Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = RASGRF2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3642 KiB  
Article
Transcriptome Profiling of Phenylalanine-Treated Human Neuronal Model: Spotlight on Neurite Impairment and Synaptic Connectivity
by Sara Stankovic, Andrijana Lazic, Marina Parezanovic, Milena Stevanovic, Sonja Pavlovic, Maja Stojiljkovic and Kristel Klaassen
Int. J. Mol. Sci. 2024, 25(18), 10019; https://doi.org/10.3390/ijms251810019 - 18 Sep 2024
Viewed by 4682
Abstract
Phenylketonuria (PKU) is the most common inherited disorder of amino acid metabolism, characterized by high levels of phenylalanine (Phe) in the blood and brain, leading to cognitive impairment without treatment. Nevertheless, Phe-mediated brain dysfunction is not fully understood. The objective of this study [...] Read more.
Phenylketonuria (PKU) is the most common inherited disorder of amino acid metabolism, characterized by high levels of phenylalanine (Phe) in the blood and brain, leading to cognitive impairment without treatment. Nevertheless, Phe-mediated brain dysfunction is not fully understood. The objective of this study was to address gene expression alterations due to excessive Phe exposure in the human neuronal model and provide molecular advances in PKU pathophysiology. Hence, we performed NT2/D1 differentiation in culture, and, for the first time, we used Phe-treated NT2-derived neurons (NT2/N) as a novel model for Phe-mediated neuronal impairment. NT2/N were treated with 1.25 mM, 2.5 mM, 5 mM, 10 mM, and 30 mM Phe and subjected to whole-mRNA short-read sequencing. Differentially expressed genes (DEGs) were analyzed and enrichment analysis was performed. Under three different Phe concentrations (2.5 mM, 5 mM, and 10 mM), DEGs pointed to the PREX1, LRP4, CDC42BPG, GPR50, PRMT8, RASGRF2, and CDH6 genes, placing them in the context of PKU for the first time. Enriched processes included dendrite and axon impairment, synaptic transmission, and membrane assembly. In contrast to these groups, the 30 mM Phe treatment group clearly represented the neurotoxicity of Phe, exhibiting enrichment in apoptotic pathways. In conclusion, we established NT2/N as a novel model for Phe-mediated neuronal dysfunction and outlined the Phe-induced gene expression changes resulting in neurite impairment and altered synaptic connectivity. Full article
Show Figures

Figure 1

15 pages, 2425 KiB  
Article
A Network of Circular RNA and MicroRNA Sequencing Provides Insights into Pigment Deposition of Changshun Blue Eggshell Chickens
by Siyu Chen, Mengqiao Zhao, Kecheng Chen, Jiaming Xu and Hua Li
Genes 2024, 15(6), 812; https://doi.org/10.3390/genes15060812 - 19 Jun 2024
Cited by 1 | Viewed by 1336
Abstract
Eggshell color plays important biological roles and attracts the attention of both egg retailers and researchers. However, whether non-coding RNAs are involved in pigment deposition among different eggshell colors remains unknown. In this study, RNA sequencing was used to analyse the uterine gland [...] Read more.
Eggshell color plays important biological roles and attracts the attention of both egg retailers and researchers. However, whether non-coding RNAs are involved in pigment deposition among different eggshell colors remains unknown. In this study, RNA sequencing was used to analyse the uterine gland transcriptome (CircRNA and miRNA) of Changshun chicken blue-shell hens producing four different eggshell color eggs including dark blue PK(DB) and light blue (LB), dark brown and greenish (between blue and pink, DP) and pink (p). We found that miR-192-x, targeting SLC16a7, was expressed in DB, DP, and LB groups compared with the PK group, which indicates that miR-192-x may play a role in the blue eggshell color. KEGG and GO analyses showed that the “metabolic pathways” with targeted genes such BLVRA and HMOX1 were detected in dark and light blue color eggshell chickens, which confirms the different ratios of biliverdin and HO-1 involved in the deposition of blue color. As annotated by connectivity analysis, RASGRF1 and RASGRF2, belonging to the RASGRF family, are involved in the Ras signaling pathway, which plays an important role in cell growth, differentiation, metastasis and apoptosis. Our findings enrich the database of circRNA, miRNAs and genes for chicken uterine tissue, which will be useful in accelerating molecular selection for blue eggshell color layers. Full article
(This article belongs to the Special Issue Poultry Breeding and Genetics)
Show Figures

Figure 1

8 pages, 745 KiB  
Article
Optical Genome Mapping Reveals Disruption of the RASGRF2 Gene in a Patient with Developmental Delay Carrying a De Novo Balanced Reciprocal Translocation
by Rosa Catalina Lederbogen, Sabine Hoffjan, Charlotte Thiels, Ulrike Angelika Mau-Holzmann, Sylke Singer, Maria Viktorovna Yusenko, Hoa Huu Phuc Nguyen and Wanda Maria Gerding
Genes 2024, 15(6), 809; https://doi.org/10.3390/genes15060809 - 19 Jun 2024
Cited by 1 | Viewed by 1580
Abstract
While balanced reciprocal translocations are relatively common, they often remain clinically silent unless they lead to the disruption of functional genes. In this study, we present the case of a boy exhibiting developmental delay and mild intellectual disability. Initial karyotyping revealed a translocation [...] Read more.
While balanced reciprocal translocations are relatively common, they often remain clinically silent unless they lead to the disruption of functional genes. In this study, we present the case of a boy exhibiting developmental delay and mild intellectual disability. Initial karyotyping revealed a translocation t(5;6)(q13;q23) between chromosomes 5 and 6 with limited resolution. Optical genome mapping (OGM) enabled a more precise depiction of the breakpoint regions involved in the reciprocal translocation. While the breakpoint region on chromosome 6 did not encompass any known gene, OGM revealed the disruption of the RASGRF2 (Ras protein-specific guanine nucleotide releasing factor 2) gene on chromosome 5, implicating RASGRF2 as a potential candidate gene contributing to the observed developmental delay in the patient. Variations in RASGRF2 have so far not been reported in developmental delay, but research on the RASGRF2 gene underscores its significance in various aspects of neurodevelopment, including synaptic plasticity, signaling pathways, and behavioral responses. This study highlights the utility of OGM in identifying breakpoint regions, providing possible insights into the understanding of neurodevelopmental disorders. It also helps affected individuals in gaining more knowledge about potential causes of their conditions. Full article
(This article belongs to the Special Issue Advances of Optical Genome Mapping in Human Genetics)
Show Figures

Graphical abstract

14 pages, 6064 KiB  
Article
Predicting Key Genes and Therapeutic Molecular Modelling to Explain the Association between Porphyromonas gingivalis (P. gingivalis) and Alzheimer’s Disease (AD)
by Ahmed Hamarsha, Kumarendran Balachandran, Ahmad Tarmidi Sailan and Nurrul Shaqinah Nasruddin
Int. J. Mol. Sci. 2023, 24(6), 5432; https://doi.org/10.3390/ijms24065432 - 12 Mar 2023
Cited by 4 | Viewed by 4165
Abstract
The association between Porphyromonas gingivalis (P. gingivalis) and Alzheimer’s disease (AD) remains unclear. The major aim of this study was to elucidate the role of genes and molecular targets in P. gingivalis-associated AD. Two Gene Expression Omnibus (GEO) datasets, GSE5281 [...] Read more.
The association between Porphyromonas gingivalis (P. gingivalis) and Alzheimer’s disease (AD) remains unclear. The major aim of this study was to elucidate the role of genes and molecular targets in P. gingivalis-associated AD. Two Gene Expression Omnibus (GEO) datasets, GSE5281 for AD (n = 84 Alzheimer’s, n = 74 control) and GSE9723 (n = 4 P. gingivalis, n = 4 control), were downloaded from the GEO database. Differentially expressed genes (DEGs) were obtained, and genes common to both diseases were drawn. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis was performed from the top 100 genes (50 upregulated and 50 downregulated genes). We then proceeded with CMap analysis to screen for possible small drug molecules targeting these genes. Subsequently, we performed molecular dynamics simulations. A total of 10 common genes (CALD1, HES1, ID3, PLK2, PPP2R2D, RASGRF1, SUN1, VPS33B, WTH3DI/RAB6A, and ZFP36L1) were identified with a p-value < 0.05. The PPI network of the top 100 genes showed UCHL1, SST, CHGB, CALY, and INA to be common in the MCC, DMNC, and MNC domains. Out of the 10 common genes identified, only 1 was mapped in CMap. We found three candidate small drug molecules to be a fit for PLK2, namely PubChem ID: 24971422, 11364421, and 49792852. We then performed molecular docking of PLK2 with PubChem ID: 24971422, 11364421, and 49792852. The best target, 11364421, was used to conduct the molecular dynamics simulations. The results of this study unravel novel genes to P. gingivalis-associated AD that warrant further validation. Full article
(This article belongs to the Special Issue Bioinformatics, Omics Tools and Tutorials)
Show Figures

Figure 1

14 pages, 20970 KiB  
Article
Prediction of Cervical Cancer Outcome by Identifying and Validating a NAD+ Metabolism-Derived Gene Signature
by Aozheng Chen, Wanling Jing, Jin Qiu and Runjie Zhang
J. Pers. Med. 2022, 12(12), 2031; https://doi.org/10.3390/jpm12122031 - 8 Dec 2022
Cited by 6 | Viewed by 2008
Abstract
Cervical cancer (CC) is the second most common female cancer. Excellent clinical outcomes have been achieved with current screening tests and medical treatments in the early stages, while the advanced stage has a poor prognosis. Nicotinamide adenine dinucleotide (NAD+) metabolism is implicated in [...] Read more.
Cervical cancer (CC) is the second most common female cancer. Excellent clinical outcomes have been achieved with current screening tests and medical treatments in the early stages, while the advanced stage has a poor prognosis. Nicotinamide adenine dinucleotide (NAD+) metabolism is implicated in cancer development and has been enhanced as a new therapeutic concept for cancer treatment. This study set out to identify an NAD+ metabolic-related gene signature for the prospect of cervical cancer survival and prognosis. Tissue profiles and clinical characteristics of 293 cervical cancer patients and normal tissues were downloaded from The Cancer Genome Atlas database to obtain NAD+ metabolic-related genes. Based on the differentially expressed NAD+ metabolic-related genes, cervical cancer patients were divided into two subgroups (Clusters 1 and 2) using consensus clustering. In total, 1404 differential genes were acquired from the clinical data of these two subgroups. From the NAD+ metabolic-related genes, 21 candidate NAD+ metabolic-related genes (ADAMTS10, ANGPTL5, APCDD1L, CCDC85A, CGREF1, CHRDL2, CRP, DENND5B, EFS, FGF8, P4HA3, PCDH20, PCDHAC2, RASGRF2, S100P, SLC19A3, SLC6A14, TESC, TFPI, TNMD, ZNF229) were considered independent indicators of cervical cancer prognosis through univariate and multivariate Cox regression analyses. The 21-gene signature was significantly different between the low- and high-risk groups in the training and validation datasets. Our work revealed the promising clinical prediction value of NAD+ metabolic-related genes in cervical cancer. Full article
Show Figures

Figure 1

11 pages, 702 KiB  
Article
Association of CX36 Protein Encoding Gene GJD2 with Refractive Errors
by Edita Kunceviciene, Tomas Muskieta, Margarita Sriubiene, Rasa Liutkeviciene, Alina Smalinskiene, Ingrida Grabauskyte, Ruta Insodaite, Dovile Juoceviciute and Laimutis Kucinskas
Genes 2022, 13(7), 1166; https://doi.org/10.3390/genes13071166 - 28 Jun 2022
Cited by 1 | Viewed by 2057
Abstract
Purpose: This study aimed to evaluate the associations of GJD2 (rs634990, rs524952) and RASGRF1 (rs8027411, rs4778879, rs28412916) gene polymorphisms with refractive errors. Methods: The study included 373 subjects with refractive errors (48 myopia, 239 myopia with astigmatism, 14 hyperopia, and 72 hyperopia with [...] Read more.
Purpose: This study aimed to evaluate the associations of GJD2 (rs634990, rs524952) and RASGRF1 (rs8027411, rs4778879, rs28412916) gene polymorphisms with refractive errors. Methods: The study included 373 subjects with refractive errors (48 myopia, 239 myopia with astigmatism, 14 hyperopia, and 72 hyperopia with astigmatism patients) and 104 ophthalmologically healthy subjects in the control group. A quantitative real-time polymerase chain reaction (qPCR) method was chosen for genotyping. Statistical calculations and analysis of results were performed with IBM SPSS Statistics 27 software. Results: The correlations in monozygotic (MZ) twin pairs were higher compared to DZ pairs, indicating genetic effects on hyperopia and astigmatism. The heritability (h2) of hyperopia and astigmatism was 0.654 for the right eye and 0.492 for the left eye. The GJD2 rs634990 TT genotype increased the incidence of hyperopia with astigmatism by 2.4-fold and the CT genotype decreased the incidence of hyperopia with astigmatism by 0.51-fold (p < 0.05). The GJD2 rs524952 AT genotype reduced the incidence of hyperopia with astigmatism by 0.53-fold (p < 0.05). Haplotype analysis of SNPs in the GJD2 gene revealed two statistically significant haplotypes: ACTAGG for rs634990 and TTTAGA for rs524952, which statistically significantly reduced the incidence of hyperopia and hyperopia with astigmatism by 0.41-fold (95% CI: 0.220–0.765) and 0.383-fold (95% CI: 0.199–0.737), respectively (p < 0.05). It was also found that, in the presence of haplotypes ACTAGG for rs634990 and TATAGA for rs524952, the possibility of hyperopia was reduced by 0.4-fold (p < 0.05). Conclusions: the heritability of hyperopia and hyperopia with astigmatism was 0.654–0.492, according to different eyes in patients between 20 and 40 years. The GJD2 rs634990 was identified as an SNP, which has significant associations with the co-occurrence of hyperopia and astigmatism. Patients with the GJD2 gene rs634990 TT genotype were found to have a 2.4-fold higher risk of develop hyperopia with astigmatism. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 832 KiB  
Commentary
Researching Mitigation of Alcohol Binge Drinking in Polydrug Abuse: KCNK13 and RASGRF2 Gene(s) Risk Polymorphisms Coupled with Genetic Addiction Risk Severity (GARS) Guiding Precision Pro-Dopamine Regulation
by Kenneth Blum, Mark S. Brodie, Subhash C. Pandey, Jean Lud Cadet, Ashim Gupta, Igor Elman, Panayotis K. Thanos, Marjorie C. Gondre-Lewis, David Baron, Shan Kazmi, Abdalla Bowirrat, Marcelo Febo, Rajendra D. Badgaiyan, Eric R. Braverman, Catherine A. Dennen and Mark S. Gold
J. Pers. Med. 2022, 12(6), 1009; https://doi.org/10.3390/jpm12061009 - 20 Jun 2022
Cited by 10 | Viewed by 3420
Abstract
Excessive alcohol intake, e.g., binge drinking, is a serious and mounting public health problem in the United States and throughout the world. Hence the need for novel insights into the underlying neurobiology that may help improve prevention and therapeutic strategies. Therefore, our group [...] Read more.
Excessive alcohol intake, e.g., binge drinking, is a serious and mounting public health problem in the United States and throughout the world. Hence the need for novel insights into the underlying neurobiology that may help improve prevention and therapeutic strategies. Therefore, our group employed a darkness-induced alcohol intake protocol to define the reward deficiency domains of alcohol and other substance use disorders in terms of reward pathways’ reduced dopamine signaling and its restoration via specifically-designed therapeutic compounds. It has been determined that KCNK13 and RASGRF2 genes, respectively, code for potassium two pore domain channel subfamily K member 13 and Ras-specific guanine nucleotide-releasing factor 2, and both genes have important dopamine-related functions pertaining to alcohol binge drinking. We present a hypothesis that identification of KCNK13 and RASGRF2 genes’ risk polymorphism, coupled with genetic addiction risk score (GARS)-guided precision pro-dopamine regulation, will mitigate binge alcohol drinking. Accordingly, we review published reports on the benefits of this unique approach and provide data on favorable outcomes for both binge-drinking animals and drunk drivers, including reductions in alcohol intake and prevention of relapse to drinking behavior. Since driving under the influence of alcohol often leads to incarceration rather than rehabilitation, there is converging evidence to support the utilization of GARS with or without KCNK13 and RASGRF2 risk polymorphism in the legal arena, whereby the argument that “determinism” overrides the “free will” account may be a plausible defense strategy. Obviously, this type of research is tantamount to helping resolve a major problem related to polydrug abuse. Full article
Show Figures

Figure 1

12 pages, 1137 KiB  
Article
Epigenome-Wide Analysis Reveals DNA Methylation Alteration in ZFP57 and Its Target RASGFR2 in a Mexican Population Cohort with Autism
by Queletzu Aspra, Brenda Cabrera-Mendoza, Mirna Edith Morales-Marín, Carla Márquez, Carlos Chicalote, Ana Ballesteros, Miriam Aguilar, Xochitl Castro, Amalia Gómez-Cotero, Ana María Balboa-Verduzco, Lilia Albores-Gallo, Omar Nafate-López, Carlos Alfonso Marcín-Salazar, Patricia Sánchez, Nuria Lanzagorta-Piñol, Fernando Omar López-Armenta and Humberto Nicolini
Children 2022, 9(4), 462; https://doi.org/10.3390/children9040462 - 25 Mar 2022
Cited by 11 | Viewed by 4135
Abstract
Autism Spectrum Disorders (ASD) comprise a group of heterogeneous and complex neurodevelopmental disorders. Genetic and environmental factors contribute to ASD etiology. DNA methylation is particularly relevant for ASD due to its mediating role in the complex interaction between genotype and environment and has [...] Read more.
Autism Spectrum Disorders (ASD) comprise a group of heterogeneous and complex neurodevelopmental disorders. Genetic and environmental factors contribute to ASD etiology. DNA methylation is particularly relevant for ASD due to its mediating role in the complex interaction between genotype and environment and has been implicated in ASD pathophysiology. The lack of diversity in DNA methylation studies in ASD individuals is remarkable. Since genetic and environmental factors are likely to vary across populations, the study of underrepresented populations is necessary to understand the molecular alterations involved in ASD and the risk factors underlying these changes. This study explored genome-wide differences in DNA methylation patterns in buccal epithelium cells between Mexican ASD patients (n = 27) and age-matched typically developing (TD: n = 15) children. DNA methylation profiles were evaluated with the Illumina 450k array. We evaluated the interaction between sex and ASD and found a differentially methylated region (DMR) over the 5′UTR region of ZFP57 and one of its targets, RASGRF2. These results match previous findings in brain tissue, which may indicate that ZFP57 could be used as a proxy for DNA methylation in different tissues. This is the first study performed in a Mexican, and subsequently, Latin American, population that evaluates DNA methylation in ASD patients. Full article
(This article belongs to the Special Issue Frontiers in Autism Spectrum Disorder among Children and Adolescents)
Show Figures

Figure 1

21 pages, 31467 KiB  
Article
Comparative Proteomic Analysis of tPVAT during Ang II Infusion
by Xiuying Liang, Haijing Guan, Jingwen Sun, Yan Qi and Wenjuan Yao
Biomedicines 2021, 9(12), 1820; https://doi.org/10.3390/biomedicines9121820 - 2 Dec 2021
Cited by 6 | Viewed by 2731
Abstract
Perivascular adipose tissue (PVAT) homeostasis plays an important role in maintaining vascular function, and PVAT dysfunction may induce several pathophysiological situations. In this study, we investigated the effect and mechanism of the local angiotensin II (Ang II) on PVAT. High-throughput comparative proteomic analysis, [...] Read more.
Perivascular adipose tissue (PVAT) homeostasis plays an important role in maintaining vascular function, and PVAT dysfunction may induce several pathophysiological situations. In this study, we investigated the effect and mechanism of the local angiotensin II (Ang II) on PVAT. High-throughput comparative proteomic analysis, based on TMT labeling combined with LC-MS/MS, were performed on an in vivo Ang II infusion mice model to obtain a comprehensive view of the protein ensembles associated with thoracic PVAT (tPVAT) dysfunction induced by Ang II. In total, 5037 proteins were confidently identified, of which 4984 proteins were quantified. Compared with the saline group, 145 proteins were upregulated and 146 proteins were downregulated during Ang II-induced tPVAT pathogenesis. Bioinformatics analyses revealed that the most enriched GO terms were annotated as gene silencing, monosaccharide binding, and extracellular matrix. In addition, some novel proteins, potentially associated with Ang II infusion, were identified, such as acyl-CoA carboxylase α, very long-chain acyl-CoA synthetase (ACSVL), uncoupling protein 1 (UCP1), perilipin, RAS protein-specific guanine nucleotide-releasing factor 2 (RasGRF2), and hypoxia inducible factor 1α (HIF-1α). Ang II could directly participate in the regulation of lipid metabolism, transportation, and adipocyte differentiation by affecting UCP1 and perilipin. Importantly, the key KEGG pathways were involved in fatty acid biosynthesis, FABP3-PPARα/γ, RasGRF2-ERK-HIF-1α, RasGRF2-PKC-HIF-1α, and STAT3-HIF-1α axis. The present study provided the most comprehensive proteome profile of mice tPVAT and some novel insights into Ang II-mediated tPVAT dysfunction and will be helpful for understanding the possible relationship between local RAS activation and PVAT dysfunction. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

14 pages, 1079 KiB  
Article
Rare Pathogenic Variants in Genes Implicated in Glutamatergic Neurotransmission Pathway Segregate with Schizophrenia in Pakistani Families
by Ambrin Fatima, Uzma Abdullah, Muhammad Farooq, Yuan Mang, Mana M. Mehrjouy, Maria Asif, Zafar Ali, Niels Tommerup and Shahid M. Baig
Genes 2021, 12(12), 1899; https://doi.org/10.3390/genes12121899 - 26 Nov 2021
Cited by 4 | Viewed by 3060
Abstract
Schizophrenia is a disabling neuropsychiatric disorder of adulthood onset with high heritability. Worldwide collaborations have identified an association of ~270 common loci, with small individual effects and hence weak clinical implications. The recent technological feasibility of exome sequencing enables the identification of rare [...] Read more.
Schizophrenia is a disabling neuropsychiatric disorder of adulthood onset with high heritability. Worldwide collaborations have identified an association of ~270 common loci, with small individual effects and hence weak clinical implications. The recent technological feasibility of exome sequencing enables the identification of rare variants of high penetrance that refine previous findings and improve risk assessment and prognosis. We recruited two multiplex Pakistani families, having 11 patients and 19 unaffected individuals in three generations. We performed genome-wide SNP genotyping, next-generation mate pairing and whole-exome sequencing of selected members to unveil genetic components. Candidate variants were screened in unrelated cohorts of 508 cases, 300 controls and fifteen families (with 51 affected and 47 unaffected individuals) of Pakistani origin. The structural impact of substituted residues was assessed through in silico modeling using iTASSER. In one family, we identified a rare novel microduplication (5q14.1_q14.2) encompassing critical genes involved in glutamate signaling, such as CMYA5, HOMER and RasGRF2. The second family segregates two ultra-rare, predicted pathogenic variants in the GRIN2A (NM_001134407.3: c.3505C>T, (p.R1169W) and in the NRG3 NM_001010848.4: c.1951G>A, (p.E651K). These genes encode for parts of AMPA and NMDA receptors of glutamatergic neurotransmission, respectively, and the variants are predicted to compromise protein function by destabilizing their structures. The variants were absent in the aforementioned cohorts. Our findings suggest that rare, highly penetrant variants of genes involved in glutamatergic neurotransmission are contributing to the etiology of schizophrenia in these families. It also highlights that genetic investigations of multiplex, multigenerational families could be a powerful approach to identify rare genetic variants involved in complex disorders. Full article
(This article belongs to the Special Issue Genetics of Primary Microcephaly and Intellectual Disability)
Show Figures

Figure 1

24 pages, 4970 KiB  
Article
A Rational Design of α-Helix-Shaped Peptides Employing the Hydrogen-Bond Surrogate Approach: A Modulation Strategy for Ras-RasGRF1 Interaction in Neuropsychiatric Disorders
by Maria Rita Gulotta, Riccardo Brambilla, Ugo Perricone and Andrea Brancale
Pharmaceuticals 2021, 14(11), 1099; https://doi.org/10.3390/ph14111099 - 28 Oct 2021
Cited by 4 | Viewed by 3414
Abstract
In the last two decades, abnormal Ras (rat sarcoma protein)–ERK (extracellular signal-regulated kinase) signalling in the brain has been involved in a variety of neuropsychiatric disorders, including drug addiction, certain forms of intellectual disability, and autism spectrum disorder. Modulation of membrane-receptor-mediated Ras activation [...] Read more.
In the last two decades, abnormal Ras (rat sarcoma protein)–ERK (extracellular signal-regulated kinase) signalling in the brain has been involved in a variety of neuropsychiatric disorders, including drug addiction, certain forms of intellectual disability, and autism spectrum disorder. Modulation of membrane-receptor-mediated Ras activation has been proposed as a potential target mechanism to attenuate ERK signalling in the brain. Previously, we showed that a cell penetrating peptide, RB3, was able to inhibit downstream signalling by preventing RasGRF1 (Ras guanine nucleotide-releasing factor 1), a neuronal specific GDP/GTP exchange factor, to bind Ras proteins, both in brain slices and in vivo, with an IC50 value in the micromolar range. The aim of this work was to mutate and improve this peptide through computer-aided techniques to increase its inhibitory activity against RasGRF1. The designed peptides were built based on the RB3 peptide structure corresponding to the α-helix of RasGRF1 responsible for Ras binding. For this purpose, the hydrogen-bond surrogate (HBS) approach was exploited to maintain the helical conformation of the designed peptides. Finally, residue scanning, MD simulations, and MM-GBSA calculations were used to identify 18 most promising α-helix-shaped peptides that will be assayed to check their potential activity against Ras-RasGRF1 and prevent downstream molecular events implicated in brain disorders. Full article
(This article belongs to the Special Issue In Silico Approaches in Drug Design)
Show Figures

Graphical abstract

14 pages, 2893 KiB  
Article
Identification of Differentially Expressed Genes in Different Glioblastoma Regions and Their Association with Cancer Stem Cell Development and Temozolomide Response
by Justin Bo-Kai Hsu, Tzong-Yi Lee, Sho-Jen Cheng, Gilbert Aaron Lee, Yung-Chieh Chen, Nguyen Quoc Khanh Le, Shiu-Wen Huang, Duen-Pang Kuo, Yi-Tien Li, Tzu-Hao Chang and Cheng-Yu Chen
J. Pers. Med. 2021, 11(11), 1047; https://doi.org/10.3390/jpm11111047 - 20 Oct 2021
Cited by 13 | Viewed by 4890
Abstract
The molecular heterogeneity of gene expression profiles of glioblastoma multiforme (GBM) are the most important prognostic factors for tumor recurrence and drug resistance. Thus, the aim of this study was to identify potential target genes related to temozolomide (TMZ) resistance and GBM recurrence. [...] Read more.
The molecular heterogeneity of gene expression profiles of glioblastoma multiforme (GBM) are the most important prognostic factors for tumor recurrence and drug resistance. Thus, the aim of this study was to identify potential target genes related to temozolomide (TMZ) resistance and GBM recurrence. The genomic data of patients with GBM from The Cancer Genome Atlas (TCGA; 154 primary and 13 recurrent tumors) and a local cohort (29 primary and 4 recurrent tumors), samples from different tumor regions from a local cohort (29 tumor and 25 peritumoral regions), and Gene Expression Omnibus data (GSE84465, single-cell RNA sequencing; 3589 cells) were included in this study. Critical gene signatures were identified based an analysis of differentially expressed genes (DEGs). DEGs were further used to evaluate gene enrichment levels among primary and recurrent GBMs and different tumor regions through gene set enrichment analysis. Protein–protein interactions (PPIs) were incorporated into gene regulatory networks to identify the affected metabolic pathways. The enrichment levels of 135 genes were identified in the peritumoral regions as being risk signatures for tumor recurrence. Fourteen genes (DVL1, PRKACB, ARRB1, APC, MAPK9, CAMK2A, PRKCB, CACNA1A, ERBB4, RASGRF1, NF1, RPS6KA2, MAPK8IP2, and PPM1A) derived from the PPI network of 135 genes were upregulated and involved in the regulation of cancer stem cell (CSC) development and relevant signaling pathways (Notch, Hedgehog, Wnt, and MAPK). The single-cell data analysis results indicated that 14 key genes were mainly expressed in oligodendrocyte progenitor cells, which could produce a CSC niche in the peritumoral region. The enrichment levels of 336 genes were identified as biomarkers for evaluating TMZ resistance in the solid tumor region. Eleven genes (ARID5A, CDC42EP3, CDKN1A, FLT3, JUNB, MAP2K3, MYBPC2, RGS14, RNASEK, TBC1D30, and TXNDC11) derived from the PPI network of 336 genes were upregulated and may be associated with a high risk of TMZ resistance; these genes were identified in both the TCGA and local cohorts. Furthermore, the expression patterns of ARID5A, CDKN1A, and MAP2K3 were identical to the gene signatures of TMZ-resistant cell lines. The identified enrichment levels of the two gene sets expressed in tumor and peritumoral regions are potentially helpful for evaluating TMZ resistance in GBM. Moreover, these key genes could be used as biomarkers, potentially providing new molecular strategies for GBM treatment. Full article
(This article belongs to the Special Issue The Molecular Targeting of Glioblastoma: Drug Discovery and Therapies)
Show Figures

Figure 1

22 pages, 1349 KiB  
Review
Diverse Roles of Annexin A6 in Triple-Negative Breast Cancer Diagnosis, Prognosis and EGFR-Targeted Therapies
by Olga Y. Korolkova, Sarrah E. Widatalla, Stephen D. Williams, Diva S. Whalen, Heather K. Beasley, Josiah Ochieng, Thomas Grewal and Amos M. Sakwe
Cells 2020, 9(8), 1855; https://doi.org/10.3390/cells9081855 - 7 Aug 2020
Cited by 24 | Viewed by 5569
Abstract
The calcium (Ca2+)-dependent membrane-binding Annexin A6 (AnxA6), is a multifunctional, predominantly intracellular scaffolding protein, now known to play relevant roles in different cancer types through diverse, often cell-type-specific mechanisms. AnxA6 is differentially expressed in various stages/subtypes of several cancers, and its [...] Read more.
The calcium (Ca2+)-dependent membrane-binding Annexin A6 (AnxA6), is a multifunctional, predominantly intracellular scaffolding protein, now known to play relevant roles in different cancer types through diverse, often cell-type-specific mechanisms. AnxA6 is differentially expressed in various stages/subtypes of several cancers, and its expression in certain tumor cells is also induced by a variety of pharmacological drugs. Together with the secretion of AnxA6 as a component of extracellular vesicles, this suggests that AnxA6 mediates distinct tumor progression patterns via extracellular and/or intracellular activities. Although it lacks enzymatic activity, some of the AnxA6-mediated functions involving membrane, nucleotide and cholesterol binding as well as the scaffolding of specific proteins or multifactorial protein complexes, suggest its potential utility in the diagnosis, prognosis and therapeutic strategies for various cancers. In breast cancer, the low AnxA6 expression levels in the more aggressive basal-like triple-negative breast cancer (TNBC) subtype correlate with its tumor suppressor activity and the poor overall survival of basal-like TNBC patients. In this review, we highlight the potential tumor suppressor function of AnxA6 in TNBC progression and metastasis, the relevance of AnxA6 in the diagnosis and prognosis of several cancers and discuss the concept of therapy-induced expression of AnxA6 as a novel mechanism for acquired resistance of TNBC to tyrosine kinase inhibitors. Full article
(This article belongs to the Special Issue Recent Developments in Annexin Biology)
Show Figures

Figure 1

16 pages, 6129 KiB  
Article
Deletion of RasGRF1 Attenuated Interstitial Fibrosis in Streptozotocin-Induced Diabetic Cardiomyopathy in Mice through Affecting Inflammation and Oxidative Stress
by Tzu-Hsien Tsai, Cheng-Jei Lin, Sarah Chua, Sheng-Ying Chung, Shyh-Ming Chen, Chien-Ho Lee and Chi-Ling Hang
Int. J. Mol. Sci. 2018, 19(10), 3094; https://doi.org/10.3390/ijms19103094 - 10 Oct 2018
Cited by 19 | Viewed by 4099
Abstract
Background: Diabetic cardiomyopathy (DCM) is characterized by cardiac fibrosis and stiffness, which often develops into heart failure. This study investigated the role of Ras protein-specific guanine nucleotide releasing factor 1 (RasGRF1) in the development of DCM. Methods: Forty-eight mice were divided into four [...] Read more.
Background: Diabetic cardiomyopathy (DCM) is characterized by cardiac fibrosis and stiffness, which often develops into heart failure. This study investigated the role of Ras protein-specific guanine nucleotide releasing factor 1 (RasGRF1) in the development of DCM. Methods: Forty-eight mice were divided into four groups (n = 12 per group): Group 1: Wild-type (WT) mice, Group 2: RasGRF1 deficiency (RasGRF1−/−) mice. Group 3: Streptozotocin (STZ)-induced diabetic WT mice, Group 4: STZ-induced diabetic RasGRF1−/− mice. Myocardial functions were assessed by cardiac echography. Heart tissues from all of the mice were investigated for cardiac fibrosis, inflammation, and oxidative stress markers. Results: Worse impaired diastolic function with elevation serum interleukin (IL)-6 was found in the diabetic group compared with the non-diabetic groups. Serum IL-6 levels were found to be elevated in the diabetic compared with the non-diabetic groups. However, the diabetic RasGRF1−/− mice exhibited lower serum IL-6 levels and better diastolic function than the diabetic WT mice. The diabetic RasGRF1−/− mice were associated with reduced cardiac inflammation, which was shown by lower invading inflammation cells, lower expression of matrix metalloproteinase 9, and less chemokines compared to the diabetic WT mice. Furthermore, less oxidative stress as well as extracellular matrix deposition leading to a reduction in cardiac fibrosis was also found in the diabetic RasGRF1−/− mice compared with the diabetic WT mice. Conclusion: The deletion of RasGRF1 attenuated myocardial fibrosis and improved cardiac function in diabetic mice through inhibiting inflammation and oxidative stress. Full article
Show Figures

Figure 1

8 pages, 1540 KiB  
Case Report
A Case of AML Characterized by a Novel t(4;15)(q31;q22) Translocation That Confers a Growth-Stimulatory Response to Retinoid-Based Therapy
by Justin M. Watts, Aymee Perez, Lutecia Pereira, Yao-Shan Fan, Geoffrey Brown, Francisco Vega, Kevin Petrie, Ronan T. Swords and Arthur Zelent
Int. J. Mol. Sci. 2017, 18(7), 1492; https://doi.org/10.3390/ijms18071492 - 11 Jul 2017
Cited by 12 | Viewed by 5287
Abstract
Here we report the case of a 30-year-old woman with relapsed acute myeloid leukemia (AML) who was treated with all-trans retinoic acid (ATRA) as part of investigational therapy (NCT02273102). The patient died from rapid disease progression following eight days of continuous treatment [...] Read more.
Here we report the case of a 30-year-old woman with relapsed acute myeloid leukemia (AML) who was treated with all-trans retinoic acid (ATRA) as part of investigational therapy (NCT02273102). The patient died from rapid disease progression following eight days of continuous treatment with ATRA. Karyotype analysis and RNA-Seq revealed the presence of a novel t(4;15)(q31;q22) reciprocal translocation involving the TMEM154 and RASGRF1 genes. Analysis of primary cells from the patient revealed the expression of TMEM154-RASGRF1 mRNA and the resulting fusion protein, but no expression of the reciprocal RASGRF1-TMEM154 fusion. Consistent with the response of the patient to ATRA therapy, we observed a rapid proliferation of t(4;15) primary cells following ATRA treatment ex vivo. Preliminary characterization of the retinoid response of t(4;15) AML revealed that in stark contrast to non-t(4;15) AML, these cells proliferate in response to specific agonists of RARα and RARγ. Furthermore, we observed an increase in the levels of nuclear RARγ upon ATRA treatment. In summary, the identification of the novel t(4;15)(q31;q22) reciprocal translocation opens new avenues in the study of retinoid resistance and provides potential for a new biomarker for therapy of AML. Full article
(This article belongs to the Special Issue The Biology and Treatment of Myeloid Leukaemias)
Show Figures

Graphical abstract

Back to TopTop