Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Pyrenophora teres f. teres (Ptt)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2557 KiB  
Article
Early Detection of Both Pyrenophora teres f. teres and f. maculata in Asymptomatic Barley Leaves Using Digital Droplet PCR (ddPCR)
by Yassine Bouhouch, Dina Aggad, Nicolas Richet, Sajid Rehman, Muamar Al-Jaboobi, Zakaria Kehel, Qassim Esmaeel, Majida Hafidi, Cédric Jacquard and Lisa Sanchez
Int. J. Mol. Sci. 2024, 25(22), 11980; https://doi.org/10.3390/ijms252211980 - 7 Nov 2024
Viewed by 1317
Abstract
Efficient early pathogen detection, before symptom apparition, is crucial for optimizing disease management. In barley, the fungal pathogen Pyrenophora teres is the causative agent of net blotch disease, which exists in two forms: P. teres f. sp. teres (Ptt), causing net-form [...] Read more.
Efficient early pathogen detection, before symptom apparition, is crucial for optimizing disease management. In barley, the fungal pathogen Pyrenophora teres is the causative agent of net blotch disease, which exists in two forms: P. teres f. sp. teres (Ptt), causing net-form of net blotch (NTNB), and P. teres f. sp. maculata (Ptm), responsible for spot-form of net blotch (STNB). In this study, we developed primers and a TaqMan probe to detect both Ptt and Ptm. A comprehensive k-mer based analysis was performed across a collection of P. teres genomes to identify the conserved regions that had potential as universal genetic markers. These regions were then analyzed for their prevalence and copy number across diverse Moroccan P. teres strains, using both a k-mer analysis for sequence identification and a phylogenetic assessment to establish genetic relatedness. The designed primer-probe set was successfully validated through qPCR, and early disease detection, prior to symptom development, was achieved using ddPCR. The k-mer analysis performed across the available P. teres genomes suggests the potential for these sequences to serve as universal markers for P. teres, transcending environmental variations. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 1851 KiB  
Article
Fungicide Sensitivity Profile of Pyrenophora teres f. teres in Field Population
by Regina Pütsepp, Andres Mäe, Lee Põllumaa, Liis Andresen and Riinu Kiiker
J. Fungi 2024, 10(4), 260; https://doi.org/10.3390/jof10040260 - 29 Mar 2024
Cited by 4 | Viewed by 2039
Abstract
Pyrenophora teres f. teres (Ptt) is a severe pathogen to spring barley in Northern Europe. Ptt with relevant mutations in fungicide target proteins, sterol 14α-demethylase (CYP51A), cytochrome b (Cyt b), and succinate dehydrogenase (SDH) would put efficient disease control at risk. [...] Read more.
Pyrenophora teres f. teres (Ptt) is a severe pathogen to spring barley in Northern Europe. Ptt with relevant mutations in fungicide target proteins, sterol 14α-demethylase (CYP51A), cytochrome b (Cyt b), and succinate dehydrogenase (SDH) would put efficient disease control at risk. In the growing seasons of 2021 and 2022, 193 Ptt isolates from Estonia were analysed. In this study, mutation detection and in vitro fungicide sensitivity assays of single-spore isolates were carried out. Reduced sensitivity phenotype to mefentrifluconazole was evident in Ptt isolates with a F489L mutation in CYP51A or with 129 bp insert in the Cyp51A gene-promoter region. However, sensitivity to a prothioconazole-desthio remained high regardless of these molecular changes. The Ptt population was mostly sensitive to bixafen, fluxapyroxad, pyraclostrobin, and azoxystrobin. The sensitivity of fluxapyroxad and bixafen has been affected by two mutations, C-S135R and D-H134R, found in SDH subunits. The F129L mutation in Cyt b influenced azoxystrobin but not pyraclostrobin sensitivity. In total, 30 isolates from five fields had relevant mutations in three target protein genes simultaneously. Most of these isolates had a reduced sensitivity phenotype to mefentrifluconazole, fluxapyroxad, and azoxystrobin, while sensitivity to other tested fungicides remained high. Furthermore, possible sexual reproduction may enhance the pathogen’s fitness and help it adapt to fungicides. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Graphical abstract

19 pages, 5797 KiB  
Article
Virulence Spectra of Hungarian Pyrenophora teres f. teres Isolates Collected from Experimental Fields Show Continuous Variation without Specific Isolate × Barley Differential Interactions
by József Bakonyi, Diána Seress, Zoltán Á. Nagy, Ildikó Csorba, Mónika Cséplő, Tibor A. Marton, Anke Martin and Klára Mészáros
J. Fungi 2024, 10(3), 184; https://doi.org/10.3390/jof10030184 - 28 Feb 2024
Viewed by 1942
Abstract
Pyrenophora teres f. teres (Ptt), the causal agent of net form net blotch (NFNB) disease, is an important and widespread pathogen of barley. This study aimed to quantify and characterize the virulence of Ptt isolates collected from experimental fields of barley in Hungary. [...] Read more.
Pyrenophora teres f. teres (Ptt), the causal agent of net form net blotch (NFNB) disease, is an important and widespread pathogen of barley. This study aimed to quantify and characterize the virulence of Ptt isolates collected from experimental fields of barley in Hungary. Infection responses across 20 barley differentials were obtained from seedling assays of 34 Ptt isolates collected from three Hungarian breeding stations between 2008 and 2018. Twenty-eight Ptt pathotypes were identified. Correspondence analysis followed by hierarchical clustering on the principal components and host-by-pathogen GGE biplots suggested a continuous range of virulence and an absence of specific isolate × barley differential interactions. The isolates were classified into four isolate groups (IG) using agglomerative hierarchical clustering. One IG could be distinguished from other IGs based on avirulence/virulence on one to five barley differentials. Several barley differentials expressed strong resistance against multiple Ptt isolates and may be useful in the development of NFNB-resistant barley cultivars in Hungary. Our results emphasize that the previously developed international barley differential set needs to be improved and adapted to the Hungarian Ptt population. This is the first report on the pathogenic variations of Ptt in Hungary. Full article
(This article belongs to the Special Issue Fungal Pathogens and Host Plants)
Show Figures

Figure 1

22 pages, 4574 KiB  
Article
Metabolomic Reconfiguration in Primed Barley (Hordeum vulgare) Plants in Response to Pyrenophora teres f. teres Infection
by Claude Y. Hamany Djande, Fidele Tugizimana, Paul A. Steenkamp, Lizelle A. Piater and Ian A. Dubery
Metabolites 2023, 13(9), 997; https://doi.org/10.3390/metabo13090997 - 7 Sep 2023
Cited by 6 | Viewed by 2232
Abstract
Necrotrophic fungi affect a wide range of plants and cause significant crop losses. For the activation of multi-layered innate immune defences, plants can be primed or pre-conditioned to rapidly and more efficiently counteract this pathogen. Untargeted and targeted metabolomics analyses were applied to [...] Read more.
Necrotrophic fungi affect a wide range of plants and cause significant crop losses. For the activation of multi-layered innate immune defences, plants can be primed or pre-conditioned to rapidly and more efficiently counteract this pathogen. Untargeted and targeted metabolomics analyses were applied to elucidate the biochemical processes involved in the response of 3,5-dichloroanthranilic acid (3,5-DCAA) primed barley plants to Pyrenophora teres f. teres (Ptt). A susceptible barley cultivar (‘Hessekwa’) at the third leaf growth stage was treated with 3,5-DCAA 24 h prior to infection using a Ptt conidia suspension. The infection was monitored over 2, 4, and 6 days post-inoculation. For untargeted studies, ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC–MS) was used to analyse methanolic plant extracts. Acquired data were processed to generate the data matrices utilised in chemometric modelling and multi-dimensional data mining. For targeted studies, selected metabolites from the amino acids, phenolic acids, and alkaloids classes were quantified using multiple reaction monitoring (MRM) mass spectrometry. 3,5-DCAA was effective as a priming agent in delaying the onset and intensity of symptoms but could not prevent the progression of the disease. Unsupervised learning methods revealed clear differences between the sample extracts from the control plants and the infected plants. Both orthogonal projection to latent structure-discriminant analysis (OPLS-DA) and ‘shared and unique structures’ (SUS) plots allowed for the extraction of potential markers of the primed and naïve plant responses to Ptt. These include classes of organic acids, fatty acids, amino acids, phenolic acids, and derivatives and flavonoids. Among these, 5-oxo-proline and citric acid were notable as priming response-related metabolites. Metabolites from the tricarboxylic acid pathway were only discriminant in the primed plant infected with Ptt. Furthermore, the quantification of targeted metabolites revealed that hydroxycinnamic acids were significantly more prominent in the primed infected plants, especially at 2 d.p.i. Our research advances efforts to better understand regulated and reprogrammed metabolic responses that constitute defence priming in barley against Ptt. Full article
(This article belongs to the Special Issue Metabolomics and Plant Defence)
Show Figures

Graphical abstract

20 pages, 1933 KiB  
Article
Validation of Molecular Markers of Barley Net Blotch Resistance Loci on Chromosome 3H for Marker-Assisted Selection
by Olga Afanasenko, Irina Rozanova, Anastasiia Gofman, Nina Lashina, Fluturë Novakazi, Nina Mironenko, Olga Baranova and Alexandr Zubkovich
Agriculture 2022, 12(4), 439; https://doi.org/10.3390/agriculture12040439 - 22 Mar 2022
Cited by 7 | Viewed by 3563
Abstract
The most widespread and harmful disease of barley is net form of net blotch caused by the ascomycete Pyrenophora teres f. teres Drechsler (Ptt). A cost effective and environmentally sustainable strategy for barley protection against Ptt is to develop barley cultivars [...] Read more.
The most widespread and harmful disease of barley is net form of net blotch caused by the ascomycete Pyrenophora teres f. teres Drechsler (Ptt). A cost effective and environmentally sustainable strategy for barley protection against Ptt is to develop barley cultivars possessing genetic resistance. In previous GWA analysis, we identified SNP-markers associated with a resistance locus on chromosome 3H in the interval of 45.82–54.53 cM. These SNPs have been described previously in the literature to be located within the same region of chromosome 3H. The aim of the study was to validate QTL markers controlling resistance to Ptt on chromosome 3H in this region by KASP genotyping in four F2 populations of crosses between the resistant cultivars, Morex, Fox, and Zolo, and the accession, Local k-21578, with the susceptible barley cv. Gesine and in a doubled haploid (DH) population of Canadian Lake Shore (CLS)/Harrington. Eleven of fifteen studied markers showed high efficacy (97.5–100%) for co-segregation with resistance to Ptt in the DH population, CLS/Harrington. Three of these markers located at 54.53 cM and one at 51.27 cM were effective in two F2 populations of crosses of Morex and Fox with susceptible cv. Gesine. These markers are also located close to each other on the physical map (442,203,921–443,119,491 bp). Apparently, in cultivars, CLS, Morex, and Fox, resistance to Ptt is determined by the same locus. Markers JHI-Hv50k-2016-166392 (47.1 cM, 112,536,071 bp), Clone ID 3255462_1 (51.63 cM, 363,531,898 bp), and Clone ID 3255462_2 (51.63 cM, 363,531,871 bp) showed high efficacy in the DH population and in the F2 population, Local k-21578/Gesine. Apparently, at least two loci controlling Ptt resistance exist in the chromosome region of 47.0–54.3 cM: one at 46.0–48.44 cM and another at 51.27–54.8 cM. These regions were found to harbor several genes involved in important plant functions, including disease response and signaling pathways. Allele-specific PCR markers were developed based on the KASP assay data and tested on six resistant, two moderately resistant, and two susceptible barley genotypes. Four markers were found to be effective to differentiate susceptible and resistant barley genotypes. The KASP and allele-specific PCR markers associated with Ptt resistance on chromosome 3H will be useful for pyramiding resistance QTLs in barley marker-assisted selection. Full article
(This article belongs to the Special Issue Genetic and Molecular Basis of Crop Resistance to Pathogens)
Show Figures

Figure 1

15 pages, 1013 KiB  
Article
The Stimulation of Superoxide Dismutase Enzyme Activity and Its Relation with the Pyrenophora teres f. teres Infection in Different Barley Genotypes
by Viola Kunos, Mónika Cséplő, Diána Seress, Adnan Eser, Zoltán Kende, Andrea Uhrin, Judit Bányai, József Bakonyi, Magda Pál and Klára Mészáros
Sustainability 2022, 14(5), 2597; https://doi.org/10.3390/su14052597 - 23 Feb 2022
Cited by 20 | Viewed by 4072
Abstract
Changes in superoxide dismutase (SOD) enzyme activity were examined in infected barley seedlings of five cultivars with the goal to study the role of SOD in the defense mechanism induced by Pyrenophora teres f. teres (PTT) infection. Our results showed that although there [...] Read more.
Changes in superoxide dismutase (SOD) enzyme activity were examined in infected barley seedlings of five cultivars with the goal to study the role of SOD in the defense mechanism induced by Pyrenophora teres f. teres (PTT) infection. Our results showed that although there were differences in the responses of the cultivars, all three PTT isolates (H-618, H-774, H-949) had significantly increased SOD activity in all examined barley varieties at the early stages of the infection. The lowest SOD activity was observed in the case of the most resistant cultivar. Our results did not show a clear connection between seedling resistance of genotypes and SOD enzyme activity; however, we were able to find strong significant correlations between the PTT infection scores on the Tekauz scale and the SOD activity. The measurement of the SOD activity could offer a novel perspective to detect the early stress responses induced by PTT. Our results suggest that the resistance of varieties cannot be estimated based on SOD enzyme activity alone, because many antioxidant enzymes play a role in fine-tuning the defense response, but SOD is an important member of this system. Full article
(This article belongs to the Special Issue Plant Breeding Supporting the Sustainable Field Crop Production)
Show Figures

Figure 1

16 pages, 1669 KiB  
Article
Characterization of the Barley Net Blotch Pathosystem at the Center of Origin of Host and Pathogen
by Moshe Ronen, Hanan Sela, Eyal Fridman, Rafael Perl-Treves, Doris Kopahnke, Alexandre Moreau, Roi Ben-David and Arye Harel
Pathogens 2019, 8(4), 275; https://doi.org/10.3390/pathogens8040275 - 29 Nov 2019
Cited by 11 | Viewed by 4824
Abstract
Net blotch (NB) is a major disease of barley caused by the fungus Pyrenophora teres f. teres (Ptt), and P. teres f. maculata (Ptm). Ptt and Ptm infect the cultivated crop (Hordeum vulgare) and its wild relatives [...] Read more.
Net blotch (NB) is a major disease of barley caused by the fungus Pyrenophora teres f. teres (Ptt), and P. teres f. maculata (Ptm). Ptt and Ptm infect the cultivated crop (Hordeum vulgare) and its wild relatives (H. vulgare ssp. spontaneum and H. murinum ssp. glaucum). The main goal of this research was to study the NB-causing pathogen in the crop center of origin. To address this, we have constructed a Ptt (n = 15) and Ptm (n = 12) collection isolated from three barley species across Israel. Isolates were characterized genetically and phenotypically. Aggressiveness of the isolates was determined based on necrotrophic growth rate on detached leaves of barley. In addition, isolates were genetically characterized by the mating type, followed by phylogenetic analysis, clustering them into seven groups. The analysis showed no significant differentiation of isolates based on either geographic origin, host of origin or form (Ptt vs. Ptm). Nevertheless, there was a significant difference in aggressiveness among the isolates regardless of host species, geographic location or sampling site. Moreover, it was apparent that the isolates derived from wild hosts were more variable in their necrotrophic growth rate, compared to isolates sampled from cultivated hosts, thereby suggesting that NB plays a major role in epidemiology at the center of barley origin where most of the diversity lies. Ptm has significantly higher necrotrophic and saprotrophic growth rates than Ptt, and for both a significant negative correlation was found between light intensity exposure and growth rates. Full article
Show Figures

Figure 1

Back to TopTop