics Profiling Reveals Pharmaceutical Excipient PEG400 Induces Nuclear-Receptor-Activation-Affected Lipid Metabolism and Metabolic Enzyme Expression
by Mei Zhao, Siyuan Cao, Dan Yang, Leyuan Shang, Ye Hang, Pengjiao Wang, Shuo Zhang, Chaoji Li, Min Zhang and Xiuli Gao
Int. J. Mol. Sci. 2025, 26(4), 1732; https://doi.org/10.3390/ijms26041732 - 18 Feb 2025
Cited by 2 | Viewed by 1062
Abstract
PEG400 is widely used as a pharmaceutical excipient in the biomedical field. Increasing evidence suggests that PEG400 is not an inert drug carrier; it can influence the activity of various drug-metabolizing enzymes and transporters, thereby affecting the in vivo process of drugs. It [...] Read more.
PEG400 is widely used as a pharmaceutical excipient in the biomedical field. Increasing evidence suggests that PEG400 is not an inert drug carrier; it can influence the activity of various drug-metabolizing enzymes and transporters, thereby affecting the in vivo process of drugs. It can also alleviate obesity and adipose tissue inflammation induced by a high-fat diet. In this study, we employed proteomics to investigate the impact of PEG400 on hepatic protein expression in rats. We found that over 40 metabolic enzymes were altered, with UDP-glucuronosyltransferase 1a9 (Ugt1a9) showing the most significant upregulation. This observation is consistent with our previous findings. KEGG pathway enrichment analysis revealed that PEG400 influences retinol metabolism, steroid hormone biosynthesis, drug metabolism, bile secretion, fatty acid degradation, peroxisome proliferator-activated receptor (PPAR) signaling pathway, and pentose and glucuronate interconversions. Western blot and molecular docking were used to quantitatively analyze related proteins. The results demonstrated that PEG400 promotes the metabolism of retinol to produce retinoic acid; enhances bile secretion by upregulating bile acid synthesis and transporter proteins; and activates the PPARα signaling pathway to regulate the expression of fat metabolism-related proteins, thereby reducing lipid accumulation. Furthermore, as natural ligands for nuclear receptors, retinoic acid and bile acids may activate nuclear receptors and initiate the regulation of target gene expression. We found upregulation of the nuclear receptors PPARα, retinoid X receptor alpha (RXRα), and pregnane X receptor (PXR). RXRα can form a dimer with PPARα or PXR to regulate the expression of target genes, which may explain the changes in the expression of numerous metabolic enzymes. This study provides a comprehensive understanding of the effects of PEG400 on liver metabolism in rats, reveals its potential biological functions, and offers new insights into the application and development of PEG400. Full article
(This article belongs to the Special Issue The Twist and Turn of Lipids in Human Diseases 2.0)
Show Figures

Figure 1

17 pages, 4113 KiB  
Article
The Adaptation of MCF-7 Breast Cancer Spheroids to the Chemotherapeutic Doxorubicin: The Dynamic Role of Phase I Drug Metabolizing Enzymes
by Daniel Crispim, Carolina Ramos, Francisco Esteves and Michel Kranendonk
Metabolites 2025, 15(2), 136; https://doi.org/10.3390/metabo15020136 - 18 Feb 2025
Viewed by 1520
Abstract
Background/Objectives: Drug resistance (DR) is a major challenge in cancer therapy, contributing to approximately 90% of cancer-related deaths. While alterations in drug metabolism are known to be key drivers of DR, their role—particularly in the early stages of acquired chemoresistance—remains understudied. Phase I [...] Read more.
Background/Objectives: Drug resistance (DR) is a major challenge in cancer therapy, contributing to approximately 90% of cancer-related deaths. While alterations in drug metabolism are known to be key drivers of DR, their role—particularly in the early stages of acquired chemoresistance—remains understudied. Phase I drug-metabolizing enzymes (DMEs), especially cytochrome P450s (CYPs), significantly influence the metabolic fate of chemotherapeutic agents, directly affecting drug response. This study aimed to investigate the role of Phase I DMEs in the early metabolic adaptation of breast cancer (BC) MCF-7 cells to doxorubicin (DOX). Methods: Four types of spheroids were generated from MCF-7 cells that were either DOX-sensitive (DOXS) or adapted to low concentrations of the chemotherapeutic agent (DOXA 25, 35, and 45 nM). The expression levels of 92 Phase I DMEs and the activities of specific CYP isoforms were assessed in both DOXS and DOXA spheroids. Results: A total of twenty-four DMEs, including fifteen CYPs and nine oxidoreductases, were found to be differentially expressed in DOXA spheroids. Pathway analysis identified key roles for the differentially expressed DMEs in physiologically relevant pathways, including the metabolism of drugs, arachidonic acid, retinoic acid, and vitamin D. Conclusions: The deconvolution of these pathways highlights a highly dynamic process driving early-stage DOX resistance, with a prominent role of CYP3A-dependent metabolism in DOX adaptation. Our findings provide valuable insights into the underlying molecular mechanisms driving the early adaptation of MCF-7 cells to DOX exposure. Full article
(This article belongs to the Special Issue Drug Metabolism: Latest Advances and Prospects)
Show Figures

Graphical abstract

12 pages, 561 KiB  
Review
Pharmacological Modulation of Mutant TP53 with Oncotargets Against Esophageal Cancer and Therapy Resistance
by Pei-I Lin, Yu-Cheng Lee, I-Hung Chen and Hsien-Hui Chung
Biomedicines 2025, 13(2), 450; https://doi.org/10.3390/biomedicines13020450 - 12 Feb 2025
Viewed by 1263
Abstract
The prevalence and deaths from esophageal cancer (EC) have recently increased. Although therapeutic strategies depend on the EC stage and recurrence, such as surgical intervention, chemotherapy, radiation therapy, chemoradiation therapy, targeted therapy, and immunotherapy, a more effective and novel treatment for EC is [...] Read more.
The prevalence and deaths from esophageal cancer (EC) have recently increased. Although therapeutic strategies depend on the EC stage and recurrence, such as surgical intervention, chemotherapy, radiation therapy, chemoradiation therapy, targeted therapy, and immunotherapy, a more effective and novel treatment for EC is still required. This review briefly describes and summarizes some insightful oncotargets involved in the metabolic modulation of EC, including (1) cancer stem cells (CSCs) for EC progression, poor prognosis, tumor recurrence, and therapy resistance; (2) retinoic acid receptors (RARs) for esophageal carcinogenesis and regeneration; (3) phosphofructokinase (PFK) for EC-reprogrammed glycolysis; (4) lactate dehydrogenase (LDH) as an EC peripheral blood biomarker; and (5) hypoxia-inducible factor-1 alpha (HIF-1α) for the tumor microenvironment under hypoxic conditions. Moreover, the aforementioned oncotargets can be modulated by mutant TP53 and have their own features in the carcinogenesis, differentiation, proliferation, and metastasis of EC. Thus, the clarification of pharmacological mechanisms regarding the interaction between mutant TP53 and the abovementioned oncotargets could provide precise and perspective opinions for minimizing prediction errors, reducing therapy resistance, and developing novel drugs against EC. Full article
Show Figures

Figure 1

27 pages, 6880 KiB  
Article
Deciphering the Transcriptional Metabolic Profile of Adipose-Derived Stem Cells During Osteogenic Differentiation and Epigenetic Drug Treatment
by Giulia Gerini, Alice Traversa, Fabrizio Cece, Matteo Cassandri, Paola Pontecorvi, Simona Camero, Giulia Nannini, Enrico Romano, Francesco Marampon, Mary Anna Venneri, Simona Ceccarelli, Antonio Angeloni, Amedeo Amedei, Cinzia Marchese and Francesca Megiorni
Cells 2025, 14(2), 135; https://doi.org/10.3390/cells14020135 - 17 Jan 2025
Cited by 2 | Viewed by 1574
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are commonly employed in clinical treatment for various diseases due to their ability to differentiate into multi-lineage and anti-inflammatory/immunomodulatory properties. Preclinical studies support their use for bone regeneration, healing, and the improvement of functional outcomes. However, a deeper [...] Read more.
Adipose-derived mesenchymal stem cells (ASCs) are commonly employed in clinical treatment for various diseases due to their ability to differentiate into multi-lineage and anti-inflammatory/immunomodulatory properties. Preclinical studies support their use for bone regeneration, healing, and the improvement of functional outcomes. However, a deeper understanding of the molecular mechanisms underlying ASC biology is crucial to identifying key regulatory pathways that influence differentiation and enhance regenerative potential. In this study, we employed the NanoString nCounter technology, an advanced multiplexed digital counting method of RNA molecules, to comprehensively characterize differentially expressed transcripts involved in metabolic pathways at distinct time points in osteogenically differentiating ASCs treated with or without the pan-DNMT inhibitor RG108. In silico annotation and gene ontology analysis highlighted the activation of ethanol oxidation, ROS regulation, retinoic acid metabolism, and steroid hormone metabolism, as well as in the metabolism of lipids, amino acids, and nucleotides, and pinpointed potential new osteogenic drivers like AOX1 and ADH1A. RG108-treated cells, in addition to the upregulation of the osteogenesis-related markers RUNX2 and ALPL, showed statistically significant alterations in genes implicated in transcriptional control (MYCN, MYB, TP63, and IRF1), ethanol oxidation (ADH1C, ADH4, ADH6, and ADH7), and glucose metabolism (SLC2A3). These findings highlight the complex interplay of the metabolic, structural, and signaling pathways that orchestrate osteogenic differentiation. Furthermore, this study underscores the potential of epigenetic drugs like RG108 to enhance ASC properties, paving the way for more effective and personalized cell-based therapies for bone regeneration. Full article
(This article belongs to the Special Issue New Insights into Adipose-Derived Stem Cells (ADSCs))
Show Figures

Graphical abstract

17 pages, 2856 KiB  
Article
Etodolac Single Dose Metabolic Profile Elucidation: Pharmacokinetics and Adverse Events in Healthy Volunteers
by Karen Sánchez-Luquez, Anne Michelli Reis Silveira, Salvador Sánchez-Vinces, Alex Ap. Rosini Silva, Joyce Barreto, Rhubia Bethania Socorro Lemos de Brito, Caroline de Moura Garcia, Ana Lais Vieira, Marcia Ap. Antonio and Patrícia de Oliveira Carvalho
Pharmaceuticals 2025, 18(1), 82; https://doi.org/10.3390/ph18010082 - 11 Jan 2025
Cited by 1 | Viewed by 1860
Abstract
Background/Objectives: This study investigates the metabolic profile of a single dose of etodolac in healthy volunteers, focusing on pharmacokinetics, clinical parameters, and metabolomic variations to identify biomarkers and pathways linked to drug response, efficacy, and safety. Methods: Thirty-seven healthy volunteers, enrolled after rigorous [...] Read more.
Background/Objectives: This study investigates the metabolic profile of a single dose of etodolac in healthy volunteers, focusing on pharmacokinetics, clinical parameters, and metabolomic variations to identify biomarkers and pathways linked to drug response, efficacy, and safety. Methods: Thirty-seven healthy volunteers, enrolled after rigorous health assessments, received a single dose of etodolac (Flancox® 500 mg). Pharmacokinetic profiles were determined using tandem mass spectrometry analysis, and the metabolomic profiling was conducted using baseline samples (pre-dose) and samples at maximum drug concentration (post-dose) via liquid chromatography coupled with a quadrupole time-of-flight mass spectrometer. Network analysis was employed to interpret the data. Results: Correlations were observed between metabolomic profiles and pharmacokinetic parameters as well as clinical characteristics. Notably, metabolites derived from arachidonic acid, such as prostaglandins and leukotrienes, were linked to etodolac’s pharmacokinetics. Other metabolites involved in pathways like cholesterol biosynthesis, bile salts, riboflavin, and retinoic acid signaling were correlated with hematological and liver function parameters. These findings are consistent with the infrequent adverse events reported by participants, including hematological and biochemical changes in liver function. Conclusions: A set of metabolites was identified in possible associations between specific pathways and unusual side effects, comparing the metabolic profiles before and after doses of etodolac. Our results highlight the importance of optimizing drug therapy and minimizing adverse events by taking into account individual metabolic profile information. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

22 pages, 5655 KiB  
Review
The Role of Retinoic-Acid-Related Orphan Receptor (RORs) in Cellular Homeostasis
by Darya Nematisouldaragh, Eryn Kirshenbaum, Michael Uzonna, Lorrie Kirshenbaum and Inna Rabinovich-Nikitin
Int. J. Mol. Sci. 2024, 25(21), 11340; https://doi.org/10.3390/ijms252111340 - 22 Oct 2024
Cited by 3 | Viewed by 2445
Abstract
Retinoic-acid-related orphan receptors (RORs) are transcription factors belonging to the nuclear receptor subfamily consisting of RORα, RORβ, and RORγ. By binding to the ROR response elements (ROREs) on target gene promoters, RORs regulate a wide variety of cellular processes, including autophagy, mitophagy, oxidative [...] Read more.
Retinoic-acid-related orphan receptors (RORs) are transcription factors belonging to the nuclear receptor subfamily consisting of RORα, RORβ, and RORγ. By binding to the ROR response elements (ROREs) on target gene promoters, RORs regulate a wide variety of cellular processes, including autophagy, mitophagy, oxidative stress, and inflammation. The regulatory roles of RORs are observed in cardiac cells, hepatocytes, pulmonary epithelial cells, renal cells, immune cells, and cancer cells. A growing body of clinical and experimental evidence suggests that ROR expression levels are markedly reduced under different pathological and stress conditions, suggesting that RORs may play a critical role in the pathogenesis of a variety of disease states, including myocardial infarction, immune disorders, cancer, and metabolic syndrome. Reductions in RORs are also associated with inhibition of autophagy, increased reactive oxygen species (ROS), and increased cell death, underscoring the importance of RORs in the regulation of these processes. Herein, we highlight the relationship between RORs and homeostatic processes that influence cell viability. Understanding how these intricate processes are governed at the cellular level is of high scientific and clinical importance to develop new therapeutic strategies that modulate ROR expression and disease progression. Full article
Show Figures

Figure 1

14 pages, 4014 KiB  
Article
Unexpected and Synergistical Effects of All-Trans Retinoic Acid and TGF-β2 on Biological Aspects of 2D and 3D Cultured ARPE19 Cells
by Megumi Higashide, Megumi Watanabe, Tatsuya Sato, Toshifumi Ogawa, Araya Umetsu, Soma Suzuki, Masato Furuhashi, Hiroshi Ohguro and Nami Nishikiori
Biomedicines 2024, 12(10), 2228; https://doi.org/10.3390/biomedicines12102228 - 30 Sep 2024
Cited by 1 | Viewed by 1156
Abstract
Objectives: To study the effects of all-trans retinoic acid (ATRA) on TGF-β2-induced effects of human retinal pigment epithelium cells under normoxia and hypoxia conditions. Methods: Two-dimensionally (2D) and three-dimensionally (3D) cultured ARPE19 cells were subjected to cellular functional analyses by transepithelial electrical resistance [...] Read more.
Objectives: To study the effects of all-trans retinoic acid (ATRA) on TGF-β2-induced effects of human retinal pigment epithelium cells under normoxia and hypoxia conditions. Methods: Two-dimensionally (2D) and three-dimensionally (3D) cultured ARPE19 cells were subjected to cellular functional analyses by transepithelial electrical resistance (TEER) and an extracellular flux assay (2D), measurement of levels of reactive oxygen species (ROS), gene expression analyses of COL1, αSMA, Zo-1, HIF1α, and PGC1α (2D), and physical property analyses (3D). Results: Under a normoxia condition, treatment with 100 nM ATRA substantially decreased barrier function regardless of the presence of 5 ng/mL TGF-β2 in 2D ARPE19 monolayer cells. Under a hypoxia condition, treatment with ATRA conversely increased barrier function, but the effect was masked by a marked increase in effects induced by TGF-β2. Although ATRA alone did not affect cellular metabolism and ROS levels in 2D ARPE cells, treatment with ATRA under a hypoxia condition did not affect ROS levels but shifted cellular metabolism from mitochondrial respiration to glycolysis. The changes of cellular metabolism and ROS levels were more pronounced with treatment of both ATRA and TGF-β2 independently of oxygen conditions. Changes in mRNA expressions of some of the above genes suggested the involvement of synergistical regulation of cellular functions by TGF-β2 and hypoxia. In 3D ARPE spheroids, the size was decreased and the stiffness was increased by either treatment with TGF-β2 or ATRA, but these changes were unexpectedly modulated by both ATRA and TGF-β2 treatment regardless of oxygen conditions. Conclusions: The findings reported herein indicate that TGF-β2 and hypoxia synergistically and differentially induce effects in 2D and 3D cultured ARPE19 cells and that their cellular properties are significantly altered by the presence of ATRA. Full article
(This article belongs to the Special Issue 3D Cell Culture Systems for Biomedical Research)
Show Figures

Figure 1

17 pages, 3223 KiB  
Article
Exploring the Role and Pathophysiological Significance of Aldehyde Dehydrogenase 1B1 (ALDH1B1) in Human Lung Adenocarcinoma
by Ilias Tsochantaridis, Dimitris Brisimis, Margaritis Tsifintaris, Anastasia Anastasiadou, Efthymios Lazos, Antreas Ermogenous, Sylia Christou, Nefeli Antonopoulou, Mihalis I. Panayiotidis, Michail I. Koukourakis, Alexandra Giatromanolaki and Aglaia Pappa
Int. J. Mol. Sci. 2024, 25(19), 10301; https://doi.org/10.3390/ijms251910301 - 25 Sep 2024
Cited by 4 | Viewed by 3393
Abstract
Aldehyde dehydrogenases (ALDHs) constitute a diverse superfamily of NAD(P)+-dependent enzymes pivotal in oxidizing endogenous and exogenous aldehydes to carboxylic acids. Beyond metabolic roles, ALDHs participate in essential biological processes, including differentiation, embryogenesis and the DNA damage response, while also serving as [...] Read more.
Aldehyde dehydrogenases (ALDHs) constitute a diverse superfamily of NAD(P)+-dependent enzymes pivotal in oxidizing endogenous and exogenous aldehydes to carboxylic acids. Beyond metabolic roles, ALDHs participate in essential biological processes, including differentiation, embryogenesis and the DNA damage response, while also serving as markers for cancer stem cells (CSCs). Aldehyde dehydrogenase 1B1 (ALDH1B1) is a mitochondrial enzyme involved in the detoxification of lipid peroxidation by-products and metabolism of various aldehyde substrates. This study examines the potential role of ALDH1B1 in human lung adenocarcinoma and its association with the CSC phenotype. To this end, we utilized the lung adenocarcinoma cell line A549, engineered to stably express the human ALDH1B1 protein tagged with green fluorescent protein (GFP). Overexpression of ALDH1B1 led to notable changes in cell morphology, proliferation rate and clonogenic efficiency. Furthermore, ALDH1B1-overexpressing A549 cells exhibited enhanced resistance to the chemotherapeutic agents etoposide and cisplatin. Additionally, ALDH1B1 overexpression correlated with increased migratory potential and epithelial–mesenchymal transition (EMT), mediated by the upregulation of transcription factors such as SNAI2, ZEB2 and TWIST1, alongside the downregulation of E-cadherin. Moreover, Spearman’s rank correlation coefficient analysis using data from 507 publicly available lung adenocarcinoma clinical samples revealed a significant correlation between ALDH1B1 and various molecules implicated in CSC-related signaling pathways, including Wnt, Notch, hypoxia, Hedgehog, retinoic acid, Hippo, NF-κΒ, TGF-β, PI3K/PTEN-AKT and glycolysis/gluconeogenesis. These findings provide insights into the role of ALDH1B1 in lung tumor progression and its relation to the lung CSC phenotype, thereby offering potential therapeutic targets in the clinical management of lung adenocarcinoma. Full article
Show Figures

Figure 1

Back to TopTop