Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,033)

Search Parameters:
Keywords = RBD of SARS-CoV-2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7979 KB  
Article
Garlic-Derived Phytochemical Candidates Predicted to Disrupt SARS-CoV-2 RBD–ACE2 Binding and Inhibit Viral Entry
by Martha Susana García-Delgado, Aldo Fernando Herrera-Rodulfo, Karen Y. Reyes-Melo, Ashly Mohan, Fernando Góngora-Rivera, Jesús Andrés Pedroza-Flores, Alma D. Paz-González, Gildardo Rivera, María del Rayo Camacho-Corona and Mauricio Carrillo-Tripp
Molecules 2025, 30(23), 4616; https://doi.org/10.3390/molecules30234616 - 1 Dec 2025
Viewed by 335
Abstract
The emergence of SARS-CoV-2 and its rapid global spread underscores the urgent need for novel therapeutic strategies. This study investigates the antiviral potential of Allium sativum (garlic) extracts against SARS-CoV-2, focusing on disruption of the spike protein’s receptor-binding domain (RBD) interaction with angiotensin-converting [...] Read more.
The emergence of SARS-CoV-2 and its rapid global spread underscores the urgent need for novel therapeutic strategies. This study investigates the antiviral potential of Allium sativum (garlic) extracts against SARS-CoV-2, focusing on disruption of the spike protein’s receptor-binding domain (RBD) interaction with angiotensin-converting enzyme 2 (ACE2), a critical step in viral entry. Two garlic cultivars (Tigre and Fermín) were processed via oven-drying or freeze-drying, followed by maceration with CH2Cl2/MeOH (1:1) and fractionation with liquid–liquid partition. ELISA immunoassays revealed that freeze-dried Tigre (TL) extracts had the highest inhibitory activity (42.16% at 0.1 µg/mL), with its aqueous fraction achieving 57.26% inhibition at 0.01 µg/mL. Chemical profiling via GC-MS found sulfur and other types of compounds. Molecular docking identified three garlic TL-derived aqueous fraction compounds with strong binding affinities (ΔG = −7.5 to −6.9 kcal/mol) to the RBD-ACE2 interface. Furthermore, ADME in silico analysis highlighted one of them (L17) as the main candidate, having high gastrointestinal absorption, blood–brain barrier permeability, and compliance with drug-likeness criteria. These findings underscore garlic-derived compounds as promising inhibitors of SARS-CoV-2 entry, calling for further preclinical validation. The study integrates experimental and computational approaches to advance natural product-based antiviral discovery, emphasizing the need for standardized formulations to address therapeutic variability across viral variants. Full article
(This article belongs to the Special Issue Biological Evaluation of Plant Extracts)
Show Figures

Graphical abstract

13 pages, 833 KB  
Article
Safety and Cross-Neutralizing Immunity Against SARS-CoV-2 Omicron Sub-Variant After a Booster Dose with SOBERANA® Plus in Children and Adolescents
by Dagmar García-Rivera, Meiby Rodríguez-González, Beatriz Paredes-Moreno, Rinaldo Puga-Gomez, Yariset Ricardo-Delgado, Carmen Valenzuela Silva, Sonsire Fernández-Castillo, Rocmira Pérez-Nicado, Laura Rodríguez-Noda, Darielys Santana-Mederos, Yanet Climent-Ruiz, Enrique Noa-Romero, Otto Cruz-Sui, Belinda Sánchez-Ramírez, Tays Hernández-García, Ariel Palenzuela-Diaz, Yury Valdés-Balbín and Vicente G. Vérez-Bencomo
Vaccines 2025, 13(12), 1198; https://doi.org/10.3390/vaccines13121198 - 27 Nov 2025
Viewed by 433
Abstract
Background: With the emergence of SARS-CoV-2 Omicron sub-variants exhibiting increased transmissibility and immune escape, booster immunization is recommended. Ideally, vaccination across all age groups, including children and adolescents, is critical to control viral spread and reduce variant emergence. The heterologous scheme consisting of [...] Read more.
Background: With the emergence of SARS-CoV-2 Omicron sub-variants exhibiting increased transmissibility and immune escape, booster immunization is recommended. Ideally, vaccination across all age groups, including children and adolescents, is critical to control viral spread and reduce variant emergence. The heterologous scheme consisting of two doses of SOBERANA® 02 followed by a third dose of SOBERANA® Plus, which are recombinant protein subunit vaccines constructed from the ancestral RBD, has proven safety, immunogenicity, and effectiveness in pediatric populations as primary series. This study evaluated the safety and immunogenicity of a SOBERANA® Plus booster dose administered six months after primary vaccination in individuals aged 3–18 years. Methods: In this follow-up analysis of a phase I/II trial, 244 participants received the booster. Safety was monitored via active surveillance at 1 h, 24 h, and over 28 days post-vaccination. Humoral responses were assessed 28 days post-booster. Antibody responses to the SARS-CoV-2 nucleocapsid (N) protein were assessed in all collected serum samples. Results: Adverse events occurred in 18% of participants, predominantly local (85.2%) versus systemic (14.8%); no serious or severe adverse events were reported. All humoral response parameters increased significantly post-booster, including neutralizing antibodies against D614G (24.7-fold increase) and Omicron BA.1 (55.9-fold increase), with similar responses in N-negative and N-positive individuals. Importantly, cross-neutralizing activity against recent Omicron sub-variants (XBB.1.5 and EG.5.1) was also detected. Conclusions: A SOBERANA® Plus booster is safe and significantly enhances cross-neutralizing immunity against evolving Omicron sub-variants in children and adolescents. These results highlight the potential of first-generation RBD-based vaccines to maintain broad immunity despite viral evolution. Full article
(This article belongs to the Special Issue Human Immune Responses to Infection and Vaccination)
Show Figures

Figure 1

22 pages, 2520 KB  
Article
Antigen Format Determines Immunogenicity of AAV-Based SARS-CoV-2 Vaccines: Full-Length Spike Versus Truncated Subunits
by Anna V. Vakhrusheva, Maria E. Frolova and Arthur A. Isaev
Vaccines 2025, 13(12), 1187; https://doi.org/10.3390/vaccines13121187 - 24 Nov 2025
Viewed by 619
Abstract
Background: Antigen format strongly influences the immunogenicity of gene-based vaccines. Full-length Spike is widely used in licensed COVID-19 vaccines, while truncated subunits such as S1 or the receptor-binding domain (RBD) may simplify vector design but risk reduced potency. We aimed to compare these [...] Read more.
Background: Antigen format strongly influences the immunogenicity of gene-based vaccines. Full-length Spike is widely used in licensed COVID-19 vaccines, while truncated subunits such as S1 or the receptor-binding domain (RBD) may simplify vector design but risk reduced potency. We aimed to compare these antigen formats in an AAV9 delivery platform. Methods: BALB/c mice were immunized intramuscularly with recombinant AAV9 encoding full-length Spike, S1, or RBD at doses of 1 × 1010 or 1 × 1011 viral genomes. Immune responses were assessed by serology, virus neutralization, T-cell profiling, and histopathology. Results: All constructs expressed antigen in vitro and in vivo. Only full-length Spike elicited robust neutralizing antibodies at both doses, with titers rising significantly by week 12. High-dose RBD induced neutralization in a minority of animals, whereas S1 failed to do so. Antigen-specific IgG responses scaled with insert length (Spike > S1 > RBD). Cellular immunity was dominated by CD8+ effector memory T cells, strongest in the Spike group, which also induced measurable CD4+ responses. Local transient myositis was observed at the injection site but resolved by week 24, with no systemic pathology. Conclusions: Full-length Spike outperforms truncated subunits in the AAV context, highlighting antigen structure as a critical factor for next-generation coronavirus vaccine design. Full article
Show Figures

Figure 1

15 pages, 1588 KB  
Article
Cytokine and Antibody Isotype Responses in Vaccinated Healthcare Workers with SARS-CoV-2 Breakthrough Infections
by Miguel Ángel Fernández-Rojas, Tanya Plett-Torres, Guillermina Ávila, Mirza Romero-Valdovinos, Ana María Salazar, Monserrat Sordo, Mariana Chávez-Vargas, Cesar Josué Coeto Ángeles, Mayra Cruz-Rivera, Carlos Santiago-Olivares, Juan Pablo Ramírez Hinojosa, Pablo Maravilla, Patricia Ostrosky-Wegman, Fela Mendlovic and Ana Flisser
Viruses 2025, 17(11), 1517; https://doi.org/10.3390/v17111517 - 19 Nov 2025
Viewed by 954
Abstract
Background: Healthcare workers (HCWs) are at high risk of breakthrough SARS-CoV-2 infections despite complete vaccination schedules. There are gaps in our understanding of the specific antibody isotypes and cytokine profiles produced during an infection following vaccination. In this study, we evaluated SARS-CoV-2 [...] Read more.
Background: Healthcare workers (HCWs) are at high risk of breakthrough SARS-CoV-2 infections despite complete vaccination schedules. There are gaps in our understanding of the specific antibody isotypes and cytokine profiles produced during an infection following vaccination. In this study, we evaluated SARS-CoV-2specific antibody isotypes and their association with cytokine production in HCWs with breakthrough infections. Methods: Serum samples from 114 HCWs were analyzed for antibody isotypes against the nucleoprotein (NCP) and the receptor binding domain (RBD) of the spike protein, as well as for a panel of 13 cytokines. Results: Vaccinated SARS-CoV-2+ HCWs showed a higher prevalence of anti-SARS-CoV-2 antibodies against NCP (IgM = 93.8%, IgG = 93.8%, IgA = 28.1%) and RBD (IgM = 46.9%, IgG = 100%, IgA = 90.6%). A specific IgM response to NCP was more frequent in vaccinated SARS-CoV-2+ individuals, whereas IgA responses were predominantly specific for RBD. Both pro- and anti-inflammatory cytokines were elevated in vaccinated HCWs with breakthrough infections compared with unvaccinated and uninfected individuals. Interestingly, infected IgG+ HCWs with IgM specific for both NCP and RBD exhibited significantly higher IL-8, IL-6, TNF-α, IFN-γ, IL-2, IL-10, and TGF-β concentrations. Conclusion. Our data show that breakthrough infections in vaccinated HCWs induce a robust pro-and anti-inflammatory cytokine profile, which is associated with a broader IgM response directed against both NCP and RBD. Full article
(This article belongs to the Special Issue Coronaviruses Pathogenesis, Immunity, and Antivirals (2nd Edition))
Show Figures

Figure 1

30 pages, 7254 KB  
Article
Pilot Studies Testing Novel Minimized Pan-Coronavirus (CoV) Vaccines in Feline Immunodeficiency Virus-Infected Cats With or Without Feline CoV Serotype-1 (FCoV1) Coinfection and in Specific-Pathogen-Free Cats Against Pathogenic FCoV2
by Pranaw Sinha, Marco B. Prevedello, Ananta P. Arukha, Valentina Stevenson, Karen F. Keisling, Taylor G. Nycum, Nina M. Beam, Elise D. Barras, Bikash Sahay and Janet K. Yamamoto
Vaccines 2025, 13(11), 1172; https://doi.org/10.3390/vaccines13111172 - 18 Nov 2025
Viewed by 520
Abstract
Background: The minimized pan-coronavirus (CoV) vaccine-1 developed by our laboratory contained pDNA sequences of feline coronavirus serotype-1 (FCoV1) and SARS-CoV2 (SCoV2) spike B-cell epitopes plus FCoV/SCoV2-conserved, CoV-specific polymerase cytotoxic T-lymphocyte (CTL) epitopes formulated in lipid nanoparticle (LNP). Only FCoV2 infects feline cell [...] Read more.
Background: The minimized pan-coronavirus (CoV) vaccine-1 developed by our laboratory contained pDNA sequences of feline coronavirus serotype-1 (FCoV1) and SARS-CoV2 (SCoV2) spike B-cell epitopes plus FCoV/SCoV2-conserved, CoV-specific polymerase cytotoxic T-lymphocyte (CTL) epitopes formulated in lipid nanoparticle (LNP). Only FCoV2 infects feline cell lines needed for developing native challenge inoculum that causes feline infectious peritonitis (FIP). Hence, Pilot Study 1 evaluated the therapeutic efficacy and safety of the pan-CoV vaccine-1 in feline immunodeficiency virus (FIV)-infected cats, with or without FCoV1 coinfection. Pilot Study 2 evaluated the cross-protective effect of pan-CoV vaccines in specific-pathogen-free (SPF) cats against intranasal challenge with FIP virus serotype 2 (FIPV2). Methods: In Study 1, we vaccinated two FIV-infected cats (one negative and another positive for FCoV1 coinfection) intramuscularly twice with CTL epitopes-LNP vaccine and later twice with pan-CoV vaccine-1. Controls included two unvaccinated FIV-infected cats with or without FCoV1 coinfection. Study 2 assessed the sequential vaccinations of three pan-CoV vaccines in four SPF cats. The first two vaccinations were with pan-CoV vaccine-2, followed by pan-CoV vaccine-3 (twice), and lastly with pan-CoV vaccine-1 (once). Three SPF controls included two cats immunized with LNP and one lacking any immunization. Pan-CoV vaccine-2 contained pDNAs with modified FCoV1/SCoV2 B-cell epitopes plus CTL epitopes in LNP. Pan-CoV vaccine-3 contained only pDNAs with FCoV1 B-cell epitopes plus CTL epitopes in LNP. Results: Study 1 demonstrated no adverse effect with 25 μg and 50 μg CTL epitopes-LNP vaccine and 50 μg pan-CoV vaccine-1. However, 100 μg pan-CoV vaccine-1 caused fever 24 h later, which was resolved by a single Meloxicam treatment. Both vaccinees developed cross-FCoV2 neutralizing antibodies (XNAbs), immunoblot binding antibodies (bAbs) to FCoV1 receptor-binding domain (RBD), and T-cell responses to FCoV1 RBD, whereas one vaccinee also developed bAbs to SCoV2 RBD. Study 2 demonstrated no adverse effects after each vaccination. Three vaccinees developed low-titer XNAbs and bAbs to FCoV2 spike-2 by the fourth vaccination. Upon challenge, all cats developed FCoV2 NAbs and bAbs to FCoV2 nucleocapsid and RBD. High vaccine-induced T-cell responses to FCoV1 RBD and T-cell mitogen responses declined with an increase in responses to FCoV2 RBD at three weeks post-challenge. Two of the three controls died from FIP, whereas one vaccinee, with the lowest vaccine-induced immunity, died from skin vasculitis lesions and detection of FIPV2 infection by semi-nested RT-snPCR in feces. Conclusions: In Pilot Study 1, the pan-CoV vaccine-LNP dose of 50 μg had no adverse effects, but adverse effects were observed at 100 μg dose. In Pilot Study 2, the FCoV1-based B-cell vaccine(s) induced low levels of XNAbs against FIPV2 and delayed challenge infection against high-dose FIPV2. The high-dose FIPV2 infections in the vaccinated and control cats started to clear, by single housing at 23–26 weeks post-challenge, whereas two cats in Pilot Study 1 cleared natural FCoV1 transmission by 26 weeks post-infection. Full article
(This article belongs to the Special Issue Next-Generation Vaccines for Animal Infectious Diseases)
Show Figures

Figure 1

14 pages, 1428 KB  
Article
Estimating the Optimal COVID-19 Booster Timing Using Surrogate Correlates of Protection: A Longitudinal Antibody Study in Naïve and Previously Infected Individuals
by Yoshihiro Fujiya, Ryo Kobayashi, Makito Tanaka, Ema Suzuki, Shiro Hinotsu, Mami Nakae, Yuki Sato, Yuki Katayama, Masachika Saeki, Yuki Yakuwa, Shinya Nirasawa, Akemi Endoh, Koji Kuronuma and Satoshi Takahashi
Pathogens 2025, 14(11), 1138; https://doi.org/10.3390/pathogens14111138 - 10 Nov 2025
Viewed by 438
Abstract
Standardized, one-size-fits-all COVID-19 booster schedules may be suboptimal due to individual variation in immune backgrounds, particularly prior infection, which induces robust hybrid immunity. This study estimated optimal booster timing by modeling antibody decay in relation to surrogate correlates of protection (CoP). In a [...] Read more.
Standardized, one-size-fits-all COVID-19 booster schedules may be suboptimal due to individual variation in immune backgrounds, particularly prior infection, which induces robust hybrid immunity. This study estimated optimal booster timing by modeling antibody decay in relation to surrogate correlates of protection (CoP). In a prospective cohort of 177 Japanese healthcare workers, we longitudinally monitored anti-spike receptor-binding domain (S-RBD) antibody titers following BNT162b2 vaccination. Participants were stratified into SARS-CoV-2-naïve and previously infected groups. Mixed-effects models were developed to predict when antibody titers would decline below predefined CoP thresholds. The model estimated optimal booster timing after a two-dose primary series to be 3–5 months for naïve individuals and approximately one year for those with prior infection. Following a third dose, the estimated interval extended to 8–12 months for the naïve group and 1.5–2 years for the previously infected group. These substantial differences underscore the limitations of uniform booster schedules. Our findings provide a quantitative framework for personalized vaccination strategies based on individual antibody profiles and immune status, thereby optimizing protection. Full article
Show Figures

Figure 1

17 pages, 1973 KB  
Article
Analysis of the Relationship Between the Charge Increment of the SARS-CoV-2 Spike Protein and Evolution
by Yingxue Ma, Ying Zhang, Menghao Chen, Kun Wang and Jun Lv
Viruses 2025, 17(11), 1483; https://doi.org/10.3390/v17111483 - 8 Nov 2025
Viewed by 538
Abstract
The changes in charge distribution caused by mutations in the spike protein may play a crucial role in balancing infectivity and immune evasion during the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To explore how charge increments in spike protein variants [...] Read more.
The changes in charge distribution caused by mutations in the spike protein may play a crucial role in balancing infectivity and immune evasion during the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To explore how charge increments in spike protein variants influence viral evolution, a statistical analysis was conducted on 57 SARS-CoV-2 variants, examining relationships between charge distribution, lineage divergence, angiotensin-converting enzyme 2 (ACE2) affinity, immune evasion, and receptor-binding domain (RBD) expression. A phylogenetic tree was also reconstructed using only the charge properties of mutation sites. Results indicated that with increasing lineage divergence, overall positive charge initially rose sharply and then more gradually. Partitioning the spike protein into three domains—the RBD, the N-terminal flanking region (B-RBD), and the C-terminal flanking region (A-RBD)—revealed distinct patterns: positive charge increased in the RBD and A-RBD, whereas the B-RBD accumulated negative charge. Charge increments were negatively associated with ACE2 affinity and RBD expression but positively correlated with immune evasion. The k-mer-based tree derived from charge-reduced sequences showed a topology consistent with the whole-genome tree. These findings suggest that charge distribution in spike proteins is closely linked to viral evolution, with the opposing trends in the RBD and B-RBD potentially reflecting a balance between infectivity and immune escape. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

15 pages, 3483 KB  
Article
In Vivo Iterative Adjuvant Screening Identifies an Intranasal Vaccine Formulation for Elicitation of Protective Mucosal Immune Responses Against SARS-CoV-2
by Yang Jiao, Sara H. Mahmoud, Chengjin Ye, Yuan Luo, Wei-Chiao Huang, Qinzhe Li, Shiqi Zhou, Yiting Song, Moriya Tsuji, Luis Martinez-Sobrido and Jonathan F. Lovell
Pharmaceutics 2025, 17(11), 1422; https://doi.org/10.3390/pharmaceutics17111422 - 3 Nov 2025
Viewed by 588
Abstract
Background: Intranasal (I.N.) vaccination holds promise to elicit mucosal immunity that counters respiratory pathogens at the site of infection. For subunit protein vaccines, immunostimulatory adjuvants are typically required. Methods: We screened a panel of 22 lipid-phase adjuvants to identify which ones elicited antigen-specific [...] Read more.
Background: Intranasal (I.N.) vaccination holds promise to elicit mucosal immunity that counters respiratory pathogens at the site of infection. For subunit protein vaccines, immunostimulatory adjuvants are typically required. Methods: We screened a panel of 22 lipid-phase adjuvants to identify which ones elicited antigen-specific IgA with I.N. immunization of liposome-displayed SARS-CoV-2 receptor-binding domain (RBD). Results: Initial screening showed the TLR-4 agonist Kdo2-Lipid A (KLA) effectively elicited RBD-specific IgA. A second round of screening identified further inclusion of the invariant NKT cell ligands α-Galactosylceramide (α-GalCer) and its synthetic analog 7DW8-5 as complementary adjuvants for I.N. immunization, resulting in orders-of-magnitude-greater mucosal IgA response relative to intramuscular (I.M.) immunization. The inclusion of cationic lipids conferred capacity for mucosal adhesion and maintained immune responses. In K18 hACE2 transgenic mice, vaccination significantly reduced viral replication and prevented mortality from SARS-CoV-2 challenge. Conclusions: These results point towards the potential for the use of KLA and α-GalCer for I.N. subunit vaccines. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

17 pages, 2960 KB  
Article
Modeling the Mutational Effects on Biochemical Phenotypes of SARS-CoV-2 Using Molecular Fields
by Baifan Wang and Zhen Xi
Biomolecules 2025, 15(11), 1538; https://doi.org/10.3390/biom15111538 - 31 Oct 2025
Viewed by 462
Abstract
The ongoing evolution of SARS-CoV-2 has given rise to variants with enhanced transmissibility and pathogenicity, many of which harbor mutations in the receptor-binding domain (RBD) of the viral spike protein. These mutations often confer increased viral fitness and immune evasion by modulating interactions [...] Read more.
The ongoing evolution of SARS-CoV-2 has given rise to variants with enhanced transmissibility and pathogenicity, many of which harbor mutations in the receptor-binding domain (RBD) of the viral spike protein. These mutations often confer increased viral fitness and immune evasion by modulating interactions with the human ACE2 receptor (hACE2) and escaping neutralizing antibodies. Accurate prediction of the functional consequences of such mutations—particularly their effects on receptor binding and antibody escape—is critical for assessing the public health threat posed by emerging variants. In this study, we apply a Mutation-dependent Biomacromolecular Quantitative Structure–Activity Relationship (MB-QSAR) framework to quantitatively model the biochemical phenotypes of RBD variants. Trained on comprehensive deep mutational scanning (DMS) datasets, our models exhibit strong predictive performance, achieving correlation coefficients (r2) exceeding 0.8 for hACE2 binding affinity and 0.7 for antibody neutralization escape. Importantly, the MB-QSAR approach generalizes well to multi-mutant variants and currently circulating lineages. Structural analysis based on model-derived interaction profiles offers mechanistic insights into key RBD–ACE2 and RBD–antibody interfaces, helping the rational design of broadly protective vaccines and therapeutics. This work establishes MB-QSAR as a rapid, accurate, and interpretable tool for the prediction of protein–protein interaction and forecasting viral adaptation, thereby facilitating early risk assessment of novel SARS-CoV-2 variants. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

14 pages, 3460 KB  
Article
Artificial Intelligence Reveals Nature: Functional Parallels Between a Designed and a Natural Peptide
by Jiashu Wang, Thomas David Daniel Kazmirchuk, Maryam Hajikarimlou, Mustafa Al-Gafari, Sarah Takallou, Houman Moteshareie, Frank Dehne, Bahram Samanfar, Mohan Babu, Taha Azad and Ashkan Golshani
Int. J. Mol. Sci. 2025, 26(21), 10607; https://doi.org/10.3390/ijms262110607 - 31 Oct 2025
Viewed by 618
Abstract
Natural peptides derived from plants have been an important source of medical substances for several decades. Due to their mechanism of action, chemical potential, and favourable side effect profile, these peptides represent a safer alternative to synthetic pharmaceutical treatments. In this study, we [...] Read more.
Natural peptides derived from plants have been an important source of medical substances for several decades. Due to their mechanism of action, chemical potential, and favourable side effect profile, these peptides represent a safer alternative to synthetic pharmaceutical treatments. In this study, we report the discovery of a natural peptide derived from the Brassica napus (Canola) proteome that exhibits high functional similarity to an artificial intelligence (AI)-generated peptide that is designed to bind to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike 1 (S1) protein receptor-binding domain (RBD) region. The results of a series of experiments including molecular docking simulations, as well as binding and inhibition assays suggest that the natural peptide exhibits functions similar to those of the AI-generated peptide in binding to the RBD region and disrupting its interaction with the human host receptor angiotensin-converting enzyme 2 (ACE2). This study demonstrates the potential of AI-designed peptides to facilitate the identification of natural peptides with similar functional properties. Full article
(This article belongs to the Collection Feature Papers Collection in Biochemistry)
Show Figures

Graphical abstract

48 pages, 5070 KB  
Article
Dual Inhibitory Potential of Conessine Against HIV and SARS-CoV-2: Structure-Guided Molecular Docking Analysis of Critical Viral Targets
by Ali Hazim Abdulkareem, Meena Thaar Alani, Sameer Ahmed Awad, Safaa Abed Latef Al-Meani, Mohammed Mukhles Ahmed, Elham Hazeim Abdulkareem and Zaid Mustafa Khaleel
Viruses 2025, 17(11), 1435; https://doi.org/10.3390/v17111435 - 29 Oct 2025
Viewed by 810
Abstract
Human immunodeficiency virus (HIV-1) and SARS-CoV-2 continue to co-burden global health, motivating discovery of broad-spectrum small molecules. Conessine, a steroidal alkaloid, has reported membrane-active and antimicrobial properties but remains underexplored as a dual antiviral chemotype. To interrogate conessine’s multi-target antiviral potential against key [...] Read more.
Human immunodeficiency virus (HIV-1) and SARS-CoV-2 continue to co-burden global health, motivating discovery of broad-spectrum small molecules. Conessine, a steroidal alkaloid, has reported membrane-active and antimicrobial properties but remains underexplored as a dual antiviral chemotype. To interrogate conessine’s multi-target antiviral potential against key enzymatic and entry determinants of HIV-1 and SARS-CoV-2 and to benchmark performance versus approved comparators. Eight targets were modeled: HIV-1 reverse transcriptase (RT, 3V81), protease (PR, 1HVR), integrase (IN, 3LPT), gp120–gp41 trimer (4NCO); and SARS-CoV-2 main protease (Mpro, 6LU7), papain-like protease (PLpro, 6W9C), RNA-dependent RNA polymerase (RdRp, 7BV2), spike RBD (6M0J). Ligands (conessine; positive controls: dolutegravir for HIV-1, nirmatrelvir for SARS-CoV-2) were prepared with standard protonation, minimized, and docked using AutoDock Vina v 1.2.0exhaustiveness 4; 20 poses). Binding modes were profiled in 2D/3D. Protocol robustness was verified by re-docking co-crystallized ligands (RMSD ≤ 2.0 Å). Atomistic MD (explicit TIP3P, OPLS4, 300 K/1 atm, NPT; 50–100 ns) assessed pose stability (RMSD/RMSF), pocket compaction (Rg, volume), and interaction persistence; MM/GBSA provided qualitative energy decomposition. ADMET was predicted in silico. Conessine showed coherent, hydrophobically anchored binding across both viral panels. Best docking scores (kcal·mol−1) were: HIV-1—PR −6.910, RT −6.672, IN −5.733; SARS-CoV-2—spike RBD −7.025, Mpro −5.745, RdRp −5.737, PLpro −5.024. Interaction maps were dominated by alkyl/π-alkyl packing to catalytic corridors (e.g., PR Ile50/Val82, RT Tyr181/Val106; Mpro His41/Met49; RBD L455/F486/Y489) with occasional carbon-/water-mediated H-bonds guiding orientation. MD sustained low ligand RMSD (typically ≤1.6–2.2 Å) and damped RMSF at catalytic loops, indicating pocket rigidification; MM/GBSA trends (≈ −30 to −40 kcal·mol−1, dispersion-driven) supported persistent nonpolar stabilization. Benchmarks behaved as expected: dolutegravir bound strongly to IN (−6.070) and PR (−7.319) with stable MD; nirmatrelvir was specific for Mpro and displayed weaker, discontinuous engagement at PLpro/RdRp/RBD under identical settings. ADMET suggested conessine has excellent permeability/BBB access (high logP), but liabilities include poor aqueous solubility, predicted hERG risk, and CYP2D6 substrate dependence.Conessine operates as a hydrophobic, multi-target wedge with the most favorable computed engagement at HIV-1 PR/RT and the SARS-CoV-2 spike RBD, while maintaining stable poses at Mpro and RdRp. The scaffold merits medicinal-chemistry optimization to improve solubility and de-risk cardiotoxicity/CYP interactions, followed by biochemical and cell-based validation against prioritized targets. Full article
Show Figures

Figure 1

18 pages, 1079 KB  
Review
Structural Insights into the SARS-CoV-2 Spike Protein and Its Implications for Antibody Resistance
by Yuichiro Yamamoto and Kohji Noguchi
Biomolecules 2025, 15(11), 1489; https://doi.org/10.3390/biom15111489 - 22 Oct 2025
Cited by 1 | Viewed by 1105
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has profoundly affected global health and the economy. The emergence of variants with spike mutations, particularly within the receptor-binding domain (RBD), has reduced the efficacy of many neutralizing antibodies (nAbs), and recent variants, including KP.3 and other [...] Read more.
The COVID-19 pandemic, caused by SARS-CoV-2, has profoundly affected global health and the economy. The emergence of variants with spike mutations, particularly within the receptor-binding domain (RBD), has reduced the efficacy of many neutralizing antibodies (nAbs), and recent variants, including KP.3 and other circulating strains, show partial escape from infection- or vaccine-induced immunity. To overcome this, developing broad-spectrum nAbs that target the conserved S2 subunit of the spike protein is crucial. Unlike the highly mutable RBD, the S2 region remains structurally conserved, providing a promising foundation for universal protection. Deeper insight into S2 structure and function, together with advances in bispecific antibody design, could facilitate the development of next-generation therapeutics resilient to viral evolution. This review examines the structural evolution of the SARS-CoV-2 spike, focusing on the therapeutic potential of S2-targeting antibodies and strategies to overcome antibody resistance. Full article
Show Figures

Figure 1

19 pages, 3526 KB  
Article
Selective Endocytosis-Mediated Omicron S1-RBD Internalization Revealed by Reconstitution of ACE2-S1-RBD Interaction on Micropatterned Membrane Substrates
by Angelin M. Philip, S. M. Nasir Uddin, Zeyaul Islam, Prasanna R. Kolatkar and Kabir H. Biswas
Int. J. Mol. Sci. 2025, 26(20), 10216; https://doi.org/10.3390/ijms262010216 - 21 Oct 2025
Viewed by 455
Abstract
The SARS-CoV-2 spike protein, through its receptor binding domain (S1-RBD), binds to the angiotensin-converting enzyme 2 (ACE2) receptor on the host cell membrane, leading to viral infection. Several mutations in S1-RBD in SARS-CoV-2 variants are known to enhance infection through an increased affinity [...] Read more.
The SARS-CoV-2 spike protein, through its receptor binding domain (S1-RBD), binds to the angiotensin-converting enzyme 2 (ACE2) receptor on the host cell membrane, leading to viral infection. Several mutations in S1-RBD in SARS-CoV-2 variants are known to enhance infection through an increased affinity for ACE2. While many reports are available describing the SARS-CoV-2 infection mechanism, there is a dearth of studies towards understanding the initial interaction of the S1-RBD with ACE2 on living host cells and the role of endocytosis and cytoskeleton in the process. Here, we reconstituted the interaction between S1-RBD- and ACE2-expressing host cells in a hybrid live cell-supported lipid bilayer (SLB) platform enabling live monitoring of the interaction between S1-RBD on SLBs and the ACE2 receptor on living cells and showed that cells depleted Omicron S1-RBD from SLB corrals, likely through endocytosis. Specifically, interaction of living host cells with S1-RBD-functionalized SLB substrates resulted in the enrichment of S1-RBD and ACE2 at the cell–SLB interface. Interaction of host cells with wild type (WT), Omicron, and Omicron Revertant S1-RBD functionalized on micron-scale SLB corrals, which mimic viral membranes but are flat, also resulted in their enrichment. However, cells interacting with Omicron S1-RBD revealed a depletion of the protein from many corrals, which was generally not observed with the WT S1-RBD and was reduced with the Omicron Revertant, which contains the Q493R mutation reversion, S1-RBD. Further, S1-RBD depletion coincided with the localization of the early endosomal marker EEA1. Importantly, treatment of cells with the clathrin inhibitor, pitstop 2, but not the myosin II inhibitor, blebbistatin, significantly reduced Omicron S1-RBD depletion. Collectively, these observations suggest that the SARS-CoV-2 Omicron variant has evolved, through mutations in its S1-RBD, to take advantage of the cellular endocytic pathway for enhanced infection, which is not observed with the parental SARS-CoV-2 and appears to be lost in the Omicron Revertant variant. Additionally, these results underscore the significance of the hybrid live cell–SLB platform in studying SARS-CoV-2 S1-RBD-ACE2 interaction and the potential impact of mutations in the S1-RBD on adapting to a specific cellular entry mechanism. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 2098 KB  
Article
SARS-CoV-2 Entry Can Be Mimicked in C. elegans Expressing Human ACE2: A New Tool for Pharmacological Studies
by Margherita Romeo, Sara Baroni, Maria Monica Barzago, Samuela Gambini, Ada De Luigi, Daniela Iaconis, Andrea Rosario Beccari, Maddalena Fratelli and Luisa Diomede
Viruses 2025, 17(10), 1387; https://doi.org/10.3390/v17101387 - 18 Oct 2025
Viewed by 572
Abstract
Testing medical countermeasures for SARS-CoV-2 transmission using vertebrates can be hindered by legislation regulating animal experimentation, high costs, and ethical concerns. To overcome these challenges, we propose a new Caenorhabditis elegans strain that constitutively expresses the human angiotensin-converting enzyme 2 receptor (ACE2). This [...] Read more.
Testing medical countermeasures for SARS-CoV-2 transmission using vertebrates can be hindered by legislation regulating animal experimentation, high costs, and ethical concerns. To overcome these challenges, we propose a new Caenorhabditis elegans strain that constitutively expresses the human angiotensin-converting enzyme 2 receptor (ACE2). This resulted in significant impairment of reproduction and a defect in pharyngeal function compared to wild-type (WT) worms. SARS-CoV-2 infection was simulated by treating worms with the receptor-binding domain (RBD) of the spike protein, which caused dose-dependent and time-dependent pharyngeal impairment in ACE2 worms but not in WT worms. The toxicity of RBD was prevented by administering an anti-human ACE2 antibody, demonstrating that interactions with the ACE2 receptor are essential. The ACE2-expressing worm strain was further used for pharmacological research with Raloxifene. In vitro, 1–3 μM of Raloxifene reduced the entry of lentiviral particles carrying the Wuhan variant and B.1.1.7 UK and B.1.1.529 Omicron strains into HEK293-ACE2, in addition to particles expressing N501Y-mutated or P681H-mutated spike proteins. Raloxifene (0.1–1 μM) completely counteracted RBD toxicity in ACE2 worms, indicating that this strain offers a cost-effective in vivo screening platform for molecules with effects involving interactions with the ACE2 receptor. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

15 pages, 1103 KB  
Article
A Novel Flow Cytometry Array for High Throughput Detection of SARS-CoV-2 Antibodies
by Benyue Zhang, Zhuo Zhang, Yichao Zhao, Jingqiao Lu, Jianmin Fang, Brianne Petritis, Kelly Whittaker, Rani Huang and Ruo-Pan Huang
Vaccines 2025, 13(10), 1063; https://doi.org/10.3390/vaccines13101063 - 17 Oct 2025
Viewed by 708
Abstract
Background/Objectives: Although the U.S. Food and Drug Administration (FDA) has approved one antiviral treatment and authorized others for emergency use, there is no fully effective antiviral therapy for coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 [...] Read more.
Background/Objectives: Although the U.S. Food and Drug Administration (FDA) has approved one antiviral treatment and authorized others for emergency use, there is no fully effective antiviral therapy for coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Assays detecting virus-specific immunoglobulins (Ig) or nucleic acids in large-scale epidemiological, vaccine, and drug development studies remain limited due to high costs, reagent accessibility, and cumbersome protocols. Methods: A multiplex bead-based assay was developed to simultaneously detect human IgM, IgG, and IgA antibodies against the SARS-CoV-2 spike receptor binding domain (RBD) in serum using flow cytometry. Assay performance was evaluated for sensitivity, specificity, reproducibility, and cross-reactivity and compared to another immunoassay platform. Results: The assay enabled simultaneous measurement of three antibody isotypes across 624 samples within 2 h. Intra-plate coefficients of variation (CVs) ranged from 3.16 to 6.71%, and inter-plate CVs ranged from 3.33 to 5.49%, demonstrating high reproducibility. The platform also quantified background noise from nonspecific binding, facilitating straightforward data interpretation. Conclusions: This novel, flexible multiplex bead-based assay utilizing a well-established platform provides a rapid and reproducible approach for detecting SARS-CoV-2-specific antibodies. Its high throughput capacity and low variability make it well suited for large-scale epidemiological, vaccine, and therapeutic studies. The platform’s adaptability further supports application to other infectious diseases, offering an ideal tool for broad immunological surveillance. Full article
Show Figures

Figure 1

Back to TopTop