Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Reissner–Mindlin plate model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 14378 KB  
Article
Equilibrium-Based Finite Element Analysis of the Reissner–Mindlin Plate Bending Problem
by Zdzisław Więckowski and Paulina Świątkiewicz
Materials 2025, 18(21), 4969; https://doi.org/10.3390/ma18214969 - 30 Oct 2025
Viewed by 365
Abstract
A stress-based finite element approach to the Reissner–Mindlin plate bending problem is proposed. The rectangular Bogner–Fox–Schmit and triangular Hsieh–Clough–Tocher elements are applied to approximate the Southwell stress function describing the statically admissible stress field in a plate. To have some reference for the [...] Read more.
A stress-based finite element approach to the Reissner–Mindlin plate bending problem is proposed. The rectangular Bogner–Fox–Schmit and triangular Hsieh–Clough–Tocher elements are applied to approximate the Southwell stress function describing the statically admissible stress field in a plate. To have some reference for the numerical results and estimate errors of the approximate solutions, two displacement-based elements with 12 and 22 degrees of freedom are also utilised. The variant of boundary conditions—known in the literature as 2D or hard BC—is analysed in the present study. Full article
Show Figures

Figure 1

28 pages, 12093 KB  
Article
Static and Free-Boundary Vibration Analysis of Egg-Crate Honeycomb Core Sandwich Panels Using the VAM-Based Equivalent Model
by Ruihao Li, Hui Yuan, Zhenxuan Cai, Zhitong Liu, Yifeng Zhong and Yuxin Tang
Materials 2025, 18(17), 4014; https://doi.org/10.3390/ma18174014 - 27 Aug 2025
Viewed by 459
Abstract
This study proposes a novel egg-crate honeycomb core sandwich panel (SP-EHC) that combines the structural advantages of conventional lattice and grid configurations while mitigating their limitations in stability and mechanical performance. The design employs chamfered intersecting grid walls to create a semi-enclosed honeycomb [...] Read more.
This study proposes a novel egg-crate honeycomb core sandwich panel (SP-EHC) that combines the structural advantages of conventional lattice and grid configurations while mitigating their limitations in stability and mechanical performance. The design employs chamfered intersecting grid walls to create a semi-enclosed honeycomb architecture, enhancing out-of-plane stiffness and buckling resistance and enabling ventilation and drainage. To facilitate efficient and accurate structural analysis, a two-dimensional equivalent plate model (2D-EPM) is developed using the variational asymptotic method (VAM). This model significantly reduces the complexity of three-dimensional elasticity problems while preserving essential microstructural characteristics. A Reissner–Mindlin-type formulation is derived, enabling local field reconstruction for detailed stress and displacement evaluation. Model validation is conducted through experimental testing and three-dimensional finite element simulations. The 2D-EPM demonstrates high accuracy, with static analysis errors in load–displacement response within 10% and a maximum modal frequency error of 10.23% in dynamic analysis. The buckling and bending analyses, with or without initial deformation, show strong agreement with the 3D-FEM results, with deviations in the critical buckling load not exceeding 5.23%. Local field reconstruction achieves stress and displacement prediction errors below 2.7%, confirming the model’s fidelity at both global and local scales. Overall, the VAM-based 2D-EPM provides a robust and computationally efficient framework for the structural analysis and optimization of advanced sandwich panels. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 4194 KB  
Article
Incorporating Transverse Normal Strain in the Homogenization of Corrugated Cardboards
by Shao-Keng Liang and Zhi-Wei Wang
Appl. Sci. 2025, 15(14), 7868; https://doi.org/10.3390/app15147868 - 14 Jul 2025
Viewed by 408
Abstract
Homogenization researches for corrugated cardboard are predominantly based on plate theories assuming constant thickness, such as the Reissner–Mindlin plate. However, corrugated cardboard is prone to significant deformation in the thickness direction. To address this limitation, the present work proposes an improved plate element [...] Read more.
Homogenization researches for corrugated cardboard are predominantly based on plate theories assuming constant thickness, such as the Reissner–Mindlin plate. However, corrugated cardboard is prone to significant deformation in the thickness direction. To address this limitation, the present work proposes an improved plate element designed by expanding the deflection function to the quadratic term of the thickness coordinate, enabling a linearly varied transverse normal strain. Furthermore, an extension of the established homogenization method is developed to derive the constitutive matrix. The element is implemented via the Abaqus user subroutine UEL. Validation demonstrates that the proposed element effectively characterizes a linearly varied transverse normal strain and stress. Simulation results from the homogenized model applying the proposed element and extended homogenization method are compared with those from detailed models. The comparisons confirm the efficiency and accuracy of the proposed approach. Full article
Show Figures

Figure 1

17 pages, 454 KB  
Article
Free-Vibration Analysis for Truncated Uflyand–Mindlin Plate Models: An Alternative Theoretical Formulation
by Maria Anna De Rosa, Isaac Elishakoff and Maria Lippiello
Vibration 2024, 7(1), 264-280; https://doi.org/10.3390/vibration7010014 - 12 Mar 2024
Cited by 1 | Viewed by 2166
Abstract
Plates are flat structural elements whose thickness is small in relation to the size of the surface. Their use may include engine foundations, reinforced concrete bridge elements or parts of various floating structures. Consequently, knowledge of their mechanical behavior under static and dynamic [...] Read more.
Plates are flat structural elements whose thickness is small in relation to the size of the surface. Their use may include engine foundations, reinforced concrete bridge elements or parts of various floating structures. Consequently, knowledge of their mechanical behavior under static and dynamic loads is of primary importance in engineering applications and of interest from a structural point of view. As a result, numerous works existing in the literature have investigated the mechanical properties of plates using various plate models, such as Reissner’s theory, Levinson’s theory, Kirchhoff’s theory and Mindlin’s theory, and their static and dynamic behavior has been examined. In the present paper the truncated Uflyand–Mindlin plate equation is proposed. According to Uflyand–Mindlin theory, an alternative theoretical formulation is presented for the free-vibration analysis of plates, and the equations of motion and the general corresponding boundary conditions are derived. This paper develops the truncated Uflyand–Mindlin plate equation, i.e., without the fourth-order derivative, by means of the direct method and variational formulation. The first-order shear deformable plate theory developed by Elishakoff, which takes into account rotational inertia and shear deformation and does not include a fourth-order time derivative, is variationally derived here. This derivation complements that performed by Mindlin some 70 years ago. The innovative aspect of the suggested strategy is that variational and direct methods for studying plate dynamics are analogous. Finding the third equation of the reduced Uflyand–Mindlin equations, the accompanying boundary conditions and their mathematical resemblance are the goals of the presented formulations. In order to solve the dynamic equilibrium problem of a truncated Uflyand–Mindlin equation via a variational formulation, it is demonstrated that the differential equations and the corresponding boundary conditions have the same form as those found using the direct technique. This paper successfully completes this task. Finally, in order to validate the effectiveness and correctness of the proposed procedure, a numerical example of the case of a plate simply supported at all four ends is proposed. Full article
Show Figures

Figure 1

17 pages, 2505 KB  
Article
Numerical Simulations in Ultrasonic Guided Wave Analysis for the Design of SHM Systems—Benchmark Study Based on the Open Guided Waves Online Platform Dataset
by Enes Savli, Jean Lefèvre, Christian Willberg and Kilian Tschöke
Aerospace 2023, 10(5), 430; https://doi.org/10.3390/aerospace10050430 - 2 May 2023
Cited by 5 | Viewed by 3338
Abstract
Structural health monitoring (SHM) strategies based on ultrasonic guided waves are very promising regarding thin-walled lightweight structures. To study the performance of such systems, validated numerical analysis tools have to be used. For that procedure, a benchmark between two numerical methods will be [...] Read more.
Structural health monitoring (SHM) strategies based on ultrasonic guided waves are very promising regarding thin-walled lightweight structures. To study the performance of such systems, validated numerical analysis tools have to be used. For that procedure, a benchmark between two numerical methods will be presented. The first promising approach is the elastodynamic finite integration technique (EFIT). Miscellaneous research shows that its capability of capturing wave characteristics and interactions is advanced in various media and structures, including thin-walled composites. The second approach employs conventional shell-type finite elements following the Reissner–Mindlin theory for modelling layered composite structures. The advantage of using such finite element methods (FEM) is their high availability in general purpose simulation tools. As a reference model, the measurement data coming from the Open Guided Waves Project (OGW) was taken into account. The OGW dataset provides the experimental data of ultrasonic guided wave propagation in carbon fiber composite plates with an additional omega stringer. By using this contribution, this experiment was reproduced by simulation. The paper presents the results of a validation and motivates further research, such as in research related to the probability of detection analysis and numerical performance. Full article
Show Figures

Figure 1

17 pages, 5481 KB  
Article
Investigations for Design Estimation of an Anisotropic Polymer Matrix Composite Plate with a Central Circular Hole under Uniaxial Tension
by Seongsik Lim, Vivek Kumar Dhimole, Yongbae Kim and Chongdu Cho
Polymers 2022, 14(10), 1977; https://doi.org/10.3390/polym14101977 - 12 May 2022
Cited by 1 | Viewed by 2199
Abstract
Composite plates with holes are common in engineering applications, such as the automotive and aerospace industries. Three-dimensional braided carbon/epoxy polymers are an advanced textile composite and are used in various structures due to their high damage resistance and relatively low manufacturing cost. When [...] Read more.
Composite plates with holes are common in engineering applications, such as the automotive and aerospace industries. Three-dimensional braided carbon/epoxy polymers are an advanced textile composite and are used in various structures due to their high damage resistance and relatively low manufacturing cost. When a braided polymer plate with a hole is used in engineering applications, it is necessary to know its mechanical behavior under loading conditions using analysis theory to design it better. However, the effects of stress distribution with shear deformation theories on the variable thickness of the braided polymer plate (carbon/epoxy) with a hole under tensile loading have not been reported yet. In this paper, a study is conducted to evaluate shear deformation theories for a braided polymer plate with variable thickness and a hole in the center, analyzing the stresses and their concentration variations. First, multiscale modeling and analysis are performed to determine the mechanical properties of the plate. Then, finite element analyses are performed on a homogenized macro plate with a hole. The analysis process is verified by comparison with the available literature. Results show that the first-order shear deformation theory calculates 37, 56, and 70 percent less maximum transverse shear stress than the high-order shear deformation theory (Reissner–Mindlin) and the elasticity theory for thin, moderately thick, and thick braided polymer plates, respectively. Additionally, changing the theory has no significant effect on circumferential stress, radial stress, Von Mises stress, and stress concentration factor. As a result, this research can provide researchers and designers with structural intuition for a braided polymer plate with a center hole. Full article
(This article belongs to the Special Issue Sustainable Polymeric Composites: Fabrication and Application)
Show Figures

Figure 1

46 pages, 3468 KB  
Article
Strain Gradient Theory Based Dynamic Mindlin-Reissner and Kirchhoff Micro-Plates with Microstructural and Micro-Inertial Effects
by Stylianos Markolefas and Dimitrios Fafalis
Dynamics 2021, 1(1), 49-94; https://doi.org/10.3390/dynamics1010005 - 31 Jul 2021
Cited by 7 | Viewed by 5828
Abstract
In this study, a dynamic Mindlin–Reissner-type plate is developed based on a simplified version of Mindlin’s form-II first-strain gradient elasticity theory. The governing equations of motion and the corresponding boundary conditions are derived using the general virtual work variational principle. The presented model [...] Read more.
In this study, a dynamic Mindlin–Reissner-type plate is developed based on a simplified version of Mindlin’s form-II first-strain gradient elasticity theory. The governing equations of motion and the corresponding boundary conditions are derived using the general virtual work variational principle. The presented model contains, apart from the two classical Lame constants, one additional microstructure material parameter g for the static case and one micro-inertia parameter h for the dynamic case. The formal reduction of this model to a Kirchhoff-type plate model is also presented. Upon diminishing the microstructure parameters g and h, the classical Mindlin–Reissner and Kirchhoff plate theories are derived. Three points distinguish the present work from other similar published in the literature. First, the plane stress assumption, fundamental for the development of plate theories, is expressed by the vanishing of the z-component of the generalized true traction vector and not merely by the zz-component of the Cauchy stress tensor. Second, micro-inertia terms are included in the expression of the kinetic energy of the model. Finally, the detailed structure of classical and non-classical boundary conditions is presented for both Mindlin–Reissner and Kirchhoff micro-plates. An example of a simply supported rectangular plate is used to illustrate the proposed model and to compare it with results from the literature. The numerical results reveal the significance of the strain gradient effect on the bending and free vibration response of the micro-plate, when the plate thickness is at the micron-scale; in comparison to the classical theories for Mindlin–Reissner and Kirchhoff plates, the deflections, the rotations, and the shear-thickness frequencies are smaller, while the fundamental flexural frequency is higher. It is also observed that the micro-inertia effect should not be ignored in estimating the fundamental frequencies of micro-plates, primarily for thick plates, when plate thickness is at the micron scale (strain gradient effect). Full article
Show Figures

Figure 1

14 pages, 2845 KB  
Article
Determination of Transverse Shear Stiffness of Sandwich Panels with a Corrugated Core by Numerical Homogenization
by Tomasz Garbowski and Tomasz Gajewski
Materials 2021, 14(8), 1976; https://doi.org/10.3390/ma14081976 - 15 Apr 2021
Cited by 57 | Viewed by 4793
Abstract
Knowing the material properties of individual layers of the corrugated plate structures and the geometry of its cross-section, the effective material parameters of the equivalent plate can be calculated. This can be problematic, especially if the transverse shear stiffness is also necessary for [...] Read more.
Knowing the material properties of individual layers of the corrugated plate structures and the geometry of its cross-section, the effective material parameters of the equivalent plate can be calculated. This can be problematic, especially if the transverse shear stiffness is also necessary for the correct description of the equivalent plate performance. In this work, the method proposed by Biancolini is extended to include the possibility of determining, apart from the tensile and flexural stiffnesses, also the transverse shear stiffness of the homogenized corrugated board. The method is based on the strain energy equivalence between the full numerical 3D model of the corrugated board and its Reissner-Mindlin flat plate representation. Shell finite elements were used in this study to accurately reflect the geometry of the corrugated board. In the method presented here, the finite element method is only used to compose the initial global stiffness matrix, which is then condensed and directly used in the homogenization procedure. The stability of the proposed method was tested for different variants of the selected representative volume elements. The obtained results are consistent with other technique already presented in the literature. Full article
(This article belongs to the Special Issue Mechanics of Corrugated and Composite Materials)
Show Figures

Figure 1

18 pages, 13921 KB  
Article
Torsional and Transversal Stiffness of Orthotropic Sandwich Panels
by Tomasz Garbowski, Tomasz Gajewski and Jakub Krzysztof Grabski
Materials 2020, 13(21), 5016; https://doi.org/10.3390/ma13215016 - 6 Nov 2020
Cited by 33 | Viewed by 4285
Abstract
In the present work, an analytical equation describing the plate torsion test taking into account the transverse shear stiffness in sandwich plates is derived and numerically validated. Transverse shear becomes an important component if the analyzed plate or shell is thick with respect [...] Read more.
In the present work, an analytical equation describing the plate torsion test taking into account the transverse shear stiffness in sandwich plates is derived and numerically validated. Transverse shear becomes an important component if the analyzed plate or shell is thick with respect to the in-plane dimensions and/or its core has significantly lower stiffness than the outer faces. The popular example of such a sandwich plate is a corrugated cardboard, widely used in the packaging industry. The flat layers of a corrugated board are usually made of thicker (stronger) material than that used for the corrugated layer, the role of which is rather to keep the outer layers at a certain distance, to ensure high bending stiffness of the plate. However, the soft core of such a plate usually has a low transverse shear stiffness, which is often not considered in the plate analysis. Such simplification may lead to significant calculation errors. The paper presents the generalization of the Reissner’s analytical formula, which describes the torsional stiffness of the plate sample including two transverse shear stiffnesses. The paper also presents the implementation of the numerical model of the plate torsion test including the transverse shear stiffnesses. Both approaches are compared with each other on a wide range of material parameters and different aspect ratios of the specimen. It has been proved that both analytical and numerical formulations lead to an identical result. Finally, the performance of presented formulations is compared with other numerical models using commercial implementation of various Reissner–Mindlin shell elements and other analytical formulas from the literature. The comparison shows good agreement of presented theory and numerical implementation with other existing approaches. Full article
Show Figures

Figure 1

30 pages, 7705 KB  
Article
Free Vibrations of Sandwich Plates with Damaged Soft-Core and Non-Uniform Mechanical Properties: Modeling and Finite Element Analysis
by Michele Bacciocchi, Raimondo Luciano, Carmelo Majorana and Angelo Marcello Tarantino
Materials 2019, 12(15), 2444; https://doi.org/10.3390/ma12152444 - 31 Jul 2019
Cited by 23 | Viewed by 4134
Abstract
The paper aims to investigate the natural frequencies of sandwich plates by means of a Finite Element (FE) formulation based on the Reissner-Mindlin Zig-zag (RMZ) theory. The structures are made of a damaged isotropic soft-core and two external stiffer orthotropic face-sheets. These skins [...] Read more.
The paper aims to investigate the natural frequencies of sandwich plates by means of a Finite Element (FE) formulation based on the Reissner-Mindlin Zig-zag (RMZ) theory. The structures are made of a damaged isotropic soft-core and two external stiffer orthotropic face-sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. A non-uniform distribution of the reinforcing fibers is assumed along the thickness of the skin and is modeled analytically by means of peculiar expressions given as a function of the thickness coordinate. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution of the straight fibers, stacking sequence, and mass fraction of the constituents. Some final remarks are presented to provide useful observations and design criteria. Full article
(This article belongs to the Special Issue Advances in Structural Mechanics Modeled with FEM)
Show Figures

Figure 1

Back to TopTop