Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (153)

Search Parameters:
Keywords = Prognostics and health management (PHM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 782 KiB  
Systematic Review
A Systematic Literature Review on PHM Strategies for (Hydraulic) Primary Flight Control Actuation Systems
by Leonardo Baldo, Andrea De Martin, Giovanni Jacazio and Massimo Sorli
Actuators 2025, 14(8), 382; https://doi.org/10.3390/act14080382 - 2 Aug 2025
Viewed by 126
Abstract
Prognostic and Health Management (PHM) strategies are gaining increasingly more traction in almost every field of engineering, offering stakeholders advanced capabilities in system monitoring, anomaly detection, and predictive maintenance. Primary flight control actuators are safety-critical elements within aircraft flight control systems (FCSs), and [...] Read more.
Prognostic and Health Management (PHM) strategies are gaining increasingly more traction in almost every field of engineering, offering stakeholders advanced capabilities in system monitoring, anomaly detection, and predictive maintenance. Primary flight control actuators are safety-critical elements within aircraft flight control systems (FCSs), and currently, they are mainly based on Electro-Hydraulic Actuators (EHAs) or Electro-Hydrostatic Actuators (EHSAs). Despite the widespread diffusion of PHM methodologies, the application of these technologies for EHAs is still somewhat limited, and the available information is often restricted to the industrial sector. To fill this gap, this paper provides an in-depth analysis of state-of-the-art EHA PHM strategies for aerospace applications, as well as their limitations and further developments through a Systematic Literature Review (SLR). An objective and clear methodology, combined with the use of attractive and informative graphics, guides the reader towards a thorough investigation of the state of the art, as well as the challenges in the field that limit a wider implementation. It is deemed that the information presented in this review will be useful for new researchers and industry engineers as it provides indications for conducting research in this specific and still not very investigated sector. Full article
Show Figures

Figure 1

21 pages, 1573 KiB  
Review
A Novel Real-Time Battery State Estimation Using Data-Driven Prognostics and Health Management
by Juliano Pimentel, Alistair A. McEwan and Hong Qing Yu
Appl. Sci. 2025, 15(15), 8538; https://doi.org/10.3390/app15158538 (registering DOI) - 31 Jul 2025
Viewed by 141
Abstract
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered [...] Read more.
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered via exponentially weighted moving averages (EWMAs) and refined through SHAP-based feature attribution. Compared against a Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) across ten diverse drive cycles, the proposed model consistently achieved superior performance, with mean absolute errors (MAEs) as low as 0.40%, outperforming EKF (0.66%) and UKF (1.36%). The Bi-LSTM model also demonstrated higher R2 values (up to 0.9999) and narrower 95% confidence intervals, confirming its precision and robustness. Real-time implementation on embedded platforms yielded inference times of 1.3–2.2 s, validating its deployability for edge applications. The framework’s model-free nature makes it adaptable to other nonlinear, time-dependent systems beyond battery SOC estimation. Full article
(This article belongs to the Special Issue Design and Applications of Real-Time Embedded Systems)
Show Figures

Figure 1

29 pages, 4727 KiB  
Article
A Low-Code Visual Framework for Deep Learning-Based Remaining Useful Life Prediction
by Yuhan Lin, Jianhua Chen, Sijuan Chen, Yunfei Nie, Ming Wang, Bing Zhang, Ming Yang and Jipu Wang
Processes 2025, 13(8), 2366; https://doi.org/10.3390/pr13082366 - 25 Jul 2025
Viewed by 325
Abstract
In the context of intelligent manufacturing, deep learning-based remaining useful life (RUL) prediction has become a research hotspot in the field of Prognostics and Health Management (PHM). The traditional approaches often require strong programming skills and repeated model building, posing a high entry [...] Read more.
In the context of intelligent manufacturing, deep learning-based remaining useful life (RUL) prediction has become a research hotspot in the field of Prognostics and Health Management (PHM). The traditional approaches often require strong programming skills and repeated model building, posing a high entry barrier. To address this, in this study, we propose and implement a visualization tool that supports multiple model selections and result visualization and eliminates the need for complex coding and mathematical derivations, helping users to efficiently conduct RUL prediction with lower technical requirements. This study introduces and summarizes various novel neural network models for DL-based RUL prediction. The models are validated using the NASA and HNEI datasets, and among the validated models, the LSTM model best met the requirements for remaining useful life (RUL) prediction. In order to achieve the low-code usage of deep learning for RUL prediction, the following tasks were performed: (1) multiple models were developed using the Python (3.9.18) language and were implemented on the PyTorch (1.12.1) framework, providing users with the freedom to choose their desired model; (2) a user-friendly and low-code RUL prediction interface was built using Streamlit, enabling users to easily make predictions; (3) the visualization of prediction results was implemented using Matplotlib (3.8.2), allowing users to better understand and analyze the results. In addition, the tool offers functionalities such as automatic hyperparameter tuning to optimize the performance of the prediction model and reduce the complexity of operations. Full article
Show Figures

Figure 1

33 pages, 2217 KiB  
Review
A Comprehensive Review of Artificial Intelligence-Based Algorithms for Predicting the Remaining Useful Life of Equipment
by Weihao Li, Jianhua Chen, Sijuan Chen, Peilin Li, Bing Zhang, Ming Wang, Ming Yang, Jipu Wang, Dejian Zhou and Junsen Yun
Sensors 2025, 25(14), 4481; https://doi.org/10.3390/s25144481 - 18 Jul 2025
Viewed by 511
Abstract
In the contemporary big data era, data-driven prognostic and health management (PHM) methodologies have emerged as indispensable tools for ensuring the secure and reliable operation of complex equipment systems. Central to these methodologies is the accurate prediction of remaining useful life (RUL), which [...] Read more.
In the contemporary big data era, data-driven prognostic and health management (PHM) methodologies have emerged as indispensable tools for ensuring the secure and reliable operation of complex equipment systems. Central to these methodologies is the accurate prediction of remaining useful life (RUL), which serves as a pivotal cornerstone for effective maintenance and operational decision-making. While significant advancements in computer hardware and artificial intelligence (AI) algorithms have catalyzed substantial progress in AI-based RUL prediction, extant research frequently exhibits a narrow focus on specific algorithms, neglecting a comprehensive and comparative analysis of AI techniques across diverse equipment types and operational scenarios. This study endeavors to bridge this gap through the following contributions: (1) A rigorous analysis and systematic categorization of application scenarios for equipment RUL prediction, elucidating their distinct characteristics and requirements. (2) A comprehensive summary and comparative evaluation of several AI algorithms deemed suitable for RUL prediction, delineating their respective strengths and limitations. (3) An in-depth comparative analysis of the applicability of AI algorithms across varying application contexts, informed by a nuanced understanding of different application scenarios and AI algorithm research. (4) An insightful discussion on the current challenges confronting AI-based RUL prediction technology, coupled with a forward-looking examination of its future prospects. By furnishing a meticulous and holistic understanding of the traits of various AI algorithms and their contextual applicability, this study aspires to facilitate the attainment of optimal application outcomes in the realm of equipment RUL prediction. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

25 pages, 2820 KiB  
Article
Fault Detection of Cyber-Physical Systems Using a Transfer Learning Method Based on Pre-Trained Transformers
by Pooya Sajjadi, Fateme Dinmohammadi and Mahmood Shafiee
Sensors 2025, 25(13), 4164; https://doi.org/10.3390/s25134164 - 4 Jul 2025
Viewed by 605
Abstract
As industries become increasingly dependent on cyber-physical systems (CPSs), failures within these systems can cause significant operational disruptions, underscoring the critical need for effective Prognostics and Health Management (PHM). The large volume of data generated by CPSs has made deep learning (DL) methods [...] Read more.
As industries become increasingly dependent on cyber-physical systems (CPSs), failures within these systems can cause significant operational disruptions, underscoring the critical need for effective Prognostics and Health Management (PHM). The large volume of data generated by CPSs has made deep learning (DL) methods an attractive solution; however, imbalanced datasets and the limited availability of fault-labeled data continue to hinder their effective deployment in real-world applications. To address these challenges, this paper proposes a transfer learning approach using a pre-trained transformer architecture to enhance fault detection performance in CPSs. A streamlined transformer model is first pre-trained on a large-scale source dataset and then fine-tuned end-to-end on a smaller dataset with a differing data distribution. This approach enables the transfer of diagnostic knowledge from controlled laboratory environments to real-world operational settings, effectively addressing the domain shift challenge commonly encountered in industrial CPSs. To evaluate the effectiveness of the proposed method, extensive experiments are conducted on publicly available datasets generated from a laboratory-scale replica of a modern industrial water purification facility. The results show that the model achieves an average F1-score of 93.38% under K-fold cross-validation, outperforming baseline models such as CNN and LSTM architectures, and demonstrating the practicality of applying transformer-based transfer learning in industrial settings with limited fault data. To enhance transparency and better understand the model’s decision process, SHAP is applied for explainable AI (XAI). Full article
(This article belongs to the Special Issue Sensors and IoT Technologies for the Smart Industry)
Show Figures

Figure 1

16 pages, 2985 KiB  
Article
Fault Identification Model Using Convolutional Neural Networks with Transformer Architecture
by Yongxin Fan, Yiming Dang and Yangming Guo
Sensors 2025, 25(13), 3897; https://doi.org/10.3390/s25133897 - 23 Jun 2025
Viewed by 464
Abstract
With the advancement of industrial manufacturing and the shift toward high automation, machines have increasingly taken over many production tasks, greatly improving efficiency and reducing human labor. However, this also introduces new challenges, particularly the inability of machines to autonomously detect and diagnose [...] Read more.
With the advancement of industrial manufacturing and the shift toward high automation, machines have increasingly taken over many production tasks, greatly improving efficiency and reducing human labor. However, this also introduces new challenges, particularly the inability of machines to autonomously detect and diagnose faults. Such undetected issues may cause unexpected breakdowns, interrupting critical operations, leading to economic losses and potential safety hazards. To address this, the present study proposes a novel hybrid deep learning framework that integrates Convolutional Neural Networks (CNN) for feature extraction with Transformer architecture for temporal modeling. The model is validated using NASA’s CMAPSS dataset, a widely used benchmark that includes multi-sensor data and Remaining Useful Life (RUL) labels from aeroengines. By learning from time-series sensor data, the framework achieves accurate RUL predictions and early fault detection. Experimental results show that the model attains over 97% accuracy under both single and multiple operating conditions, highlighting its robustness and adaptability. These findings suggest the framework’s potential in developing intelligent maintenance systems and contribute to the field of Prognostics and Health Management (PHM), enabling more reliable, efficient, and self-monitoring industrial systems. Full article
(This article belongs to the Special Issue Communications and Networking Based on Artificial Intelligence)
Show Figures

Figure 1

17 pages, 794 KiB  
Article
Modeling of Distorted Degradation Data Based on Oil Analysis
by Yue Chen and Jian Shi
Appl. Sci. 2025, 15(12), 6531; https://doi.org/10.3390/app15126531 - 10 Jun 2025
Viewed by 241
Abstract
Degradation data are important in judging a machine’s health condition and providing early warning of machine failure. However, interference factors (e.g., oil top-ups) may distort degradation observations, causing the observed data to deviate from the actual physical degradation curve that engineers rely on. [...] Read more.
Degradation data are important in judging a machine’s health condition and providing early warning of machine failure. However, interference factors (e.g., oil top-ups) may distort degradation observations, causing the observed data to deviate from the actual physical degradation curve that engineers rely on. To address this distortion problem, this paper proposes a statistical correction framework to recover the actual degradation curve. The main contributions are as follows: First, we developed a degradation correction model that automatically identifies oil top-up events while globally rectifying distorted data, achieving an accurate reconstruction of physical degradation curves. Second, we developed a three-step explosion search algorithm for robust parameter estimation. Notably, though our methodology was initially developed for wear degradation analysis, this data-driven framework demonstrates adaptability to broader degradation scenarios. Finally, numerical simulations and case studies confirmed the practical effectiveness of the proposed method. Full article
Show Figures

Figure 1

19 pages, 4785 KiB  
Article
A Deep Equilibrium Model for Remaining Useful Life Estimation of Aircraft Engines
by Spyridon Plakias and Yiannis S. Boutalis
Electronics 2025, 14(12), 2355; https://doi.org/10.3390/electronics14122355 - 9 Jun 2025
Viewed by 471
Abstract
Estimating Remaining Useful Life (RUL) is crucial in modern Prognostic and Health Management (PHM) systems providing valuable information for planning the maintenance strategy of critical components in complex systems such as aircraft engines. Deep Learning (DL) models have shown great performance in the [...] Read more.
Estimating Remaining Useful Life (RUL) is crucial in modern Prognostic and Health Management (PHM) systems providing valuable information for planning the maintenance strategy of critical components in complex systems such as aircraft engines. Deep Learning (DL) models have shown great performance in the accurate prediction of RUL, building hierarchical representations by the stacking of multiple explicit neural layers. In the current research paper, we follow a different approach presenting a Deep Equilibrium Model (DEM) that effectively captures the spatial and temporal information of the sequential sensor. The DEM, which incorporates convolutional layers and a novel dual-input interconnection mechanism to capture sensor information effectively, estimates the degradation representation implicitly as the equilibrium solution of an equation, rather than explicitly computing it through multiple layer passes. The convergence representation of the DEM is estimated by a fixed-point equation solver while the computation of the gradients in the backward pass is made using the Implicit Function Theorem (IFT). The Monte Carlo Dropout (MCD) technique under calibration is the final key component of the framework that enhances regularization and performance providing a confidence interval for each prediction, contributing to a more robust and reliable outcome. Simulation experiments on the widely used NASA Turbofan Jet Engine Data Set show consistent improvements, with the proposed framework offering a competitive alternative for RUL prediction under diverse conditions. Full article
(This article belongs to the Special Issue Advances in Condition Monitoring and Fault Diagnosis)
Show Figures

Figure 1

27 pages, 4448 KiB  
Article
Remaining Useful Life Prediction for Rolling Bearings Based on TCN–Transformer Networks Using Vibration Signals
by Xiaochao Jin, Yaping Ji, Shiteng Li, Kailang Lv, Jianzheng Xu, Haonan Jiang and Shengnan Fu
Sensors 2025, 25(11), 3571; https://doi.org/10.3390/s25113571 - 5 Jun 2025
Cited by 1 | Viewed by 837
Abstract
Remaining useful life (RUL) prediction plays a core role in industrial prognostics and health management (PHM), requiring data-driven models with higher predictive capability for accurate long time series prediction. Developing reliable deep learning-based models based on multi-sensor monitoring data is fundamental for accurately [...] Read more.
Remaining useful life (RUL) prediction plays a core role in industrial prognostics and health management (PHM), requiring data-driven models with higher predictive capability for accurate long time series prediction. Developing reliable deep learning-based models based on multi-sensor monitoring data is fundamental for accurately predicting vibration trends during bearing operation and is crucial for bearing fault diagnosis and RUL prediction. In this work, a method for constructing a health index based on vibration signal is developed to describe the performance features of rolling bearings, which mainly includes feature extraction, sensitive feature index selection, dimensionality reduction, and normalization methods. In addition, a new RUL prediction method, TCN–Transformer, is developed which can efficiently learn and integrate local and global features of vibration signals, addressing the long time series prediction problem in RUL prediction. The TCN extracts local features, while the Transformer learns global features, both of which are seamlessly integrated through a specially designed feature fusion attention module. Both the health indicator (HI) constructed from extracted time domain and frequency domain feature parameters and the RUL prediction method were rigorously validated using the IEEE PHM 2012 Data Challenge dataset for rolling bearing prognostics. By employing the proposed HI construction method, the average comprehensive bearing performance index, used to evaluate RUL prediction accuracy, is improved by 8.69% across the entire dataset compared to the original feature-based composite index. The proposed RUL prediction model can more accurately predict the RUL of rolling bearings under different conditions, reducing the RMSE and MAE by 14.62% and 9.26%, respectively, and improving the SCORE by 13.04%. These results underscore the efficacy and superiority of our approach in RUL prediction of rotating machinery across varying conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

17 pages, 1448 KiB  
Article
Novel Hybrid Prognostics of Aircraft Systems
by Shuai Fu, Nicolas P. Avdelidis and Angelos Plastropoulos
Electronics 2025, 14(11), 2193; https://doi.org/10.3390/electronics14112193 - 28 May 2025
Viewed by 404
Abstract
Accurate forecasting of the remaining useful life (RUL) of aviation equipment is crucial for enhancing safety and reducing maintenance costs. This study presents a novel hybrid prognostic methodology that integrates physics-based and data-driven models to improve RUL estimations for critical aircraft components. The [...] Read more.
Accurate forecasting of the remaining useful life (RUL) of aviation equipment is crucial for enhancing safety and reducing maintenance costs. This study presents a novel hybrid prognostic methodology that integrates physics-based and data-driven models to improve RUL estimations for critical aircraft components. The physics-based approach simulates long-term degradation patterns using fundamental principles such as mass conservation and Bernoulli’s equation, while the data-driven model employs a hyper tangent boosted neural network (HTBNN) to detect short-term anomalies and deviations in real-time sensor data. The integration of various models enhances accuracy, adaptability, and reliability in prognostics. The proposed methodology is assessed using NASA’s N-CMAPSS dataset for gas turbines and a fuel system test rig, demonstrating a 15% improvement in prediction accuracy and a 20% reduction in uncertainty compared to traditional methods. These findings highlight the potential for widespread application of this hybrid methodology in predictive maintenance and prognostic and health management (PHM) of aircraft systems. Full article
(This article belongs to the Special Issue Fault Detection Technology Based on Deep Learning)
Show Figures

Figure 1

25 pages, 28786 KiB  
Article
Text-Conditioned Diffusion-Based Synthetic Data Generation for Turbine Engine Sensor Analysis and RUL Estimation
by Luis Pablo Mora-de-León, David Solís-Martín, Juan Galán-Páez and Joaquín Borrego-Díaz
Machines 2025, 13(5), 374; https://doi.org/10.3390/machines13050374 - 30 Apr 2025
Viewed by 834
Abstract
This paper introduces a novel framework for generating synthetic time-series data from turbine engine sensor readings using a text-conditioned diffusion model. The approach begins with dataset preprocessing, including correlation analysis, feature selection, and normalization. Principal Component Analysis (PCA) transforms the normalized signals into [...] Read more.
This paper introduces a novel framework for generating synthetic time-series data from turbine engine sensor readings using a text-conditioned diffusion model. The approach begins with dataset preprocessing, including correlation analysis, feature selection, and normalization. Principal Component Analysis (PCA) transforms the normalized signals into three components, mapped to the RGB channels of an image. These components, combined with engine identifiers and cycle information, form compact 19 × 19 × 3 pixel images, later scaled to 512 × 512 × 3 pixels. A variational autoencoder (VAE)-based diffusion model, fine-tuned on these images, leverages text prompts describing engine characteristics to generate high-quality synthetic samples. A reverse transformation pipeline reconstructs synthetic images back into time-series signals, preserving the original engine-specific attributes while removing padding artifacts. The quality of the synthetic data is assessed by training Remaining Useful Life (RUL) estimation models and comparing performance across original, synthetic, and combined datasets. Results demonstrate that synthetic data can be beneficial for model training, particularly in the early epochs when working with limited datasets. Compared to existing approaches, which rely on generative adversarial networks (GANs) or deterministic transformations, the proposed framework offers enhanced data fidelity and adaptability. This study highlights the potential of text-conditioned diffusion models for augmenting time-series datasets in industrial Prognostics and Health Management (PHM) applications. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

15 pages, 643 KiB  
Article
Multichannel Attention-Based TCN-GRU Network for Remaining Useful Life Prediction of Aero-Engines
by Jiabao Zou and Ping Lin
Energies 2025, 18(8), 1899; https://doi.org/10.3390/en18081899 - 8 Apr 2025
Viewed by 683
Abstract
Predictive maintenance is a cornerstone of modern aerospace engineering, critical for maintaining the reliability and operational performance of aircraft engines. As a major component of prognostics and health management (PHM) technology, the accurate prediction of remaining useful life (RUL) enables proactive maintenance strategies, [...] Read more.
Predictive maintenance is a cornerstone of modern aerospace engineering, critical for maintaining the reliability and operational performance of aircraft engines. As a major component of prognostics and health management (PHM) technology, the accurate prediction of remaining useful life (RUL) enables proactive maintenance strategies, minimizes downtime, reduces costs, and enhances safety. This paper presents an innovative RUL prediction model designed specifically for aircraft engine applications. The model combines a temporal convolutional network (TCN) with multichannel attention and a gated recurrent unit (GRU) network. The framework begins with data pre-processing, followed by temporal feature extraction through an overlaying TCN network. Then, a multichannel attention mechanism fuses information from multiple TCN blocks, capturing rich feature representations. Finally, the fused data are processed by the GRU network to deliver precise RUL predictions. An improvement of at least 8.1% and 12.6% has been observed in two prediction metrics for the CMAPSS dataset when compared to other models. Full article
Show Figures

Figure 1

33 pages, 8558 KiB  
Article
Development of Real-Time Models of Electromechanical Actuators for a Hybrid Iron Bird of a Regional Aircraft
by Antonio Carlo Bertolino, Jean-Charles Maré, Silvio Akitani, Andrea De Martin and Giovanni Jacazio
Actuators 2025, 14(4), 172; https://doi.org/10.3390/act14040172 - 31 Mar 2025
Viewed by 644
Abstract
This study presents the development of a real-time simulation model for electromechanical actuators tailored to a hybrid iron bird for next-generation regional turboprop aircraft. This iron bird is aimed at integrating real and virtual components, enabling advanced validation of flight control systems while [...] Read more.
This study presents the development of a real-time simulation model for electromechanical actuators tailored to a hybrid iron bird for next-generation regional turboprop aircraft. This iron bird is aimed at integrating real and virtual components, enabling advanced validation of flight control systems while balancing risk and cost. The mathematical models of actuators needed for the development and operation of the iron bird must comply with stringent requirements, especially in terms of computational cost. A novel two-step iterative methodology is proposed, combining bottom-up and top-down approaches. This process begins with simplified low-fidelity models. Then, the models are incrementally refined to capture complex dynamics while maintaining computational efficiency. Using the proposed approach, the computational time of the real-time model remained almost unvaried and consistent with the sampling frequency, while the number of state variables and the range of described phenomena grew significantly. The real-time model is validated against simulated data from a reference high-fidelity model and experimental data, achieving excellent agreement while reducing the computational time by 93%. The enhanced model incorporates selected failure modes equivalent models regarding the electric motor, power drive unit, and mechanical transmission, supporting possible future prognostics and health management (PHM) applications. These results showcase a scalable solution for integrating electromechanical actuation in modern aerospace systems, paving the way for full virtual iron birds and greener aviation technologies. Full article
Show Figures

Figure 1

25 pages, 11555 KiB  
Article
Scalable Data Transformation Models for Physics-Informed Neural Networks (PINNs) in Digital Twin-Enabled Prognostics and Health Management (PHM) Applications
by Atuahene Kwasi Barimah, Ogwo Precious Onu, Octavian Niculita, Andrew Cowell and Don McGlinchey
Computers 2025, 14(4), 121; https://doi.org/10.3390/computers14040121 - 26 Mar 2025
Viewed by 1326
Abstract
Digital twin (DT) technology has become a key enabler for prognostics and health management (PHM) in complex industrial systems, yet scaling predictive models for multi-component degradation (MCD) scenarios remains challenging, particularly when transferring insights from predictive models of smaller systems developed with limited [...] Read more.
Digital twin (DT) technology has become a key enabler for prognostics and health management (PHM) in complex industrial systems, yet scaling predictive models for multi-component degradation (MCD) scenarios remains challenging, particularly when transferring insights from predictive models of smaller systems developed with limited data to larger systems. To address this, a physics-informed neural network (PINN) framework that integrates a standardized scaling methodology, enabling scalable DT analytics for MCD prognostics, was developed in this paper. Our approach employs a systematic DevOps workflow that features containerized PINN DT analytics deployed on a Kubernetes cluster for dynamic resource optimization, a real-time DT platform (PTC ThingWorx™), and a custom API for bidirectional data exchange that connects the cluster to the DT platform. A key contribution of this paper is the scalable DT model, which facilitates transfer learning of degradation patterns across heterogeneous hydraulic systems. Three (3) hydraulic system configurations were modeled, analyzing multi-component filter degradation under pump speeds of 700–900 RPM. Trained on limited data from a reference system, the scaled PINN model achieved 88.98% accuracy for initial degradation detection at 900 RPM—outperforming an unscaled baseline of 64.13%—with consistent improvements across various speeds and thresholds. This work advances PHM analytics by reducing costs and development time, providing a scalable framework for cross-system DT deployment. Full article
Show Figures

Figure 1

16 pages, 2486 KiB  
Article
Remaining Useful Life Prediction Based on Wear Monitoring with Multi-Attribute GAN Augmentation
by Xiaojun Zhu, Yan Pan, Bin Lan, He Wang and Huixin Huang
Lubricants 2025, 13(4), 145; https://doi.org/10.3390/lubricants13040145 - 25 Mar 2025
Viewed by 520
Abstract
With the growing imperative for advanced prognostics and health management (PHM) systems, remaining useful life (RUL) prediction through lubricating oil monitoring has become pivotal for intelligent preventive maintenance. However, existing methodologies face dual challenges: the inherent sparsity of wear monitoring data and the [...] Read more.
With the growing imperative for advanced prognostics and health management (PHM) systems, remaining useful life (RUL) prediction through lubricating oil monitoring has become pivotal for intelligent preventive maintenance. However, existing methodologies face dual challenges: the inherent sparsity of wear monitoring data and the complex interdependencies among multiple indicators, leading to compromised prediction accuracy that fails to satisfy reliability requirements. To address these limitations, this study proposes a novel multi-indicator RUL prediction framework with three technical innovations. First, a fuzzy probabilistic characterization method is proposed to quantify multivariate wear state in the lubricating system, using the weighted fusion of multi-source indicators. Second, a novel CMC-GAN (Centralized Multi-channel Constrained Generative Adversarial Network) architecture is designed. It can increase data using physical knowledge. This solves the problem of sparse data and keeps the important relationships between indicators. Furthermore, we establish a Wiener-process-based degradation model with time-varying coefficients to capture stochastic wear deterioration patterns. The expectation-maximization algorithm with Bayesian updating is employed for real-time parameter calibration, enabling a dynamic derivation of the probability density functions for RUL estimation. Finally, the validity and practicality of the proposed model are verified through actual engineering case studies. Full article
(This article belongs to the Special Issue Wear Mechanism Identification and State Prediction of Tribo-Parts)
Show Figures

Figure 1

Back to TopTop