Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = Remazol Brilliant Blue R

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1603 KiB  
Article
Characterization of the Enzymatic and Biosorption Processes Involved in the Decolorization of Remazol Brilliant Blue R Dye by Pleurotus ostreatus Pellets
by Guadalupe L. Daniel-González, Soley B. Nava-Galicia, Analilia Arroyo-Becerra, Miguel Angel Villalobos-López, Gerardo Díaz-Godínez and Martha D. Bibbins-Martínez
J. Fungi 2025, 11(8), 572; https://doi.org/10.3390/jof11080572 - 31 Jul 2025
Viewed by 180
Abstract
Synthetic dyes are highly recalcitrant and are discharged in large volumes in industrial wastewater, which represents a serious environmental pollution problem. Biological methods for dye degradation are a potentially effective option for these synthetic products. In this study, a strain of Pleurotus ostreatus [...] Read more.
Synthetic dyes are highly recalcitrant and are discharged in large volumes in industrial wastewater, which represents a serious environmental pollution problem. Biological methods for dye degradation are a potentially effective option for these synthetic products. In this study, a strain of Pleurotus ostreatus was used to evaluate the decolorization of the Remazol Brilliant Blue R (RBBR) dye added to the culture medium in the exponential growth phase of the fungus. The dye removal capacity of live and inactivated pellets by biosorption, as well as the enzymatic degradation of the dye using a cell-free culture broth considered an extracellular extract (EE), were also evaluated. The activity of laccase and dye-decolorizing peroxidase was determined in both the EE and the intrapellet extract (IPE); their values increased in the presence of dye in the culture medium. A decolorization of 98.5% and 98.0% was obtained in the culture broth and by the EE, respectively; biosorption of the dye by the inactivated pellets was 17 mg/g. The results suggest that the decolorization of the dye is primarily enzymatic, although there are also bioadsorption and bioaccumulation of the dye, which is then enzymatically degraded, and could be used as a carbon source. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Bioprocesses)
Show Figures

Graphical abstract

20 pages, 4561 KiB  
Article
Unmodified Hemp Biowaste as a Sustainable Biosorbent for Congo Red and Remazol Brilliant Blue R
by Ljiljana Suručić, Deana Andrić, Ivana Jevtić, Milan Momčilović, Relja Suručić and Jelena Penjišević
Coatings 2025, 15(5), 519; https://doi.org/10.3390/coatings15050519 - 26 Apr 2025
Viewed by 1148
Abstract
Industrial hemp (Cannabis sativa L.) was investigated as a sustainable biosorbent for removing Congo Red (CR) and Remazol Brilliant Blue R (RBBR) from wastewater. The unmodified hemp biosorbent exhibited moderate but practically relevant sorption capacities (4.47 mg/g for CR; 2.44 mg/g for [...] Read more.
Industrial hemp (Cannabis sativa L.) was investigated as a sustainable biosorbent for removing Congo Red (CR) and Remazol Brilliant Blue R (RBBR) from wastewater. The unmodified hemp biosorbent exhibited moderate but practically relevant sorption capacities (4.47 mg/g for CR; 2.44 mg/g for RBBR), outperforming several agricultural waste materials. Kinetic studies revealed rapid uptake, with CR following pseudo-first-order kinetics (t1/2 < 15 min) and RBBR fitting the Elovich model, indicating heterogeneous surface interactions. Equilibrium data showed CR adsorption was best described by the Temkin isotherm (R2 = 0.983), while RBBR followed the Langmuir model (R2 = 0.998), reflecting their distinct binding mechanisms. Thermodynamic analysis confirmed spontaneous (ΔG° < 0), exothermic (ΔH° ≈ −2 kJ/mol), and entropy-driven processes for both dyes. Molecular docking elucidated the structural basis for performance differences: CR’s stronger binding (−7.5 kcal/mol) involved weak noncovalent interaction arising from partial overlap between the π-electron cloud of an aromatic ring and σ-bonds C-C or C-H (π-σ stacking) and hydrogen bonds with cellulose, whereas RBBR’s weaker affinity (−5.4 kcal/mol) relied on weak intermolecular interaction between a hydrogen atom (from a C-H bond) and the π-electron system of an aromatic ring (C-H∙∙∙π interactions). This work establishes industrial hemp as an eco-friendly alternative for dye removal, combining renewable sourcing with multi-mechanism adsorption capabilities suitable for small-scale water treatment applications. Full article
Show Figures

Figure 1

17 pages, 11439 KiB  
Article
Low-Alpha-Cellulose-Based Membranes
by Igor Makarov, Gulbarshin Shambilova, Aigul Bukanova, Fazilat Kairliyeva, Saule Bukanova, Zhanar Kadasheva, Radmir Gainutdinov, Alexander Koksharov, Ivan Komarov, Junlong Song, Sergey Legkov and Alexandra Nebesskaya
Polymers 2025, 17(5), 598; https://doi.org/10.3390/polym17050598 - 24 Feb 2025
Viewed by 792
Abstract
Depending on the method of cellulose production, the proportion of alpha fraction in it can vary significantly. Paper pulp, unlike dissolving cellulose, has an alpha proportion of less than 90%. The presence of cellulose satellites in the system does not impede the formation [...] Read more.
Depending on the method of cellulose production, the proportion of alpha fraction in it can vary significantly. Paper pulp, unlike dissolving cellulose, has an alpha proportion of less than 90%. The presence of cellulose satellites in the system does not impede the formation of concentrated solutions of N-methylmorpholine-N-oxide (NMMO). In the current study, spinning solutions based on cellulose with a low alpha fraction (up to 90%) (pulp cellulose) are investigated. The morphological features and rheological behavior of such solutions are examined. It is suggested to roll the obtained solutions in order to obtain cellulose membranes. X-ray diffraction, IR spectroscopy, AFM and SEM were used to investigate the resulting structure and morphology of the obtained membranes. It is shown that the degree of crystallinity for the membranes varies based on the impurity content in the sample. The morphology of the films is characterized by a dense texture and the absence of vacuoles. The highest strength and elastic modulus were found for membranes made of bleached hardwood sulfate cellulose, 5.7 MPa and 6.4 GPa, respectively. The maximum values of the contact angle (48°) were found for films with a higher proportion of lignin. The presence of lignin in the membranes leads to an increase in rejection for the anionic dyes Orange II and Remazol Brilliant Blue R. Full article
(This article belongs to the Special Issue New Advances in Cellulose and Wood Fibers)
Show Figures

Figure 1

20 pages, 2981 KiB  
Article
Purification and Biochemical Characterization of Trametes hirsuta CS5 Laccases and Its Potential in Decolorizing Textile Dyes as Emerging Contaminants
by Guadalupe Gutiérrez-Soto, Carlos Eduardo Hernández-Luna, Iosvany López-Sandin, Roberto Parra-Saldívar and Joel Horacio Elizondo-Luevano
Environments 2025, 12(1), 16; https://doi.org/10.3390/environments12010016 - 7 Jan 2025
Cited by 2 | Viewed by 1275
Abstract
This study explores the purification, characterization, and application of laccases from Trametes hirsuta CS5 for degrading synthetic dyes as models of emerging contaminants. Purification involved ion exchange chromatography, molecular exclusion, and chromatofocusing, identifying th ree laccase isoforms: ThIa, ThIb, and ThII. Characterization included [...] Read more.
This study explores the purification, characterization, and application of laccases from Trametes hirsuta CS5 for degrading synthetic dyes as models of emerging contaminants. Purification involved ion exchange chromatography, molecular exclusion, and chromatofocusing, identifying th ree laccase isoforms: ThIa, ThIb, and ThII. Characterization included determining pH and temperature stability, kinetic parameters (Km, Kcat), and inhibition constants (Ki) for inhibitors like NaN3, SDS, TGA, EDTA, and DMSO, using 2,6-DMP and guaiacol as substrates. ThII exhibited the highest catalytic efficiency, with the lowest Km and highest Kcat. Optimal activity was observed at pH 3.5 and 55 °C. Decolorization tests with nine dyes showed that ThII and ThIa were particularly effective against Acid Red 44, Orange II, Indigo Blue, Brilliant Blue R, and Remazol Brilliant Blue R. ThIb displayed higher activity towards Crystal Violet and Acid Green 27. Among substrates, guaiacol showed the highest Kcat, while 2,6-DMP was preferred overall. Inhibitor studies revealed NaN3 as the most potent inhibitor. These results demonstrate the significant potential of T. hirsuta CS5 laccases, especially ThIa and ThII, as biocatalysts for degrading synthetic dyes and other xenobiotics. Their efficiency and stability under acidic and moderate temperature conditions position them as promising tools for sustainable wastewater treatment and environmental remediation. Full article
Show Figures

Figure 1

13 pages, 2608 KiB  
Article
Biodegradation and Detoxification of Some Dyes by Crude Lignin Peroxidase Complex Produced by Escherichia coli Accession No: LR0250096.1 and Pseudomonas aeruginosa Accession No: CP031449.2
by Sindiswa Lungile Dube, Foluso Oluwagbemiga Osunsanmi, Albert Olufemi Ikhane, Rebamang Anthony Mosa and Andrew Rowland Opoku
Appl. Sci. 2024, 14(17), 8012; https://doi.org/10.3390/app14178012 - 7 Sep 2024
Cited by 3 | Viewed by 1489
Abstract
Synthetic and untreated dyes discharged in wastewater effluents are a threat to an ecosystem. This study investigated dye degradation and detoxification efficiency of crude lignin peroxidase separately obtained from the cultures of Escherichia coli (LR0250096.1) and Pseudomonas aeruginosa (CP031449.2). The ability of the [...] Read more.
Synthetic and untreated dyes discharged in wastewater effluents are a threat to an ecosystem. This study investigated dye degradation and detoxification efficiency of crude lignin peroxidase separately obtained from the cultures of Escherichia coli (LR0250096.1) and Pseudomonas aeruginosa (CP031449.2). The ability of the crude lignin peroxidase to degrade Malachite Green (MG), Remazol Brilliant Blue R (RBBR), Congo Red (CR), and Azure B (AZ) was evaluated at different operating conditions (enzyme, dye, and hydrogen peroxide concentrations; pH; temperature; and contact time). The ability of the degraded dyes to support the growth of bacteria was also investigated. The observed optimum operating conditions for lignin peroxidase extracts of the Escherichia coli on AZ were 20 mg/mL enzyme concentration, 50 mg/L dye, pH 7.0, temperature 50 °C, and 1.5 mM hydrogen peroxide within 20–50 min of incubation time and on MG were 20 mg/mL, 50 mg/L, 9.0, 30 °C, 0.1 mM, and 20 min, respectively. The enzyme extract from Pseudomonas aeruginosa on AZ demonstrated optimum operation conditions of 20 mg/mL, 50 mg/L, pH 9.0, 40 °C, 1.5 mM, and 50 min, respectively and on MG, they were 20 mg/mL, 50 mg/L, 6.0, 30 °C, 1.0 mM, and 20 min, respectively). The prepared enzyme showed an appreciable degradative effect on CR and RBBR compared with commercial lignin peroxidase. The degraded dyes were able to support the growth of two Gram-positive (Bacillus cereus and Staphylococcus aureus), and two Gram-negative (Proteus mirabilis and Escherichia coli) bacteria, indicating the efficiency and the potential use of the enzyme complexes in the clean-up of industrial dyes’ waste. Full article
Show Figures

Figure 1

20 pages, 6816 KiB  
Article
Eco-Friendly g-C3N4/Carboxymethyl Cellulose/Alginate Composite Hydrogels for Simultaneous Photocatalytic Degradation of Organic Dye Pollutants
by Ksenija Milošević, Davor Lončarević, Melina Kalagasidis Krušić, Milica Hadnađev-Kostić and Jasmina Dostanić
Int. J. Mol. Sci. 2024, 25(14), 7896; https://doi.org/10.3390/ijms25147896 - 19 Jul 2024
Cited by 5 | Viewed by 2232
Abstract
The presented study was focused on the simple, eco-friendly synthesis of composite hydrogels of crosslinked carboxymethyl cellulose (CMC)/alginate (SA) with encapsulated g-C3N4 nanoparticles. The structural, textural, morphological, optical, and mechanical properties were determined using different methods. The encapsulation of g-C [...] Read more.
The presented study was focused on the simple, eco-friendly synthesis of composite hydrogels of crosslinked carboxymethyl cellulose (CMC)/alginate (SA) with encapsulated g-C3N4 nanoparticles. The structural, textural, morphological, optical, and mechanical properties were determined using different methods. The encapsulation of g-C3N4 into CMC/SA copolymer resulted in the formation of composite hydrogels with a coherent structure, enhanced porosity, excellent photostability, and good adhesion. The ability of composite hydrogels to eliminate structurally different dyes with the same or opposite charge properties (cationic Methylene Blue and anionic Orange G and Remazol Brilliant Blue R) in both single- and binary-dye systems was examined through adsorption and photocatalytic reactions. The interactions between the dyes and g-C3N4 and the negatively charged CMC/SA copolymers had a notable influence on both the adsorption capacity and photodegradation efficiency of the prepared composites. Scavenger studies and leaching tests were conducted to gain insights into the primary reactive species and to assess the stability and long-term performance of the g-C3N4/CMC/SA beads. The commendable photocatalytic activity and excellent recyclability, coupled with the elimination of costly catalyst separation requirements, render the g-C3N4/CMC/SA composite hydrogels cost-effective and environmentally friendly materials, and strongly support their selection for tackling environmental pollution issues. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis: An Innovation in Catalysis)
Show Figures

Figure 1

43 pages, 7688 KiB  
Article
Effective Decolorization and Detoxification of Single and Mixed Dyes with Crude Laccase Preparation from a White-Rot Fungus Strain Pleurotus eryngii
by Mingrui Ge, Wei Deng, Ziyi Wang, Chenwen Weng and Yang Yang
Molecules 2024, 29(3), 669; https://doi.org/10.3390/molecules29030669 - 31 Jan 2024
Cited by 5 | Viewed by 1881
Abstract
To fully harness the potential of laccase in the efficient decolorization and detoxification of single and mixed dyes with diverse chemical structures, we carried out a systematic study on the decolorization and detoxification of single and mixed dyes using a crude laccase preparation [...] Read more.
To fully harness the potential of laccase in the efficient decolorization and detoxification of single and mixed dyes with diverse chemical structures, we carried out a systematic study on the decolorization and detoxification of single and mixed dyes using a crude laccase preparation obtained from a white-rot fungus strain, Pleurotus eryngii. The crude laccase preparation showed efficient decolorization of azo, anthraquinone, triphenylmethane, and indigo dyes, and the reaction rate constants followed the order Remazol Brilliant Blue R > Bromophenol blue > Indigo carmine > New Coccine > Reactive Blue 4 > Reactive Black 5 > Acid Orange 7 > Methyl green. This laccase preparation exhibited notable tolerance to SO42− salts such as MnSO4, MgSO4, ZnSO4, Na2SO4, K2SO4, and CdSO4 during the decolorization of various types of dyes, but was significantly inhibited by Cl salts. Additionally, this laccase preparation demonstrated strong tolerance to some organic solvents such as glycerol, ethylene glycol, propanediol, and butanediol. The crude laccase preparation demonstrated the efficient decolorization of dye mixtures, including azo + azo, azo + anthraquinone, azo + triphenylmethane, anthraquinone + indigo, anthraquinone + triphenylmethane, and indigo + triphenylmethane dyes. The decolorization kinetics of mixed dyes provided preliminary insight into the interactions between dyes in the decolorization process of mixed dyes, and the underlying reasons and mechanisms were discussed. Importantly, the crude laccase from Pleurotus eryngii showed efficient repeated-batch decolorization of single-, two-, and four-dye mixtures. This crude laccase demonstrated high stability and reusability in repeated-batch decolorization. Furthermore, this crude laccase was efficient in the detoxification of different types of single dyes and mixed dyes containing different types of dyes, and the phytotoxicity of decolorized dyes (single and mixed dyes) was significantly reduced. The crude laccase efficiently eliminated phytotoxicity associated with single and mixed dyes. Consequently, the crude laccase from Pleurotus eryngii offers significant potential for practical applications in the efficient decolorization and management of single and mixed dye pollutants with different chemical structures. Full article
Show Figures

Figure 1

12 pages, 1509 KiB  
Article
Xenobiotic Removal by Trametes hirsuta LE-BIN 072 Activated Carbon-Based Mycelial Pellets: Remazol Brilliant Blue R Case Study
by Olga. A. Glazunova, Konstantin V. Moiseenko and Tatyana V. Fedorova
Water 2024, 16(1), 133; https://doi.org/10.3390/w16010133 - 29 Dec 2023
Cited by 7 | Viewed by 1839
Abstract
As a toxic xenobiotic compound, the anthraquinone dye Remazol Brilliant Blue R (RBBR) poses a serious threat to aquatic ecosystems. In the present study, the ability of Trametes hirsuta to remove RBBR from the medium was investigated, and the role of adsorption by [...] Read more.
As a toxic xenobiotic compound, the anthraquinone dye Remazol Brilliant Blue R (RBBR) poses a serious threat to aquatic ecosystems. In the present study, the ability of Trametes hirsuta to remove RBBR from the medium was investigated, and the role of adsorption by fungal mycelium and biodegradation by fungal enzymes was evaluated. It was shown that the whole fungal culture was able to remove up to 97% of the dye within the first four hours of incubation. Based on enzymatic activities in the culture broth, laccases were proposed to be the main enzymes contributing to RBBR degradation, and RT-qPCR measurements demonstrated an increase in transcription for the two laccase genes—lacA and lacB. Composite mycelial pellets of T. hirsuta with improved adsorption ability were prepared by adding activated carbon to the growth medium, and the induction of laccase activity by carbon was shown. For composite pellets, the RBBR decolorization degree was about 1.9 times higher at 1 h of incubation compared to carbon-free pellets. Hence, it was shown that using fungal mycelium pellets containing activated carbon can be an effective and economical method of dye removal. Full article
(This article belongs to the Special Issue Advanced Biotechnologies for Water and Wastewater Treatment)
Show Figures

Figure 1

12 pages, 2718 KiB  
Article
Improvement of Laccase Activity in Co-Culture of Panus lecomtei and Sporidiobolus pararoseus and Its Application as an Enzymatic Additive in Biomass Hydrolysis and Dye Decolorization
by Rubén Darío Romero Peláez, Luana Assis Serra, Daiana Wischral, Joice Raísa Barbosa Cunha, Thais Demarchi Mendes, Thályta Fraga Pacheco, Felix Gonçalves de Siqueira and João Ricardo Moreira de Almeida
Fermentation 2023, 9(11), 945; https://doi.org/10.3390/fermentation9110945 - 31 Oct 2023
Cited by 2 | Viewed by 1927
Abstract
This work investigates the effects of the co-culture between the filamentous fungus Panus lecomtei and the yeast Sporidiobolus pararoseus in the production of laccases. The variations of time interval and inoculum volume of S. pararoseus in co-cultures with P. lecomtei stimulated laccase production, [...] Read more.
This work investigates the effects of the co-culture between the filamentous fungus Panus lecomtei and the yeast Sporidiobolus pararoseus in the production of laccases. The variations of time interval and inoculum volume of S. pararoseus in co-cultures with P. lecomtei stimulated laccase production, reaching its highest activity at nearly 2960.7 ± 244 U/mL with a maximum time point of 120 h and 2.0% (v/v), respectively. Further application in the pretreated sugarcane bagasse hydrolysis was performed, using P. lecomtei and S. pararoseus extract added to an enzyme mixture from the co-culture of P. lecomtei and Trichoderma reesei that positively favored the hydrolysis efficiency by 66.87%. Furthermore, the addition of P. lecomtei and S. pararoseus extract increased the degradation of industrial anthraquinone Remazol Brilliant Blue R by 78.98%. As a result, the extract derived from the co-culture of P. lecomtei and S. pararoseus rich in laccases presents potential in biotechnological applications, being suitable in the hydrolysis of lignocellulosic biomass and the degradation of unwanted dyes released in the environment. Full article
(This article belongs to the Special Issue Enzymes in Biorefinery)
Show Figures

Figure 1

15 pages, 3016 KiB  
Article
Evaluation of Lacc134 Oxidoreductase of Ganoderma multistipitatum in Detoxification of Dye Wastewater under Different Nutritional Conditions
by Eman A. Alhomaidi, Aisha Umar, Salam S. Alsharari and Sami Alyahya
Microbiol. Res. 2023, 14(3), 1398-1412; https://doi.org/10.3390/microbiolres14030095 - 18 Sep 2023
Cited by 4 | Viewed by 1770
Abstract
In the present study, we investigated the effects of different carbon sources (glucose, sucrose, and maltose) on laccase production from mycelium of Ganoderma multistipitatum grown on malt extract agar plates. The preliminary screening test was performed on the guaiacol plate, where a maroon [...] Read more.
In the present study, we investigated the effects of different carbon sources (glucose, sucrose, and maltose) on laccase production from mycelium of Ganoderma multistipitatum grown on malt extract agar plates. The preliminary screening test was performed on the guaiacol plate, where a maroon brown zone formed after laccase oxidation. A few pure mycelial discs of Ganoderma species were transferred into submerged fermentation nutrient broth. The nutrient medium of submerged fermentation at 20 g of glucose revealed the highest laccase activities (2300 U/L) than other carbon sources. The interesting results also shown by inorganic NaNO3 in the production of maximum laccase (7800 ± 1.1 U/L). The organic nitrogen inducer, namely yeast extract, exhibited 5834 U/L laccase activity and a potential source of laccase secretion. The results concluded that C and N inducers enhanced the laccase production. This production process is eco-friendly and effective in the removal of dye from water. Laccase from the cultural broth was partially purified by SDS-PAGE for molecular weight determination, while Native-PAGE confirmed the laccase band after staining with guaiacol. The Km and Vmax values of Lacc134 were 1.658 mm and 2.452 mM min−1, respectively. The Lacc134 of this study effectively removed the Remazol Brilliant Blue R (RBBR) dye (extensively used in textile industries and wastewater). For dye removal capacity, 2.0 mg, 4.0 mg, 5.0 mg, and 6.0 mg were used, from which 6.0 mg was most effective in removal (85% and 88%) dye concentration in 1st and 2nd h interval treatment, respectively. Total organic carbon (TOC) quantity after dye removal percentage in the first- and second-hour time interval was 62% and 89%, respectively, at 30 g glucose. According to the experimental finding of this study, the breakdown products catalyzed by Lacc134 are less hazardous due to lower molecular weight than the dye itself. Full article
(This article belongs to the Special Issue Microorganisms as a Tool for Restoring the Environment)
Show Figures

Figure 1

18 pages, 6472 KiB  
Article
Spectroscopic Study of the Interaction of Reactive Dyes with Polymeric Cationic Modifiers of Cotton Fabrics
by Konstantinos Papapetros, Labrini Sygellou, Charalampos Anastasopoulos, Konstantinos S. Andrikopoulos, Georgios Bokias and George A. Voyiatzis
Appl. Sci. 2023, 13(9), 5530; https://doi.org/10.3390/app13095530 - 29 Apr 2023
Cited by 14 | Viewed by 3336
Abstract
Cotton cationization with low molecular weight or polymeric cationic modifiers allows the effective dyeing of cotton substrates with reactive dyes under salt-free and more environmentally friendly conditions. The current work focuses on the spectroscopic study of the intermolecular interactions, which dictate the physicochemical [...] Read more.
Cotton cationization with low molecular weight or polymeric cationic modifiers allows the effective dyeing of cotton substrates with reactive dyes under salt-free and more environmentally friendly conditions. The current work focuses on the spectroscopic study of the intermolecular interactions, which dictate the physicochemical process associated with fabric dyeing. Water-soluble cationic copolymers of vinyl benzyl chloride (VBC) and vinyl benzyl triethylammonium chloride (VBCTEAM) have been used as cellulose cationic modifiers. Dye uptake was assessed using Remazol Brilliant Blue R and Novacron Ruby S-3B dyes. The study involves ATR-FTIR, UV-Vis, fluorescence, and XPS spectroscopy. The results of binary polymer-rich dye-polymer aqueous solutions or dye-polymer precipitates at stoichiometric charge-ratio revealed that the sulfonate/sulfate anions of the dyes interact with the cationic VBCTEAM units of the polymer via electrostatic interactions. Moreover, the comparative study of dye application on modified and unmodified fabrics suggests that, unlike the latter, where dyes are chemically bound to cellulose, electrostatic forces dominate the interaction of modified fabrics with dye molecules. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Graphical abstract

15 pages, 2976 KiB  
Article
Eco-Friendly OSN Membranes Based on Alginate Salts with Variable Nanofiltration Properties
by Evgenia Dmitrieva, Alisa Raeva, Daria Razlataya and Tatyana Anokhina
Membranes 2023, 13(2), 244; https://doi.org/10.3390/membranes13020244 - 17 Feb 2023
Cited by 7 | Viewed by 3227
Abstract
In this work, membranes for organic solvents nanofiltration (OSN) based on a natural polymer, sodium alginate, were fabricated. They are chemically stable in organic solvents, including aprotic polar solvents. The unique advantage of these membranes is the absence of toxic reagents and solvents [...] Read more.
In this work, membranes for organic solvents nanofiltration (OSN) based on a natural polymer, sodium alginate, were fabricated. They are chemically stable in organic solvents, including aprotic polar solvents. The unique advantage of these membranes is the absence of toxic reagents and solvents during their production. This ensures the safety and environmental friendliness of the production process. It has been shown that an operation as simple as changing the cation in alginate (Cu2+, Fe3+, Cr3+, Al3+, Zn2+, Ca2+) makes it possible to control the transport and separating properties of membranes, depending on the organic solvent being separated. Therefore, to isolate RemazolBrilliant Blue with MM = 626 g·mol−1 from ethanol, membranes based on iron alginate with a rejection R = 97% and a permeability of 1.5 kg·m−2·h−1·bar−1 are the most efficient. For isolation of the same solute from DMF and MP, membranes based on calcium alginate with an R of about 90% and a permeability of 0.1–0.2 kg·m−2·h−1·bar−1 are the most efficient. The resulting membranes based on natural biodegradable sodium alginate are competitive compared to membranes based on synthetic polymers. Full article
Show Figures

Figure 1

33 pages, 11631 KiB  
Article
Rapid Removal of Toxic Remazol Brilliant Blue-R Dye from Aqueous Solutions Using Juglans nigra Shell Biomass Activated Carbon as Potential Adsorbent: Optimization, Isotherm, Kinetic, and Thermodynamic Investigation
by Vairavel Parimelazhagan, Pranesh Yashwath, Dharun Arukkani Pushparajan and Jitendra Carpenter
Int. J. Mol. Sci. 2022, 23(20), 12484; https://doi.org/10.3390/ijms232012484 - 18 Oct 2022
Cited by 51 | Viewed by 4628
Abstract
Recently, the treatment of effluent by agricultural waste biomass has significantly attracted wide interest among researchers due to its availability, efficacy, and low cost. The removal of toxic Remazol Brilliant Blue-R (RBBR) from aqueous solutions using HNO3-treated Juglans nigra (walnut) shell [...] Read more.
Recently, the treatment of effluent by agricultural waste biomass has significantly attracted wide interest among researchers due to its availability, efficacy, and low cost. The removal of toxic Remazol Brilliant Blue-R (RBBR) from aqueous solutions using HNO3-treated Juglans nigra (walnut) shell biomass carbon as an adsorbent has been examined under various experimental conditions, such as initial pH, adsorbate concentration, adsorbent dosage, particle size, agitation speed, and type of electrolyte. The experiments are designed to achieve the maximum dye removal efficiency using the response surface methodology (RSM). The optimum pH, adsorbent dosage, and particle size were found to be 1.5, 7 g L−1, and 64 μm, respectively for maximum decolorization efficiency (98.24%). The prepared adsorbent was characterized by particle size, Brunauer–Emmett–Teller (BET) surface area, pore volume, zero-point charge (pHzpc), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy/energy dispersive X-ray spectroscopy (FE-SEM/EDX), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Based on fitting the experimental data with various models, the isotherm and kinetic mechanism are found to be more appropriate with Langmuir isotherm and pseudo-second-order kinetics. The adsorption mechanism can be described by the intra-particle diffusion model, Bangham, and Boyd plots. The overall rate of adsorption is controlled by the external film diffusion of dye molecules. The maximum monolayer adsorption capacity, (qmax) 54.38 mg g−1 for RBBR dye, was obtained at a temperature of 301 K. From a thermodynamic standpoint, the process is endothermic, spontaneous, and the chemisorption process is favored at high temperatures. Desorption studies were conducted with various desorbing reagents in various runs and the maximum desorption efficiency (61.78% in the third run) was obtained using the solvent methanol. Reusability studies demonstrated that the prepared adsorbent was effective for up to three runs of operation. The investigation outcomes concluded that walnut shell biomass activated carbon (WSBAC) is a cost-effective, eco-friendly, and bio-sustainable material that can be used for synthetic dye decolorization in aqueous media. Full article
(This article belongs to the Special Issue Emerging Applications of Nanomaterials Derived from Biomacromolecules)
Show Figures

Figure 1

20 pages, 3065 KiB  
Article
Corn Cob as a Green Support for Laccase Immobilization—Application on Decolorization of Remazol Brilliant Blue R
by Priscila M. dos Santos, Julia R. Baruque, Regiane K. de Souza Lira, Selma G. F. Leite, Rodrigo P. do Nascimento, Cristiano P. Borges, Robert Wojcieszak and Ivaldo Itabaiana
Int. J. Mol. Sci. 2022, 23(16), 9363; https://doi.org/10.3390/ijms23169363 - 19 Aug 2022
Cited by 19 | Viewed by 3265
Abstract
The high demand for food and energy imposed by the increased life expectancy of the population has driven agricultural activity, which is reflected in the larger quantities of agro-industrial waste generated, and requires new forms of use. Brazil has the greatest biodiversity in [...] Read more.
The high demand for food and energy imposed by the increased life expectancy of the population has driven agricultural activity, which is reflected in the larger quantities of agro-industrial waste generated, and requires new forms of use. Brazil has the greatest biodiversity in the world, where corn is one of the main agricultural genres, and where over 40% of the waste generated is from cobs without an efficient destination. With the aim of the valorization of these residues, we proposed to study the immobilization of laccase from Aspergillus spp. (LAsp) in residual corn cob and its application in the degradation of Remazol Brilliant Blue R (RBBR) dye. The highest yields in immobilized protein (75%) and residual activity (40%) were obtained at pH 7.0 and an enzyme concentration of 0.1 g.mL−1, whose expressed enzyme activity was 1854 U.kg−1. At a temperature of 60 °C, more than 90% of the initial activity present in the immobilized biocatalyst was maintained. The immobilized enzyme showed higher efficiency in the degradation (64%) of RBBR dye in 48 h, with improvement in the process in 72 h (75%). The new biocatalyst showed operational efficiency during three cycles, and a higher degradation rate than the free enzyme, making it a competitive biocatalyst and amenable to industrial applications. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

17 pages, 3587 KiB  
Article
Laccase Cross-Linked Ultraporous Aluminas for Sustainable Biodegradation of Remazol Brilliant Blue R
by Huan Xu, Guilhem Boeuf, Kairuo Zhu, Zixian Jia, Andrei Kanaev, Rabah Azouani, Zhengyan Wu, Mamadou Traore and Abdellatif Elm’selmi
Catalysts 2022, 12(7), 744; https://doi.org/10.3390/catal12070744 - 6 Jul 2022
Cited by 6 | Viewed by 2237
Abstract
Over the past few decades, enzyme-based green and sustainable chemistry has attracted extensive research attention, which provides a promising alternative to the conventional treatment methods of recalcitrant micropollutants. However, enzyme denaturation and stability loss remain critical challenges for its potential applications in industrial [...] Read more.
Over the past few decades, enzyme-based green and sustainable chemistry has attracted extensive research attention, which provides a promising alternative to the conventional treatment methods of recalcitrant micropollutants. However, enzyme denaturation and stability loss remain critical challenges for its potential applications in industrial wastewater treatment. In this study, laccase from Trametes versicolor (laccase T.) was cross-linked immobilized by ultraporous alumina (UPA) for the sustainable biodegradation of Remazol Brilliant Blue R (RBBR). Through sequential use of an aminosilane coupling agent (3-aminopropyl)triethoxysilane (APTES) and bifunctional cross-linker glutaraldehyde (GA), the synthesized biocatalysts showed better immobilization performances (about 4-fold to physical adsorption). The GA concentration considerably affected the laccase T. cross-linking degree, while the GA post-treatment protocol showed the highest laccase T. immobilization yield with lower activity recovery. Moreover, the biocatalyst stabilities including pH stability, thermal stability, storage stability, and reusability were also studied. Tolerance to broader pH and temperature ranges, better storage stability, good reusability of laccase T. cross-linked UPA(γ) biocatalysts, and their continuous RBRR biodegradation efficiency highlight the potentials of enzyme-based inorganic materials in industrial wastewater treatment, which can broaden our understanding of their practical applications in environmental fields. Full article
Show Figures

Figure 1

Back to TopTop