Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = RFPM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 15147 KiB  
Article
Design for Loss Reduction in a Compact AFPM Electric Water Pump with a PCB Motor
by Do-Hyeon Choi, Hyung-Sub Han, Min-Ki Hong, Dong-Hoon Jung and Won-Ho Kim
Energies 2025, 18(10), 2538; https://doi.org/10.3390/en18102538 - 14 May 2025
Viewed by 623
Abstract
A PCB stator axial flux permanent magnet (AFPM) motor is presented that overcomes the manufacturing challenges associated with the complex geometry of conventional stators by employing a PCB substrate. Traditionally, AFPM motors are produced by winding coils around the stator teeth, a process [...] Read more.
A PCB stator axial flux permanent magnet (AFPM) motor is presented that overcomes the manufacturing challenges associated with the complex geometry of conventional stators by employing a PCB substrate. Traditionally, AFPM motors are produced by winding coils around the stator teeth, a process that requires specialized winding machinery and is both labor intensive and time consuming, ultimately incurring considerable manufacturing costs and delays. In contrast, PCB substrates offer significant advantages in manufacturability and mass production, effectively resolving these issues. Furthermore, the primary material used in PCB substrates, FR-4, exhibits a permeability similar to that of air, resulting in negligible electromagnetic cogging torque. Cogging torque arises from the attraction between permanent magnets and stator teeth, creating forces that interfere with motor rotation and generate unwanted vibration, noise, and potential mechanical collisions between the rotor and stator. In the PCB stator design, the conventional PCB circuit pattern is replaced by the motor’s coil configuration, and the absence of stator teeth eliminates these interference issues. Consequently, a slotless motor configuration with minimal vibration and noise is achieved. The PCB AFPM motor has been applied to a vehicle-mounted electric water pump (EWP), where mass production and space efficiency are critical. In an EWP, which integrates the impeller with the motor, it is essential that vibrations are minimized since excessive vibration could compromise impeller operation and, due to fluid resistance, require high power input. Moreover, the AFPM configuration facilitates higher torque generation compared to a conventional radial flux permanent magnet synchronous motor (RFPM). In a slotless AFPM motor, the absence of stator teeth prevents core flux saturation, thereby further enhancing torque performance. AC losses occur in the conductors as a result of the magnetic flux produced by the permanent magnets, and similar losses arise within the PCB circuits. Therefore, an optimized PCB circuit design is essential to reduce these losses. The Constant Trace Conductor (CTC) PCB circuit design process is proposed as a viable solution to mitigate AC losses. A 3D finite element analysis (3D FEA) model was developed, analyzed, fabricated, and validated to verify the proposed solution. Full article
Show Figures

Figure 1

19 pages, 2948 KiB  
Article
Optimization of N Fertilizer Type and Ridge–Furrow Ratio to Improve Resource Use Efficiency and Grain Yield of Rain-Fed Winter Wheat in Loess Plateau, China
by Shengcai Qiang, Yan Zhang, Junliang Fan, Fucang Zhang, Wen Lin, Min Sun, Zhiqiang Gao and Xiwang Tang
Agronomy 2024, 14(1), 172; https://doi.org/10.3390/agronomy14010172 - 12 Jan 2024
Viewed by 1770
Abstract
Ridge and furrow plastic mulch (RFPM) and nitrogen (N) application are effective strategies for improving crop productivity in China’s Loess Plain. However, it is not clear how the ridge–furrow ratio and nitrogen fertilizer type (NT) affect the use of water, nitrogen, heat, and [...] Read more.
Ridge and furrow plastic mulch (RFPM) and nitrogen (N) application are effective strategies for improving crop productivity in China’s Loess Plain. However, it is not clear how the ridge–furrow ratio and nitrogen fertilizer type (NT) affect the use of water, nitrogen, heat, and radiation resources for the enhancement of rain-fed wheat production. Two nitrogen fertilizer types (traditional urea (TU) and controlled-release urea (CRU)) and four planting patterns (conventional flat planting (F) and the RFPM system of 20 cm ridges with 40 cm furrows (R2F4), 40 cm ridges with 40 cm furrows (R4F4), and 60 cm ridges with 40 cm furrows (R6F4)) were tested from September 2018 to June 2021 during the winter wheat growing season. It was found that the RFPM system can increase soil thermal time (TTsoil) from 41.0 to 152.1 °C d compared to the F. RFPM system thermal effect, which reduced the vegetative growth period and prolonged the reproductive growth period for 2 to 7 days, which promoted an increase in the leaf area index (LAI) and final dry matter (DM) accumulation. These significantly increased the grain yield (GY) in the RFPM system by 51.6–115.2% and enhanced the thermal time use efficiency (TUE) by 48–99.5%, water productivity (WP) by 37.4–76.3%, radiation use efficiency (RUE) by 16.3–34.4%, and partial factor productivity of nitrogen (PFPN) by 51.6–115.2% compared to F. Although a high ridge and furrow ratio in combination with CRU increased the GY and resource use efficiency, it also exacerbated the soil water depletion, especially in the soil layer between 40 and 140 cm. Overall, CRU combined with the 40 cm ridge and 40 cm furrow RFPM system maximized resource efficiency and increased wheat production on China’s Loess Plateau. Full article
Show Figures

Figure 1

41 pages, 6345 KiB  
Article
A Robust Flexible Optimization Model for 3D-Layout of Interior Equipment in a Multi-Floor Satellite
by Masoud Hekmatfar, M. R. M. Aliha, Mir Saman Pishvaee and Tomasz Sadowski
Mathematics 2023, 11(24), 4932; https://doi.org/10.3390/math11244932 - 12 Dec 2023
Viewed by 1622
Abstract
Defanging equipment layout in multi-floor satellites consists of two primary tasks: (i) allocating the equipment to the satellite’s layers and (ii) placing the equipment in each layer individually. In reviewing the previous literature in this field, firstly, the issue of assigning equipment to [...] Read more.
Defanging equipment layout in multi-floor satellites consists of two primary tasks: (i) allocating the equipment to the satellite’s layers and (ii) placing the equipment in each layer individually. In reviewing the previous literature in this field, firstly, the issue of assigning equipment to layers is observed in a few articles, and regarding the layout, the non-overlapping constraint has always been a challenge, particularly for components that do not have a circular cross-section. In addition to presenting a heuristic method for allocating equipment to different layers of the satellite, this article presents a robust flexible programming model (RFPM) for the placement of equipment at different layers, taking into account the inherent flexibility of the equipment in terms of placement and the subject of uncertainty. This model is based on the existing uncertainty between the distances between pieces of cuboid equipment, which has not been addressed in any of the previous research, and by comparing its outputs with cases from past studies, we demonstrate a significantly higher efficiency related to placing the equipment and meeting the limit of non-overlapping constraints between the equipment. Finally, it would be possible to reduce the design time in the conceptual and preparatory stages, as well as the satellite’s overall size, while still satisfying other constraints such as stability and thermal limitations, moments of inertia and center of gravity. Full article
(This article belongs to the Special Issue Computational Mechanics and Applied Mathematics)
Show Figures

Figure 1

21 pages, 6231 KiB  
Article
Optimizing Sowing Patterns and Nitrogen Management Strategies Used to Balance Maize Crop Productivity, N2O Emissions, and Economic Benefits in the Loess Plateau Region of China
by Shiju Liu, Wei Li, Lulu Liu, Xiaoxia Wen, Yuncheng Liao, Guangxin Zhang and Juan Han
Agronomy 2023, 13(9), 2220; https://doi.org/10.3390/agronomy13092220 - 25 Aug 2023
Cited by 2 | Viewed by 1816
Abstract
Understanding the combined effects of sowing patterns and nitrogen (N) management strategies on crop productivity, environmental costs, and economic benefits is important to ensuring the sustainable development of dryland agriculture. Thus, we conducted a three-year field experiment to explore two spring maize sowing [...] Read more.
Understanding the combined effects of sowing patterns and nitrogen (N) management strategies on crop productivity, environmental costs, and economic benefits is important to ensuring the sustainable development of dryland agriculture. Thus, we conducted a three-year field experiment to explore two spring maize sowing patterns (FS, flat sowing; RFPM, ridge and furrow plastic film mulching) and four N management strategies (N0, no N fertilizer; N1, normal urea as base fertilizer; N2, split application of normal urea at sowing and a large flare period at a ratio of 3:2; N3, all controlled-release urea as base fertilizer) on growth, the grain yield, the N uptake and utilization efficiency, N2O emissions, and economic benefits in the Loess Plateau region of China. Our results showed that compared to FS, RFPM promoted growth of the spring maize canopy and increased the grain yield, cumulative N uptake, and N use efficiency. RFPM promoted N2O emissions by improving the soil’s hydrothermal environment, but it reduced the environmental cost (yield-scaled N2O emission). RFPM increased the production cost, but it increased the net income by improving the total output. Compared to traditional N management strategies (N1), N2 and N3 treatments improved the spring maize productivity and net income, and they reduced the environmental costs by improving the synchronization of the nitrogen supply. However, due to the decreasing rural labor force available in China, N3 is more beneficial in terms of reducing labor inputs. Therefore, we suggest that RFPM and N3 can be combined to form an efficient management strategy for spring maize production in the Loess Plateau that balances crop productivity, N2O emissions, and economic benefits. Full article
Show Figures

Figure 1

22 pages, 4317 KiB  
Article
TKIFRPM: A Novel Approach for Topmost-K Identical Frequent Regular Patterns Mining from Incremental Datasets
by Saif Ur Rehman, Muhammad Altaf Khan, Habib Un Nabi, Shaukat Ali, Noha Alnazzawi and Shafiullah Khan
Appl. Sci. 2023, 13(1), 654; https://doi.org/10.3390/app13010654 - 3 Jan 2023
Cited by 2 | Viewed by 2113
Abstract
The regular frequent pattern mining (RFPM) approaches are aimed to discover the itemsets with significant frequency and regular occurrence behavior in a dataset. However, these approaches mainly suffer from the following two issues: (1) setting the frequency threshold parameter for the discovery of [...] Read more.
The regular frequent pattern mining (RFPM) approaches are aimed to discover the itemsets with significant frequency and regular occurrence behavior in a dataset. However, these approaches mainly suffer from the following two issues: (1) setting the frequency threshold parameter for the discovery of regular frequent patterns technique is not an easy task because of its dependency on the characteristics of a dataset, and (2) RFPM approaches are designed to mine patterns from the static datasets and are not able to mine dynamic datasets. This paper aims to solve these two issues by proposing a novel top-K identical frequent regular patterns mining (TKIFRPM) approach to function on online datasets. The TKIFRPM maintains a novel synopsis data structure with item support index tables (ISI-tables) to keep summarized information about online committed transactions and dataset updates. The mining operation can discover top-K regular frequent patterns from online data stored in the ISI-tables. The TKIFRPM explores the search space in recursive depth-first order and applies a novel progressive node’s sub-tree pruning strategy to rapidly eliminate a complete infrequent sub-tree from the search space. The TKIFRPM is compared with the MTKPP approach, and it found that it outperforms its counterpart in terms of runtime and memory usage to produce designated topmost-K frequent regular pattern mining on the datasets following incremental updates. Full article
(This article belongs to the Special Issue Scientific Data Processing and Analysis)
Show Figures

Figure 1

23 pages, 1232 KiB  
Article
Optimal Design of Axial Flux Permanent Magnet Motors for Ship RIM-Driven Thruster
by Hichem Ouldhamrane, Jean-Frédéric Charpentier, Farid Khoucha, Abdelhalim Zaoui, Yahia Achour and Mohamed Benbouzid
Machines 2022, 10(10), 932; https://doi.org/10.3390/machines10100932 - 13 Oct 2022
Cited by 8 | Viewed by 7015
Abstract
This paper deals with the design and optimization of a 2.1 MW rim-driven electric thruster for ship propulsion. For this purpose, a double stator ironless rotor axial flux permanent magnet (AFPM) motor is considered as the propulsion motor. The analytical model of the [...] Read more.
This paper deals with the design and optimization of a 2.1 MW rim-driven electric thruster for ship propulsion. For this purpose, a double stator ironless rotor axial flux permanent magnet (AFPM) motor is considered as the propulsion motor. The analytical model of the selected AFPM motor is presented. The magnetic field in the AFPM machine is calculated using the 3D magnetic charge concept in combination with image theory and permeance functions to take into account the stator slotting effects, and a simple thermal model is used to evaluate the heat dissipation capabilities of the machine and the thermal dependence of the main electromagnetic losses. To optimally design the AFPM, an optimization process based on genetic algorithms is applied to minimize the cost of the active motor materials. An appropriate objective function has been constructed, and different constraints related to the main electrical, geometrical, and mechanical parameters have been taken into account. The achieved results are compared with the performance of a podded radial flux permanent magnet (RFPM) motor, which is considered a reference propulsion motor. The obtained results show a fairly satisfactory improvement in the cost and masses of the active motor materials. Finally, the accuracy of the obtained optimum solution is validated by performing 3D finite element analysis (3D-FEA) simulations. Full article
Show Figures

Figure 1

18 pages, 5097 KiB  
Article
Modelling of Water and Nitrogen Flow in a Rain-Fed Ridge-Furrow Maize System with Plastic Mulch
by Wei Zhu, Ruiquan Qiao and Rui Jiang
Land 2022, 11(9), 1514; https://doi.org/10.3390/land11091514 - 8 Sep 2022
Cited by 2 | Viewed by 1780
Abstract
Soil water and nitrogen are two important factors in the agro-ecosystem of the Loess Plateau, China. The ridge-furrow maize system with plastic mulch (RFPM) is a widely used measure to increase crop yield in the Loess Plateau area. The purpose of this study [...] Read more.
Soil water and nitrogen are two important factors in the agro-ecosystem of the Loess Plateau, China. The ridge-furrow maize system with plastic mulch (RFPM) is a widely used measure to increase crop yield in the Loess Plateau area. The purpose of this study was to investigate the effect of the RFPM on soil water and inorganic nitrogen (N) distribution, especially with regard to the risk and dynamic of nitrogen losses, by using Hydrus-2D. The study was conducted over two consecutive years and consisted of two treatments: (i) the RFPM with the split application of nitrogen in 2013 (160 + 60 kg N ha−1, sowing and jointing stage) and (ii) the RFPM with a one-time fertilizer in 2014 (220 kg N ha−1, sowing stage). The results showed that the dynamic of soil water and nitrogen was clearly illustrated by Hydrus-2D, especially with regard to the nitrogen losses and utilization. The RFPM improved soil water consumption in both the ridge and the furrow; the soil water content was obviously fluctuating during the maize growing season, and the degree of fluctuation decreased as the depth increased. The soil NH4+-N concentration was mainly accumulated in the surface soil layer +15–10 cm; the highest NH4+-N concentrations were 69.12 and 104.62 mg·kg−1 in 2013 and 2014, respectively. The highest NO3-N concentrations were 130.86 and 198.20 mg·kg−1 in 2013 and 2014, respectively. There was an exchange of NO3-N between the ridge and the furrow when urea was applied in the furrow. The one-time fertilizer caused a high risk of NH3 volatilization; they were 20.40 and 27.41 kg N ha−1 in 2013 and 2014, respectively, which accounted for 9.27% and 12.46% of the N fertilizer inputs in 2013 and 2014, respectively. The rate of nitrite leaching was higher in the furrow than the ridge. However, a proper ratio of the split application of nitrogen would contribute to the NO3-N leaching reduction; the NO3-N leaching amounts were 18.13 and 31.26 kg N ha−1, which accounted for 8.24% and 14.21% of the N fertilizer inputs in 2013 and 2014, respectively. Our study indicates, therefore, that the RFPM with a split application of nitrogen would be more effective for the nitrogen losses; the RFPM is a suitable system for agriculture in the rain-fed area of the Loess Plateau, with the benefits of water-use efficiency and non-point source pollution reduction. Full article
(This article belongs to the Special Issue Status in Agricultural Soil Pollution and Its Controls)
Show Figures

Figure 1

26 pages, 3994 KiB  
Article
Combining Planting Patterns with Mulching Bolsters the Soil Water Content, Growth, Yield, and Water Use Efficiency of Spring Wheat under Limited Water Supply in Arid Regions
by Salah El-Hendawy, Bazel Alsamin, Nabil Mohammed, Nasser Al-Suhaibani, Yahya Refay, Majed Alotaibi, ElKamil Tola and Mohamed A. Mattar
Agronomy 2022, 12(6), 1298; https://doi.org/10.3390/agronomy12061298 - 29 May 2022
Cited by 16 | Viewed by 2856
Abstract
Innovations in water-saving cultivation strategies are urgently needed to achieve high yield and elevated water use efficiency (WUE) simultaneously in arid regions with limited water resources. Here, we conducted a two-year field study to compare the impacts of eight combinations of planting patterns [...] Read more.
Innovations in water-saving cultivation strategies are urgently needed to achieve high yield and elevated water use efficiency (WUE) simultaneously in arid regions with limited water resources. Here, we conducted a two-year field study to compare the impacts of eight combinations of planting patterns (PPs) and mulching on the soil water content (SWC) in the top 60 cm soil layer, the growth, the yield, and the WUE of wheat under two irrigation rates (1.00 and 0.50 ET). These combinations included three conventional flat planting (CF) patterns, including CF without mulch (CFNM), with plastic film (CFPM), and with wheat straw mulch (CFSM); three raised-bed planting (RB) patterns, including RB without mulch (RBNM), with plastic film (RBPM), and wheat straw (RBSM) mulch; and two ridge–furrow planting (RF) patterns, including RF without mulch (RFNM) and with plastic film mulch (RFPM). The results showed that the tested treatments affected the SWC at different depths under both irrigation rates. Compared with the two non-mulched treatments under 0.50 ET, the SWC of the three PPs with plastic film and the two PPs with wheat straw mulching were significantly higher before irrigation by 14.4–22.0% and 6.9–17.2% at 0–20 cm soil depth, 16.4–29.0% and 6.6–14.9% at 20–40 cm soil depth, and 3.3–34.8% and 3.4–14.5% at 40–60 cm soil depth, respectively. All measured wheat parameters, except harvest index, were significantly affected by the interaction between irrigation rate and PPs. The highest values for plant dry weight (PDW), yield components, grain yield (GY), and WUE under 1.00 ET were obtained in the two PPs with wheat straw mulch, while the three PPs with plastic film showed the highest values of these parameters under 0.50 ET. The yield response factor (Ky) based on PDW was acceptable for all PPs mulched with plastic film and wheat straw as well as for RFNM, while Ky based on GY was acceptable only for the PPs mulched with plastic film and for RFNM, as the Ky values of these PPs were less than 1 under 0.50 ET. The SWC at different depths exhibited quadratic and nonsignificant relationships with all parameters under 1.00 ET, while these relationships were linear and strong under 0.50 ET, with a few exceptions. Overall, we conclude that combining any PPs with plastic film mulching could be used as a feasible and effective strategy for obtaining high wheat yield and WUE in the irrigated and arid agroecosystem. Full article
(This article belongs to the Special Issue Crop Yield and Quality Response to Cultivation Practices)
Show Figures

Figure 1

17 pages, 10986 KiB  
Article
Research on Thickness Defect Control of Strip Head Based on GA-BP Rolling Force Preset Model
by Luzhen Chen, Wenquan Sun, Anrui He, Tieheng Yuan, Jianrui Shi and Yi Qiang
Metals 2022, 12(6), 924; https://doi.org/10.3390/met12060924 - 27 May 2022
Cited by 10 | Viewed by 2220
Abstract
Due to the inaccuracy of the preset rolling force of cold rolling, there is a severe thickness defect in the strip head after cold rolling due to the flying gauge change (FGC), which affects the yield of the strip. This paper establishes a [...] Read more.
Due to the inaccuracy of the preset rolling force of cold rolling, there is a severe thickness defect in the strip head after cold rolling due to the flying gauge change (FGC), which affects the yield of the strip. This paper establishes a rolling force preset model (RFPM) by combining the rolling force optimization model (RFOM) and the rolling force deviation prediction model (RFDPM). The RFOM used a genetic algorithm (GA) to optimize the deformation resistance and friction coefficient models. The RFDPM is constructed using a backpropagation (BP) neural network. The calculation result of the RFPM shows that the average fraction defect of the preset rolling force is only 1.24%, which proves that the RFPM has good calculation accuracy. Experiments show that the defect length proportion of the strip head thickness at less than 20 m after FGC increases from 38.8% to 55.8%, while the average defect length decreases from 47.3 m to 29.6 m, effectively improving the yield of cold rolling. Full article
(This article belongs to the Topic Hybrid Computational Methods in Materials Engineering)
Show Figures

Figure 1

19 pages, 1194 KiB  
Article
Preference, Expected Burden, and Willingness to Use Digital and Traditional Methods to Assess Food and Alcohol Intake
by Christoph Höchsmann, Nicole Fearnbach, James L. Dorling, Tera L. Fazzino, Candice A. Myers, John W. Apolzan and Corby K. Martin
Nutrients 2021, 13(10), 3340; https://doi.org/10.3390/nu13103340 - 24 Sep 2021
Cited by 8 | Viewed by 2954
Abstract
We conducted an online survey to examine the preference, expected burden, and willingness of people to use four different methods of assessing food and alcohol intake such as food/drink record, 24-h recall, Remote Food Photography Method© (RFPM, via SmartIntake® app), and a [...] Read more.
We conducted an online survey to examine the preference, expected burden, and willingness of people to use four different methods of assessing food and alcohol intake such as food/drink record, 24-h recall, Remote Food Photography Method© (RFPM, via SmartIntake® app), and a novel app (PortionSize®) that allows the in-app portion size estimation of foods/drinks by the user. For food (N = 1959) and alcohol (N = 466) intake assessment, 67.3% and 63.3%, respectively, preferred the RFPM/SmartIntake®, 51.9% and 53.4% preferred PortionSize®, 48.0% and 49.3% the food records, and 32.9% and 33.9% the 24-h recalls (difference in preference across all methods was p < 0.001 for food and alcohol intake). Ratings of burden and preference of methods were virtually superimposable, and we found strong correlations between high preference and low expected burden for all methods (all ρ ≥ 0.82; all p < 0.001). Willingness (mean (SD)) to use the RFPM/SmartIntake® (food: 6.6 (2.0); alcohol: 6.4 (2.4)) was greater than PortionSize® (food: 6.0 (2.2); alcohol: 6.0 (2.4); all p < 0.001) and 24-h recalls (food: 6.1 (2.2); alcohol: 5.7 (2.7); p < 0.001), but not different from food records (food: 6.6 (2.0); alcohol: 6.5 (2.3); all p ≥ 0.33). Our results can be used in conjunction with existing data on the reliability and validity of these methods in order to inform the selection of methods for the assessment of food and alcohol intake. Full article
(This article belongs to the Special Issue Nutrition Assessment Methodology: Current Update and Practice)
Show Figures

Figure 1

17 pages, 10055 KiB  
Article
Design and Analysis of a Novel Axial-Radial Flux Permanent Magnet Machine with Halbach-Array Permanent Magnets
by Rundong Huang, Chunhua Liu, Zaixin Song and Hang Zhao
Energies 2021, 14(12), 3639; https://doi.org/10.3390/en14123639 - 18 Jun 2021
Cited by 52 | Viewed by 8279
Abstract
Electric machines with high torque density are needed in many applications, such as electric vehicles, electric robotics, electric ships, electric aircraft, etc. and they can avoid planetary gears thus reducing manufacturing costs. This paper presents a novel axial-radial flux permanent magnet (ARFPM) machine [...] Read more.
Electric machines with high torque density are needed in many applications, such as electric vehicles, electric robotics, electric ships, electric aircraft, etc. and they can avoid planetary gears thus reducing manufacturing costs. This paper presents a novel axial-radial flux permanent magnet (ARFPM) machine with high torque density. The proposed ARFPM machine integrates both axial-flux and radial-flux machine topologies in a compact space, which effectively improves the copper utilization of the machine. First, the radial rotor can balance the large axial forces on axial rotors and prevent them from deforming due to the forces. On the other hand, the machine adopts Halbach-array permanent magnets (PMs) on the rotors to suppress air-gap flux density harmonics. Also, the Halbach-array PMs can reduce the total attracted force on axial rotors. The operational principle of the ARFPM machine was investigated and analyzed. Then, 3D finite-element analysis (FEA) was conducted to show the merits of the ARFPM machine. Demonstration results with different parameters are compared to obtain an optimal structure. These indicated that the proposed ARFPM machine with Halbach-array PMs can achieve a more sinusoidal back electromotive force (EMF). In addition, a comparative analysis was conducted for the proposed ARFPM machine. The machine was compared with a conventional axial-flux permanent magnet (AFPM) machine and a radial-flux permanent magnet (RFPM) machine based on the same dimensions. This showed that the proposed ARFPM machine had the highest torque density and relatively small torque ripple. Full article
Show Figures

Figure 1

Back to TopTop