Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = RTK signal analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 9030 KiB  
Article
UAV Path Planning via Semantic Segmentation of 3D Reality Mesh Models
by Xiaoxinxi Zhang, Zheng Ji, Lingfeng Chen and Yang Lyu
Drones 2025, 9(8), 578; https://doi.org/10.3390/drones9080578 - 14 Aug 2025
Abstract
Traditional unmanned aerial vehicle (UAV) path planning methods for image-based 3D reconstruction often rely solely on geometric information from initial models, resulting in redundant data acquisition in non-architectural areas. This paper proposes a UAV path planning method via semantic segmentation of 3D reality [...] Read more.
Traditional unmanned aerial vehicle (UAV) path planning methods for image-based 3D reconstruction often rely solely on geometric information from initial models, resulting in redundant data acquisition in non-architectural areas. This paper proposes a UAV path planning method via semantic segmentation of 3D reality mesh models to enhance efficiency and accuracy in complex scenarios. The scene is segmented into buildings, vegetation, ground, and water bodies. Lightweight polygonal surfaces are extracted for buildings, while planar segments in non-building regions are fitted and projected into simplified polygonal patches. These photography targets are further decomposed into point, line, and surface primitives. A multi-resolution image acquisition strategy is adopted, featuring high-resolution coverage for buildings and rapid scanning for non-building areas. To ensure flight safety, a Digital Surface Model (DSM)-based shell model is utilized for obstacle avoidance, and sky-view-based Real-Time Kinematic (RTK) signal evaluation is applied to guide viewpoint optimization. Finally, a complete weighted graph is constructed, and ant colony optimization is employed to generate a low-energy-cost flight path. Experimental results demonstrate that, compared with traditional oblique photogrammetry, the proposed method achieves higher reconstruction quality. Compared with the commercial software Metashape, it reduces the number of images by 30.5% and energy consumption by 37.7%, while significantly improving reconstruction results in both architectural and non-architectural areas. Full article
Show Figures

Figure 1

23 pages, 2002 KiB  
Article
Precision Oncology Through Dialogue: AI-HOPE-RTK-RAS Integrates Clinical and Genomic Insights into RTK-RAS Alterations in Colorectal Cancer
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
Biomedicines 2025, 13(8), 1835; https://doi.org/10.3390/biomedicines13081835 - 28 Jul 2025
Viewed by 541
Abstract
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of [...] Read more.
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of these genomic events with clinical and demographic data remains hindered by fragmented resources and a lack of accessible analytical frameworks. To address this challenge, we developed AI-HOPE-RTK-RAS, a domain-specialized conversational artificial intelligence (AI) system designed to enable natural language-based, integrative analysis of RTK-RAS pathway alterations in CRC. Methods: AI-HOPE-RTK-RAS employs a modular architecture combining large language models (LLMs), a natural language-to-code translation engine, and a backend analytics pipeline operating on harmonized multi-dimensional datasets from cBioPortal. Unlike general-purpose AI platforms, this system is purpose-built for real-time exploration of RTK-RAS biology within CRC cohorts. The platform supports mutation frequency profiling, odds ratio testing, survival modeling, and stratified analyses across clinical, genomic, and demographic parameters. Validation included reproduction of known mutation trends and exploratory evaluation of co-alterations, therapy response, and ancestry-specific mutation patterns. Results: AI-HOPE-RTK-RAS enabled rapid, dialogue-driven interrogation of CRC datasets, confirming established patterns and revealing novel associations with translational relevance. Among early-onset CRC (EOCRC) patients, the prevalence of RTK-RAS alterations was significantly lower compared to late-onset disease (67.97% vs. 79.9%; OR = 0.534, p = 0.014), suggesting the involvement of alternative oncogenic drivers. In KRAS-mutant patients receiving Bevacizumab, early-stage disease (Stages I–III) was associated with superior overall survival relative to Stage IV (p = 0.0004). In contrast, BRAF-mutant tumors with microsatellite-stable (MSS) status displayed poorer prognosis despite higher chemotherapy exposure (OR = 7.226, p < 0.001; p = 0.0000). Among EOCRC patients treated with FOLFOX, RTK-RAS alterations were linked to worse outcomes (p = 0.0262). The system also identified ancestry-enriched noncanonical mutations—including CBL, MAPK3, and NF1—with NF1 mutations significantly associated with improved prognosis (p = 1 × 10−5). Conclusions: AI-HOPE-RTK-RAS exemplifies a new class of conversational AI platforms tailored to precision oncology, enabling integrative, real-time analysis of clinically and biologically complex questions. Its ability to uncover both canonical and ancestry-specific patterns in RTK-RAS dysregulation—especially in EOCRC and populations with disproportionate health burdens—underscores its utility in advancing equitable, personalized cancer care. This work demonstrates the translational potential of domain-optimized AI tools to accelerate biomarker discovery, support therapeutic stratification, and democratize access to multi-omic analysis. Full article
Show Figures

Figure 1

14 pages, 1274 KiB  
Article
State Observer-Based Sampled-Data Control for Path Tracking of Autonomous Agricultural Tractor
by Haozhe Li, Keqi Mei, Li Ma, Shihong Ding and Chen Ding
Actuators 2025, 14(6), 300; https://doi.org/10.3390/act14060300 - 19 Jun 2025
Viewed by 342
Abstract
This study develops a sampled-data controller for the path tracking system of an autonomous agricultural tractor (AAT) on the basis of a state observer. First of all, to solve the cost of the whole system, the state observer is constructed for estimating the [...] Read more.
This study develops a sampled-data controller for the path tracking system of an autonomous agricultural tractor (AAT) on the basis of a state observer. First of all, to solve the cost of the whole system, the state observer is constructed for estimating the heading offset and for accelerating the convergence process. Built on the observer, an advanced output feedback sampled-data controller is formulated, which tackles the problem of slow data freshness caused by the low signal frequency of the GPS-RTK system. Subsequently, a Lyapunov stability analysis is conducted to guarantee that the AAT system can be stabilized under the proposed control strategy. Finally, comparative simulation results are provided to illustrate the efficacy of the control strategy. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Show Figures

Figure 1

16 pages, 4334 KiB  
Article
Dynamic Monitoring of a Bridge from GNSS-RTK Sensor Using an Improved Hybrid Denoising Method
by Chunbao Xiong, Zhi Shang, Meng Wang and Sida Lian
Sensors 2025, 25(12), 3723; https://doi.org/10.3390/s25123723 - 13 Jun 2025
Viewed by 390
Abstract
This study focused on the monitoring of a bridge using the global navigation satellite system real-time kinematic (GNSS-RTK) sensor. An improved hybrid denoising method was developed to enhance the GNSS-RTK’s accuracy. The improved hybrid denoising method consists of the improved complete ensemble empirical [...] Read more.
This study focused on the monitoring of a bridge using the global navigation satellite system real-time kinematic (GNSS-RTK) sensor. An improved hybrid denoising method was developed to enhance the GNSS-RTK’s accuracy. The improved hybrid denoising method consists of the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), the detrended fluctuation analysis (DFA), and an improved wavelet threshold denoising method. The stability experiment demonstrated the superiority of the improved wavelet threshold denoising method in reducing the noise of the GNSS-RTK. A noisy simulation signal was created to assess the performance of the proposed method. Compared to the ICEEMDAN method and the CEEMDAN-WT method, the proposed method achieves lower RMSE and higher SNR. The signal obtained by the proposed method is similar to the original signal. Then, GNSS-RTK was used to monitor a bridge in maintenance and rehabilitation construction. The bridge monitoring experiment lasted for four hours. (Considering the space limitation of the article, only representative 600 s data is displayed in the paper.) The bridge is located in Tianjin, China. The original displacement ranges are −14.9~19.3 in the north–south direction; −26.9~24.7 in the east–west direction; and −46.7~52.3 in the vertical direction. The displacement ranges processed by the proposed method are −12.3~17.2 in the north–south direction; −24.6~24.1 in the east–west direction; and −46.7~51.1 in the vertical direction. The proposed method processed fewer displacements than the initial monitoring displacements. It indicates the proposed method reduces noise significantly when monitoring the bridge based on the GNSS-RTK sensor. The average sixth-order frequency from PSD is 1.0043 Hz. The difference between the PSD and FEA is only 0.99%. The sixth-order frequency from the PSD is similar to that from the FEA. The lower modes’ natural frequencies from the PSD are smaller than those from the FEA. It illustrates the fact that, during the repair process, the missing load-bearing rods made the bridge less stiff and strong. The smaller natural frequencies of the bridge, the complex construction environment, the diversity of workers’ operations, and some unforeseen circumstances occurring in the construction all bring risks to the safety of the bridge. We should pay more attention to the dynamic monitoring of the bridge during construction in order to understand the structural status in time to prevent accidents. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

29 pages, 9346 KiB  
Article
Embedding Moving Baseline RTK for High-Precision Spatiotemporal Synchronization in Virtual Coupling Applications
by Susu Huang, Baigen Cai, Debiao Lu, Yang Zhao, Miao Zhang and Linyu Shang
Remote Sens. 2025, 17(7), 1238; https://doi.org/10.3390/rs17071238 - 31 Mar 2025
Viewed by 550
Abstract
Achieving high-precision spatiotemporal synchronization is crucial for the implementation of virtual coupling (VC) in railway systems. This paper proposes a moving baseline real-time kinematic (MB-RTK) framework to enhance relative positioning accuracy and synchronization robustness between coupled trains. By leveraging global navigation satellite system [...] Read more.
Achieving high-precision spatiotemporal synchronization is crucial for the implementation of virtual coupling (VC) in railway systems. This paper proposes a moving baseline real-time kinematic (MB-RTK) framework to enhance relative positioning accuracy and synchronization robustness between coupled trains. By leveraging global navigation satellite system (GNSS) carrier-phase differential processing and dynamic baseline estimation, MB-RTK effectively mitigates positioning errors caused by GNSS signal degradation, multipath interference, and synchronization latency, ensuring stable and reliable inter-train coordination. The proposed framework was evaluated through comprehensive simulations and field experiments. The results demonstrate that MB-RTK achieves centimeter-level relative positioning accuracy under normal GNSS conditions, maintains tracking errors within 10 m, and typically keeps velocity synchronization deviations within ±0.5 km/h. Furthermore, the RTK status analysis reveals that NARROW_INT provides the highest stability, while continuous RTK corrections are essential to ensure seamless synchronization in dynamic environments. To further enhance synchronization performance, a decentralized distributed synchronization algorithm was introduced, reducing communication overhead and improving real-time responsiveness. The proposed approach exhibits strong resilience to GNSS disruptions, making it well-suited for high-density and autonomous train operations. Overall, this study highlights MB-RTK as a promising solution for VC applications, offering high accuracy, low latency, and strong adaptability in complex railway scenarios. Future research will focus on AI-driven dynamic corrections, integration with complementary localization methods, and large-scale deployment strategies to further optimize the system’s robustness and scalability. Full article
Show Figures

Graphical abstract

17 pages, 593 KiB  
Article
Molecular Alterations in TP53, WNT, PI3K, TGF-Beta, and RTK/RAS Pathways in Gastric Cancer Among Ethnically Heterogeneous Cohorts
by Cecilia Monge, Brigette Waldrup, Francisco G. Carranza and Enrique Velazquez-Villarreal
Cancers 2025, 17(7), 1075; https://doi.org/10.3390/cancers17071075 - 23 Mar 2025
Cited by 1 | Viewed by 935
Abstract
Background/Objectives: Gastric cancer (GC) remains a leading cause of cancer-related mortality worldwide, with significant racial and ethnic disparities in incidence, molecular characteristics, and patient outcomes. However, genomic studies focusing on Hispanic/Latino (H/L) populations remain scarce, limiting our understanding of ethnicity-specific molecular alterations. This [...] Read more.
Background/Objectives: Gastric cancer (GC) remains a leading cause of cancer-related mortality worldwide, with significant racial and ethnic disparities in incidence, molecular characteristics, and patient outcomes. However, genomic studies focusing on Hispanic/Latino (H/L) populations remain scarce, limiting our understanding of ethnicity-specific molecular alterations. This study aims to characterize pathway-specific mutations in TP53, WNT, PI3K, TGF-Beta, and RTK/RAS signaling pathways in GC and compare mutation frequencies between H/L and Non-Hispanic White (NHW) patients. Additionally, we evaluate the impact of these alterations on overall survival using publicly available datasets. Methods: We conducted a bioinformatics analysis using publicly available GC datasets to assess mutation frequencies in TP53, WNT, PI3K, TGF-Beta, and RTK/RAS pathway genes. A total of 800 patients were included in the analysis, comprising 83 H/L patients and 717 NHW patients. Patients were stratified by ethnicity (H/L vs. NHW) to evaluate differences in mutation prevalence. Chi-squared tests were performed to compare mutation rates between groups and Kaplan–Meier survival analysis was used to assess overall survival differences based on pathway alterations among both H/L and NHW patients. Results: Significant differences were observed in the TP53 pathway and related genes when comparing GC in H/L patients to NHW patients. TP53 mutations were less prevalent in H/L patients (9.6% vs. 19%, p = 0.03). Borderline significant differences were noted in the WNT pathway when comparing GC in H/L patients to NHW GC patients, with WNT alterations more frequent in H/L GC (8.4% vs. 4%, p = 0.08) and APC mutations being significantly higher (3.6% vs. 0.8%, p = 0.05). Although alterations in PI3K, TGF-Beta, and RTK/RAS pathways were not statistically significant, borderline significance was observed in genes related to these pathways, including EGFR (p = 0.07), FGFR1 (p = 0.05), FGFR2 (p = 0.05), and PTPN11 (p = 0.05) in the PI3K pathway and SMAD4 (p = 0.08) in the TGF-Beta pathway. Survival analysis revealed no significant differences among H/L patients. However, NHW patients with TP53 and PI3K pathway alterations exhibited significant differences in overall survival, while those without TGF-Beta pathway alterations also showed a significant survival impact. In contrast, WNT pathway alterations were not associated with significant survival differences. These findings suggest that TP53, PI3K, and TGF-Beta pathway disruptions may have distinct prognostic implications in NHW GC patients. Conclusions: This study provides one of the first ethnicity-focused analyses of TP53, WNT, PI3K, TGF-Beta, and RTK/RAS pathway alterations in GC, revealing significant racial/ethnic differences in pathway dysregulation. The findings suggest that TP53 and WNT alterations may play a critical role in GC among H/L patients, while PI3K and TGF-Beta alterations may have greater prognostic significance in NHW patients. These insights emphasize the need for precision medicine approaches that account for genetic heterogeneity and ethnicity-specific pathway alterations to improve cancer care and outcomes for underrepresented populations. Full article
(This article belongs to the Special Issue Developments in the Management of Gastrointestinal Malignancies)
Show Figures

Figure 1

18 pages, 22688 KiB  
Article
Combining UAV Photogrammetry and TLS for Change Detection on Slovenian Coastal Cliffs
by Klemen Kregar and Klemen Kozmus Trajkovski
Drones 2025, 9(4), 228; https://doi.org/10.3390/drones9040228 - 21 Mar 2025
Viewed by 730
Abstract
This article examines the combined use of UAV (Unmanned Aerial Vehicle) photogrammetry and TLS (Terrestrial Laser Scanning) to detect changes in coastal cliffs in the Strunjan Nature Reserve. Coastal cliffs present unique surveying challenges, including limited access, unstable reference points due to erosion, [...] Read more.
This article examines the combined use of UAV (Unmanned Aerial Vehicle) photogrammetry and TLS (Terrestrial Laser Scanning) to detect changes in coastal cliffs in the Strunjan Nature Reserve. Coastal cliffs present unique surveying challenges, including limited access, unstable reference points due to erosion, GNSS (Global Navigation Satellite System) signal obstruction, dense vegetation, private property restrictions and weak mobile data. To overcome these limitations, UAV and TLS techniques are used with the help of GNSS and TPS (Total Positioning Station) surveying to establish a network of GCPs (Ground Control Points) for georeferencing. The methodology includes several epochs of data collection between 2019 and 2024, using a DJI Phantom 4 RTK for UAV surveys and a Riegl VZ-400 scanner for TLS. The data processing includes point cloud filtering, mesh comparison and a DoD (DEM of difference) analysis to quantify cliff surface changes. This study addresses the effects of vegetation by focusing on vegetation-free regions of interest distributed across the cliff face. The results aim to demonstrate the effectiveness and limitations of both methods for detecting and monitoring cliff erosion and provide valuable insights for coastal management and risk assessment. Full article
(This article belongs to the Special Issue Drone-Based Photogrammetric Mapping for Change Detection)
Show Figures

Figure 1

11 pages, 3494 KiB  
Communication
Analysis of GNSS-RTK Monitoring Background Noise Characteristics Based on Stability Tests
by Wencong Qi, Feilong Li, Lina Yu, Lilong Fan and Kai Zhang
Sensors 2025, 25(2), 379; https://doi.org/10.3390/s25020379 - 10 Jan 2025
Cited by 1 | Viewed by 1249
Abstract
GNSS-RTK offers numerous advantages and broad prospects in structural dynamic monitoring in civil engineering. However, in practical applications, GNSS-RTK accuracy is susceptible to the monitoring environments, causing actual monitoring accuracy to fall below its calibrated accuracy. This study investigates the monitoring accuracy and [...] Read more.
GNSS-RTK offers numerous advantages and broad prospects in structural dynamic monitoring in civil engineering. However, in practical applications, GNSS-RTK accuracy is susceptible to the monitoring environments, causing actual monitoring accuracy to fall below its calibrated accuracy. This study investigates the monitoring accuracy and spectral characteristics of GNSS-RTK based on stability tests under different environments related to reflection and obstruction conditions (i.e., concrete, grass, an obstructed balcony, and a water area). The findings indicate that in open environments of grass, concrete, and water, the standard deviation (STD) of GNSS-RTK monitored displacement is below 8 mm, its accuracy meeting the specifications of structural health monitoring. In the obstructed balcony environments, GNSS-RTK signals exhibit amplitude jumps, resulting in lower accuracy; however, during non-jump intervals, the STD of monitored displacement is below 10 mm, satisfying the structural health monitoring accuracy requirements. Moreover, the amplitudes of GNSS-RTK displacements in the concrete, grass, and water areas are basically consistent with the calibration accuracy of ±10 mm in the horizontal direction and ±20 mm in the elevation direction, while the amplitudes of GNSS-RTK displacements in the obstructed balcony condition are far greater than the calibration accuracy. The spectral analysis of GNSS-RTK signals reveals that multipath errors in concrete, grass, and obstructed balcony environments are primarily concentrated in the low-frequency range within 0.04 Hz, while the internal white noise of the instrument is widely and evenly distributed across the whole frequency domain. Based on these findings, adaptive methods, such as filter methods and multipath error correction techniques, are proposed for the de-noising of GNSS-RTK background noise. Full article
(This article belongs to the Special Issue Advances in GNSS Signal Processing and Navigation)
Show Figures

Figure 1

24 pages, 8598 KiB  
Article
Differential Positioning with Bluetooth Low Energy (BLE) Beacons for UAS Indoor Operations: Analysis and Results
by Salvatore Ponte, Gennaro Ariante, Alberto Greco and Giuseppe Del Core
Sensors 2024, 24(22), 7170; https://doi.org/10.3390/s24227170 - 8 Nov 2024
Cited by 3 | Viewed by 2530
Abstract
Localization of unmanned aircraft systems (UASs) in indoor scenarios and GNSS-denied environments is a difficult problem, particularly in dynamic scenarios where traditional on-board equipment (such as LiDAR, radar, sonar, camera) may fail. In the framework of autonomous UAS missions, precise feedback on real-time [...] Read more.
Localization of unmanned aircraft systems (UASs) in indoor scenarios and GNSS-denied environments is a difficult problem, particularly in dynamic scenarios where traditional on-board equipment (such as LiDAR, radar, sonar, camera) may fail. In the framework of autonomous UAS missions, precise feedback on real-time aircraft position is very important, and several technologies alternative to GNSS-based approaches for UAS positioning in indoor navigation have been recently explored. In this paper, we propose a low-cost IPS for UAVs, based on Bluetooth low energy (BLE) beacons, which exploits the RSSI (received signal strength indicator) for distance estimation and positioning. Distance information from measured RSSI values can be degraded by multipath, reflection, and fading that cause unpredictable variability of the RSSI and may lead to poor-quality measurements. To enhance the accuracy of the position estimation, this work applies a differential distance correction (DDC) technique, similar to differential GNSS (DGNSS) and real-time kinematic (RTK) positioning. The method uses differential information from a reference station positioned at known coordinates to correct the position of the rover station. A mathematical model was established to analyze the relation between the RSSI and the distance from Bluetooth devices (Eddystone BLE beacons) placed in the indoor operation field. The master reference station was a Raspberry Pi 4 model B, and the rover (unknown target) was an Arduino Nano 33 BLE microcontroller, which was mounted on-board a UAV. Position estimation was achieved by trilateration, and the extended Kalman filter (EKF) was applied, considering the nonlinear propriety of beacon signals to correct data from noise, drift, and bias errors. Experimental results and system performance analysis show the feasibility of this methodology, as well as the reduction of position uncertainty obtained by the DCC technique. Full article
(This article belongs to the Special Issue UAV and Sensors Applications for Navigation and Positioning)
Show Figures

Figure 1

25 pages, 7059 KiB  
Review
SPROUTY2, a Negative Feedback Regulator of Receptor Tyrosine Kinase Signaling, Associated with Neurodevelopmental Disorders: Current Knowledge and Future Perspectives
by Nidhi Puranik, HoJeong Jung and Minseok Song
Int. J. Mol. Sci. 2024, 25(20), 11043; https://doi.org/10.3390/ijms252011043 - 14 Oct 2024
Cited by 2 | Viewed by 2135
Abstract
Growth-factor-induced cell signaling plays a crucial role in development; however, negative regulation of this signaling pathway is important for sustaining homeostasis and preventing diseases. SPROUTY2 (SPRY2) is a potent negative regulator of receptor tyrosine kinase (RTK) signaling that binds to GRB2 during RTK [...] Read more.
Growth-factor-induced cell signaling plays a crucial role in development; however, negative regulation of this signaling pathway is important for sustaining homeostasis and preventing diseases. SPROUTY2 (SPRY2) is a potent negative regulator of receptor tyrosine kinase (RTK) signaling that binds to GRB2 during RTK activation and inhibits the GRB2-SOS complex, which inhibits RAS activation and attenuates the downstream RAS/ERK signaling cascade. SPRY was formerly discovered in Drosophila but was later discovered in higher eukaryotes and was found to be connected to many developmental abnormalities. In several experimental scenarios, increased SPRY2 protein levels have been observed to be involved in both peripheral and central nervous system neuronal regeneration and degeneration. SPRY2 is a desirable pharmaceutical target for improving intracellular signaling activity, particularly in the RAS/ERK pathway, in targeted cells because of its increased expression under pathological conditions. However, the role of SPRY2 in brain-derived neurotrophic factor (BDNF) signaling, a major signaling pathway involved in nervous system development, has not been well studied yet. Recent research using a variety of small-animal models suggests that SPRY2 has substantial therapeutic promise for treating a range of neurological conditions. This is explained by its function as an intracellular ERK signaling pathway inhibitor, which is connected to a variety of neuronal activities. By modifying this route, SPRY2 may open the door to novel therapeutic approaches for these difficult-to-treat illnesses. This review integrates an in-depth analysis of the structure of SPRY2, the role of its major interactive partners in RTK signaling cascades, and their possible mechanisms of action. Furthermore, this review highlights the possible role of SPRY2 in neurodevelopmental disorders, as well as its future therapeutic implications. Full article
(This article belongs to the Special Issue From Molecular Insights to Novel Therapies: Neurological Diseases)
Show Figures

Figure 1

28 pages, 6525 KiB  
Article
Identification and Characterization of a Novel Insulin-like Receptor (LvRTK2) Involved in Regulating Growth and Glucose Metabolism of the Pacific White Shrimp Litopenaeus vannamei
by Zijian Liu, Jiawei Liu, Zijie Liu, Xiaowei Song, Su Liu, Fei Liu, Lin Song and Yi Gao
Biomolecules 2024, 14(10), 1300; https://doi.org/10.3390/biom14101300 - 14 Oct 2024
Cited by 1 | Viewed by 1535
Abstract
The insulin receptor (IR) plays a crucial role in the growth and metabolism of animals. However, there are still many questions regarding the IR in crustaceans, particularly their role in shrimp growth and glucose metabolism. In this study, we identified a novel insulin-like [...] Read more.
The insulin receptor (IR) plays a crucial role in the growth and metabolism of animals. However, there are still many questions regarding the IR in crustaceans, particularly their role in shrimp growth and glucose metabolism. In this study, we identified a novel insulin-like receptor gene in Litopenaeus vannamei and cloned its full length of 6439 bp. This gene exhibited a highly conserved sequence and structural characteristics. Phylogenetic analysis confirmed it as an unreported RTK2-type IR, namely, LvRTK2. Expression pattern analysis showed that LvRTK2 is primarily expressed in female reproductive and digestive organs. Through a series of in vivo and in vitro experiments, including glucose treatment, exogenous insulin treatment, and starvation treatment, LvRTK2 was confirmed to be involved in the endogenous glucose metabolic pathway of shrimp under different glucose variations. Moreover, long-term and short-term interference experiments with LvRTK2 revealed that the interference significantly reduced the shrimp growth rate and serum glucose clearance rate. Further studies indicated that LvRTK2 may regulate shrimp growth by modulating the downstream PI3K/AKT signaling pathway and a series of glucose metabolism events, such as glycolysis, gluconeogenesis, glycogen synthesis, and glycogenolysis. This report on the characteristics and functions of LvRTK2 confirms the important role of RTK2-type IRs in regulating shrimp growth and glucose metabolism. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

37 pages, 3636 KiB  
Review
Relationship of Signaling Pathways between RKIP Expression and the Inhibition of EMT-Inducing Transcription Factors SNAIL1/2, TWIST1/2 and ZEB1/2
by Andrew Bustamante, Stavroula Baritaki, Apostolos Zaravinos and Benjamin Bonavida
Cancers 2024, 16(18), 3180; https://doi.org/10.3390/cancers16183180 - 17 Sep 2024
Cited by 4 | Viewed by 3200
Abstract
Untreated primary carcinomas often lead to progression, invasion and metastasis, a process that involves the epithelial-to-mesenchymal transition (EMT). Several transcription factors (TFs) mediate the development of EMT, including SNAIL1/SNAIL2, TWIST1/TWIST2 and ZEB1/ZEB2, which are overexpressed in various carcinomas along with the under expression [...] Read more.
Untreated primary carcinomas often lead to progression, invasion and metastasis, a process that involves the epithelial-to-mesenchymal transition (EMT). Several transcription factors (TFs) mediate the development of EMT, including SNAIL1/SNAIL2, TWIST1/TWIST2 and ZEB1/ZEB2, which are overexpressed in various carcinomas along with the under expression of the metastasis suppressor Raf Kinase Inhibitor Protein (RKIP). Overexpression of RKIP inhibits EMT and the above associated TFs. We, therefore, hypothesized that there are inhibitory cross-talk signaling pathways between RKIP and these TFs. Accordingly, we analyzed the various properties and biomarkers associated with the epithelial and mesenchymal tissues and the various molecular signaling pathways that trigger the EMT phenotype such as the TGF-β, the RTK and the Wnt pathways. We also presented the various functions and the transcriptional, post-transcriptional and epigenetic regulations for the expression of each of the EMT TFs. Likewise, we describe the transcriptional, post-transcriptional and epigenetic regulations of RKIP expression. Various signaling pathways mediated by RKIP, including the Raf/MEK/ERK pathway, inhibit the TFs associated with EMT and the stabilization of epithelial E-Cadherin expression. The inverse relationship between RKIP and the TF expressions and the cross-talks were further analyzed by bioinformatic analysis. High mRNA levels of RKIP correlated negatively with those of SNAIL1, SNAIL2, TWIST1, TWIST2, ZEB1, and ZEB2 in several but not all carcinomas. However, in these carcinomas, high levels of RKIP were associated with good prognosis, whereas high levels of the above transcription factors were associated with poor prognosis. Based on the inverse relationship between RKIP and EMT TFs, it is postulated that the expression level of RKIP in various carcinomas is clinically relevant as both a prognostic and diagnostic biomarker. In addition, targeting RKIP induction by agonists, gene therapy and immunotherapy will result not only in the inhibition of EMT and metastases in carcinomas, but also in the inhibition of tumor growth and reversal of resistance to various therapeutic strategies. However, such targeting strategies must be better investigated as a result of tumor heterogeneities and inherent resistance and should be better adapted as personalized medicine. Full article
Show Figures

Figure 1

24 pages, 13331 KiB  
Article
Decimeter-Level Accuracy for Smartphone Real-Time Kinematic Positioning Implementing a Robust Kalman Filter Approach and Inertial Navigation System Infusion in Complex Urban Environments
by Amir Hossein Pourmina, Mohamad Mahdi Alizadeh and Harald Schuh
Sensors 2024, 24(18), 5907; https://doi.org/10.3390/s24185907 - 11 Sep 2024
Viewed by 4823
Abstract
New smartphones provide real-time access to GNSS pseudorange, Doppler, or carrier-phase measurement data at 1 Hz. Simultaneously, they can receive corrections broadcast by GNSS reference stations to perform real-time kinematic (RTK) positioning. This study aims at the real-time positioning capabilities of smartphones using [...] Read more.
New smartphones provide real-time access to GNSS pseudorange, Doppler, or carrier-phase measurement data at 1 Hz. Simultaneously, they can receive corrections broadcast by GNSS reference stations to perform real-time kinematic (RTK) positioning. This study aims at the real-time positioning capabilities of smartphones using raw GNSS measurements as a conventional method and proposes an improvement to the positioning through the integration of Inertial Navigation System (INS) measurements. A U-Blox GNSS receiver, model ZED-F9R, was used as a benchmark for comparison. We propose an enhanced ambiguity resolution algorithm that integrates the traditional LAMBDA method with an adaptive thresholding mechanism based on real-time quality metrics. The RTK/INS fusion method integrates RTK and INS measurements using an extended Kalman filter (EKF), where the state vector x includes the position, velocity, orientation, and their respective biases. The innovation here is the inclusion of a real-time weighting scheme that adjusts the contribution of the RTK and INS measurements based on their current estimated accuracy. Also, we use the tightly coupled (TC) RTK/INS fusion framework. By leveraging INS data, the system can maintain accurate positioning even when the GNSS data are unreliable, allowing for the detection and exclusion of abnormal GNSS measurements. However, in complex urban areas such as Qazvin City in Iran, the fusion method achieved positioning accuracies of approximately 0.380 m and 0.415 m for the Xiaomi Mi 8 and Samsung Galaxy S21 Ultra smartphones, respectively. The subsequent detailed analysis across different urban streets emphasized the significance of choosing the right positioning method based on the environmental conditions. In most cases, RTK positioning outperformed Single-Point Positioning (SPP), offering decimeter-level precision, while the fusion method bridged the gap between the two, showcasing improved stability accuracy. The comparative performance between the Samsung Galaxy S21 Ultra and Xiaomi Mi 8 revealed minor differences, likely attributed to variations in the hardware design and software algorithms. The fusion method emerged as a valuable alternative when the RTK signals were unavailable or impractical. This demonstrates the potential of integrating RTK and INS measurements for enhanced real-time smartphone positioning, particularly in challenging urban environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

13 pages, 2983 KiB  
Article
Structure and Dynamics of Drk-SH2 Domain and Its Site-Specific Interaction with Sev Receptor Tyrosine Kinase
by Pooppadi Maxin Sayeesh, Mayumi Iguchi, Kohsuke Inomata, Teppei Ikeya and Yutaka Ito
Int. J. Mol. Sci. 2024, 25(12), 6386; https://doi.org/10.3390/ijms25126386 - 9 Jun 2024
Cited by 1 | Viewed by 1806
Abstract
The Drosophila downstream receptor kinase (Drk), a homologue of human GRB2, participates in the signal transduction from the extracellular to the intracellular environment. Drk receives signals through the interaction of its Src homology 2 (SH2) domain with the phosphorylated tyrosine residue in the [...] Read more.
The Drosophila downstream receptor kinase (Drk), a homologue of human GRB2, participates in the signal transduction from the extracellular to the intracellular environment. Drk receives signals through the interaction of its Src homology 2 (SH2) domain with the phosphorylated tyrosine residue in the receptor tyrosine kinases (RTKs). Here, we present the solution NMR structure of the SH2 domain of Drk (Drk-SH2), which was determined in the presence of a phosphotyrosine (pY)-containing peptide derived from a receptor tyrosine kinase, Sevenless (Sev). The solution structure of Drk-SH2 possess a common SH2 domain architecture, consisting of three β strands imposed between two α helices. Additionally, we interpret the site-specific interactions of the Drk-SH2 domain with the pY-containing peptide through NMR titration experiments. The dynamics of Drk-SH2 were also analysed through NMR-relaxation experiments as well as the molecular dynamic simulation. The docking simulations of the pY-containing peptide onto the protein surface of Drk-SH2 provided the orientation of the peptide, which showed a good agreement with the analysis of the SH2 domain of GRB2. Full article
(This article belongs to the Special Issue Application of NMR Spectroscopy in Biomolecules)
Show Figures

Figure 1

18 pages, 6990 KiB  
Article
Testing and Analysis of Selected Navigation Parameters of the GNSS/INS System for USV Path Localization during Inland Hydrographic Surveys
by Mariusz Specht
Sensors 2024, 24(8), 2418; https://doi.org/10.3390/s24082418 - 10 Apr 2024
Cited by 3 | Viewed by 2317
Abstract
One of the main methods of the path localization of moving objects is positioning using Global Navigation Satellite Systems (GNSSs) in cooperation with Inertial Navigation Systems (INSs). Its basic task is to provide high availability, in particular in areas with limited access to [...] Read more.
One of the main methods of the path localization of moving objects is positioning using Global Navigation Satellite Systems (GNSSs) in cooperation with Inertial Navigation Systems (INSs). Its basic task is to provide high availability, in particular in areas with limited access to satellite signals such as forests, tunnels or urban areas. The aim of the article is to carry out the testing and analysis of selected navigation parameters (3D position coordinates (Northing, Easting, and height) and Euler angles (pitch and roll)) of the GNSS/INS system for Unmanned Surface Vehicle (USV) path localization during inland hydrographic surveys. The research used the Ellipse-D GNSS/INS system working in the Real Time Kinematic (RTK) mode in order to determine the position of the “HydroDron” Autonomous Surface Vehicle (ASV). Measurements were conducted on four representative routes with a parallel and spiral arrangement of sounding profiles on Lake Kłodno (Poland). Based on the obtained research results, position accuracy measures of the “HydroDron” USV were determined using the Ellipse-D GNSS/INS system. Additionally, it was determined whether USV path localization using a GNSS/INS system working in the RTK mode meets the positioning requirements for inland hydrographic surveys. Research has shown that the Ellipse-D system operating in the RTK mode can be successfully used to position vessels when carrying out inland hydrographic surveys in all International Hydrographic Organization (IHO) Orders (Exclusive, Special, 1a/1b and 2) even when it does not work 100% correctly, e.g., loss of RTK corrections for an extended period of time. In an area with limited coverage of the mobile network operator (30–40% of the time the receiver operated in the differential mode), the positioning accuracy of the “HydroDron” USV using the Ellipse-D GNSS/INS system working in the RTK mode was from 0.877 m to 0.941 m for the R95(2D) measure, depending on the route travelled. Moreover, research has shown that if the Ellipse-D system performed GNSS/INS measurements using the RTK method, the pitch and roll error values amounted to approx. 0.06°, which is almost identical to that recommended by the device manufacturer. However, when working in the differential mode, the pitch and roll error values increased from 0.06° to just over 0.2°. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

Back to TopTop