Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = Pinus pinea L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2490 KiB  
Article
Endophytic Bacterial Consortia Isolated from Disease-Resistant Pinus pinea L. Increase Germination and Plant Quality in Susceptible Pine Species (Pinus radiata D. Don)
by Frederico Leitão, Marta Alves, Isabel Henriques and Glória Pinto
Forests 2025, 16(7), 1161; https://doi.org/10.3390/f16071161 - 14 Jul 2025
Viewed by 289
Abstract
The nursery phase is vital for forest regeneration, yet studies on plant growth-promoting (PGP) bacteria to enhance sustainable nursery production in forest species are scarce. This study explores whether endophytic bacteria from disease-resistant Pinus pinea L. can improve germination and seedling quality in [...] Read more.
The nursery phase is vital for forest regeneration, yet studies on plant growth-promoting (PGP) bacteria to enhance sustainable nursery production in forest species are scarce. This study explores whether endophytic bacteria from disease-resistant Pinus pinea L. can improve germination and seedling quality in susceptible Pinus radiata D. Don. Root endophytes were isolated, screened for PGP traits, and identified via 16S rRNA gene sequencing. Bacterial formulations were applied to P. radiata seeds to determine their impact on germination and plant quality indicators (photosynthetic pigments and other metabolites). Paenibacillaceae (19%) and Bacillaceae (13%) were predominant among 68 isolates, with 94% producing indole-3-acetic acid, and Burkholderiaceae showing the broadest PGP trait diversity. Seedlings inoculated with formulation C3 (Caballeronia R.M3R3, Rhodococcus T.M4R4, and Mesorhizobium R.M1R2) displayed an improved germination rate (89% compared to 71% from the uninoculated control), while those inoculated with formulation P4 (Paenibacillus T.M5R4, Bacillus R.M2R7, Acinetobacter T.M2R22, and Paraburkholderia R.M1R3) showed an improved germination rate (81%), increased amount of starch (0.4-fold), and free amino acids (1.5-fold). This study presents a comprehensive approach, from endophyte isolation to in vivo tests, highlighting two bacterial formulations as candidates for further proof-of-concept nursery trials. Ultimately, these bioinoculants represent eco-friendly strategies to enhance forest seedling establishment and support sustainable forest management. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 2609 KiB  
Article
Genetic and Epigenetic Diversity of Pinus pinea L.: Conservation Implications for Priority Populations in Greece
by Evangelia V. Avramidou, Ermioni Malliarou, Evangelia Korakaki, George Mantakas and Konstantinos Kaoukis
Genes 2025, 16(4), 361; https://doi.org/10.3390/genes16040361 - 21 Mar 2025
Viewed by 2507
Abstract
Background/Objectives: The stone pine (Pinus pinea L.) is an evergreen coniferous species valued for its edible seeds, which provide significant economic benefits to local populations. Remarkable phenotypic plasticity but low genetic variation characterizes the species. In Greece, natural populations of P. pinea [...] Read more.
Background/Objectives: The stone pine (Pinus pinea L.) is an evergreen coniferous species valued for its edible seeds, which provide significant economic benefits to local populations. Remarkable phenotypic plasticity but low genetic variation characterizes the species. In Greece, natural populations of P. pinea are part of the Natura 2000 network and are protected under Annex I Priority Habitat type 2270. These populations, located across six Natura 2000 sites (including two islands), face increasing threats from tourism and climate change, leading to ecosystem degradation. Genetic and epigenetic studies are critical for the conservation of forest species because they provide insights into the genetic diversity, adaptive potential, and resilience of species, helping to inform effective management strategies and protect biodiversity in changing environments. This study aims to assess the genetic and epigenetic diversity of P. pinea in four Natura 2000 sites using molecular markers and to propose conservation strategies to ensure the species’ long-term sustainability. Additionally, a preliminary investigation of water potential under maximum daily water demand was conducted to evaluate the species’ adaptive response. Methods: Genetic analysis was performed using Amplified Fragment Length Polymorphism (AFLP) markers, while epigenetic analysis was conducted using Methylation-Susceptible Amplified Polymorphism (MSAP) markers. Sampling was carried out in four Natura 2000 areas, where genetic and epigenetic diversity patterns were examined. Furthermore, a preliminary study on water potential under peak daily water demand conditions was conducted to assess the species’ physiological adaptation to environmental stress. Results: The results of this study provide valuable insights into conservation strategies by highlighting the potential role of epigenetic variation in the adaptability of P. pinea, despite its low genetic variability. Understanding the species’ epigenetic flexibility can inform conservation efforts aimed at enhancing its resilience to environmental stressors, such as climate change. Additionally, the preliminary water potential analysis contributes to identifying physiological traits that may help predict the species’ survival under varying environmental conditions, guiding the development of more targeted conservation practices and management plans. Further research could refine these findings and strengthen their application in conservation efforts. Conclusions: The conclusions emphasize the critical importance of this research in informing conservation efforts for P. pinea in Greece, particularly considering climate change and human pressures. The results highlight the need for both in-situ and ex-situ conservation strategies to ensure the long-term sustainability of the species. The key recommendations include the protection of natural habitats, the implementation of controlled seed collection practices, and further research into the epigenetic mechanisms that may enhance the species’ resilience to environmental stress. Future studies should focus on deepening our understanding of these epigenetic factors and their role in the adaptability of P. pinea, which will be essential for developing more effective conservation measures. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

9 pages, 832 KiB  
Brief Report
Effect of Fertilization on the Performance of Adult Pinus pinea Trees
by Verónica Loewe-Muñoz, Claudia Bonomelli, Claudia Delard, Rodrigo Del Río and Monica Balzarini
Biology 2025, 14(2), 216; https://doi.org/10.3390/biology14020216 - 19 Feb 2025
Viewed by 707
Abstract
Background: Pinus pinea L. (stone pine) produces pine nuts of high value. Its cultivation is carried out in forests and plantations, with intensive management techniques being studied to stimulate diameter growth, which is positively related to cone production. Aims: To evaluate the effect [...] Read more.
Background: Pinus pinea L. (stone pine) produces pine nuts of high value. Its cultivation is carried out in forests and plantations, with intensive management techniques being studied to stimulate diameter growth, which is positively related to cone production. Aims: To evaluate the effect of fertilization in a 30-year-old plantation and to understand if adult trees respond to nutritional management. Methods: A trial with completely randomized block design was established with two treatments (fertilization/control) and three repetitions. The plantation, with a density of 204 trees/ha, is located in central Chile, on a sandy-loam soil with neutral pH, medium organic matter content, and a fertility condition that limits tree development. Fertilization considered the repeated application of macro (N, P, K, S, Mg) and micronutrients (B, Fe, and Zn). Periodic measurements of height, stem and crown diameter, and cone production were made up to age 36. Cone production was evaluated using mixed generalized linear models and growth variables using ANOVA (analysis of variance). Results: Significant effects of fertilization on DBH annual growth (35% higher than the control, p < 0.001) and in cone production (3 times higher, p < 0.0001) were found. Conclusions: Fertilization is a useful practice to improve the growth and cone productivity of the species. Full article
(This article belongs to the Special Issue Dendrochronology in Arid and Semiarid Regions)
Show Figures

Figure 1

16 pages, 8433 KiB  
Article
Land Use/Change and Local Population Movements in Stone Pine Forests: A Case Study of Western Türkiye
by Seda Erkan Buğday, Ender Buğday, Taner Okan, Coşkun Köse and Sezgin Özden
Forests 2025, 16(2), 243; https://doi.org/10.3390/f16020243 - 27 Jan 2025
Viewed by 1014
Abstract
One of the important distribution areas of stone pine (Pinus pinea L.), a native tree species of the Mediterranean Basin in Türkiye, is the Kozak Basin. Pine nut production plays an important role in the livelihood of the rural people of the [...] Read more.
One of the important distribution areas of stone pine (Pinus pinea L.), a native tree species of the Mediterranean Basin in Türkiye, is the Kozak Basin. Pine nut production plays an important role in the livelihood of the rural people of the Kozak Basin. However, in recent years, as a result of mining activities, climate change, and damage caused by the alien invasive species, the western conifer seed bug (Leptoglossus occidentalis Heidemann 1910 (Hemiptera; Coreidae), the decrease in cone and seed yield in the basin has reached significant dimensions. This process has caused the local people’s income sources to decrease. In this study, land use and land cover (LULC) changes and population changes in the Kozak Basin were discussed during the process, where changing forest land functions, especially economic effects, triggered vulnerable communities due to various factors such as climate change and insect damage. LULC classes of the Kozak Basin and their changes in three time periods are presented using the maximum likelihood method. In addition, the exponential population growth rates of the local people in three different time periods were calculated and these rates were interpolated in the spatial plane with a Kriging analysis. In conclusion, the responses of vulnerable communities to the cone and seed yield decline in the Kozak Basin are manifested by LULC changes and migration from the basin. Therefore, in the management of P. pinea areas, the creation of regulations within the framework of sustainability understanding regardless of ownership difference, stakeholder participatory approach management, close monitoring of ecological events occurring in the basin, awareness of vulnerable communities, and alternative livelihoods can be supported. Full article
(This article belongs to the Special Issue Forest Management: Planning, Decision Making and Implementation)
Show Figures

Figure 1

17 pages, 3490 KiB  
Article
Near-Real-Time Detection of Insect Outbreaks in Urban Trees Using a PlanetScope Time Series
by Valentina Falanga, Saverio Francini, Francesco Parisi, Alice Cavalli, Paolo De Fioravante, Benedetta Cucca, Giovanni D’Amico, Gherardo Chirici, Bruno Lasserre, Marco Ottaviano, Michele Munafò and Marco Marchetti
Forests 2024, 15(12), 2261; https://doi.org/10.3390/f15122261 - 23 Dec 2024
Viewed by 1305
Abstract
A critical challenge for urban forests is the arrival of Toumeyella parvicornis (or pine tortoise scale) in Italy, as this species damages stone pine (Pinus pinea L.), an emblematic Mediterranean species. The aim of this study is to evaluate the effectiveness of [...] Read more.
A critical challenge for urban forests is the arrival of Toumeyella parvicornis (or pine tortoise scale) in Italy, as this species damages stone pine (Pinus pinea L.), an emblematic Mediterranean species. The aim of this study is to evaluate the effectiveness of remote-sensing data for monitoring pest invasions in the urban area of Rome, using PlanetScope images with a 1-day revisit time and 3 m spatial resolution, making them ideal for detecting outbreaks in complex urban areas. First, we constructed a reference dataset, georeferencing 238 healthy trees in Tenuta San Rossore (Tuscany) and more than 2000 damaged trees in Rome’s green areas. In any case, this dataset of healthy trees—obtained from forest areas—was expected to exhibit higher photosynthetic activity compared to urban green areas. Second, more than 30,000 PlanetScope images were analyzed to test the effectiveness of the Renormalized Difference Vegetation Index in detecting this specific forest disturbance. Finally, different thresholds were examined, allowing for the identification of an optimal threshold to discriminate healthy trees from damaged trees. The index results showed a marked drop during the summer in the infested areas, compared to the healthy areas. The identified threshold provided 99% accuracy in detecting infested trees. The approach applied in this study demonstrated that PlanetScope imagery proved effective in detecting T. parvicornis, leading to promising results. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

19 pages, 2856 KiB  
Article
Efficiency of Mobile Laser Scanning for Digital Marteloscopes for Conifer Forests in the Mediterranean Region
by Francesca Giannetti, Livia Passarino, Gianfrancesco Aleandri, Costanza Borghi, Elia Vangi, Solaria Anzilotti, Sabrina Raddi, Gherardo Chirici, Davide Travaglini, Alberto Maltoni, Barbara Mariotti, Andrés Bravo-Oviedo, Yamuna Giambastiani, Patrizia Rossi and Giovanni D’Amico
Forests 2024, 15(12), 2202; https://doi.org/10.3390/f15122202 - 14 Dec 2024
Cited by 1 | Viewed by 1314
Abstract
This study evaluates the performance of the ZEB Horizon RT portable mobile laser scanner (MLS) in simulating silvicultural thinning operations across three different Tuscan forests dominated by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Italian cypress (Cupressus sempervirens L.), and Stone pine ( [...] Read more.
This study evaluates the performance of the ZEB Horizon RT portable mobile laser scanner (MLS) in simulating silvicultural thinning operations across three different Tuscan forests dominated by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Italian cypress (Cupressus sempervirens L.), and Stone pine (Pinus pinea L.). The aim is to compare the efficiency and accuracy of the MLS with traditional dendrometric methods. The study established three marteloscopes, each covering a 50 m × 50 m plot area (0.25 ha). Traditional dendrometric methods involved a team georeferencing trees using a total station and measuring the diameter at breast height (DBH) and selected tree heights (H) to calculate the growing stock volume (GSV). The MLS survey was carried out by a two-person team, who processed the point cloud data with LiDAR 360 software to automatically identify the tree positions, DBH, and H. The methods were compared based on the time, cost, and simulated felling volume. The MLS method was more time-efficient, saving nearly one and a half hours per marteloscope, equivalent to EUR 170. This advantage was most significant in denser stands, especially the Italian cypress forest. Both methods were comparable in terms of accuracy for Douglas-fir and Stone pine stands, with no significant differences in felling number or volume, although greater differences were noted for the Italian cypress forest. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 1283 KiB  
Article
Diameter Increment Estimations of Open-Grown Stone Pine (Pinus pinea L.) Trees in Urban Parks in Istanbul, Türkiye
by Hacı Abdullah Uçan, Emrah Özdemir, Serhun Sağlam, Gafura Aylak Özdemir and Ender Makineci
Sustainability 2024, 16(22), 9793; https://doi.org/10.3390/su16229793 - 10 Nov 2024
Viewed by 1289
Abstract
Open-grown trees in cities can improve environmental conditions by providing sustainable ecosystem services. Reliable data are necessary for assessing the functions of urban trees. The diameter at breast height (DBH), diameter increment, and annual ring measurements are the main parameters in the development [...] Read more.
Open-grown trees in cities can improve environmental conditions by providing sustainable ecosystem services. Reliable data are necessary for assessing the functions of urban trees. The diameter at breast height (DBH), diameter increment, and annual ring measurements are the main parameters in the development of reliable models. To model periodic mean diameter increments calculated for different time periods (5, 10, 15, 20, and 25 years), a total of 43 open-grown stone pines (Pinus pinea L.) of different diameter classes were sampled in several urban parks in Istanbul, Türkiye. The DBH was measured, and increment cores were extracted from each tree at 1.30 m stem height using an increment borer. Tree age at breast height was determined by counting annual rings, and periodic mean diameter increments were calculated for different periods based on the measured tree-ring widths. The periodic mean increments of different periods were related to the inside-bark diameter at breast height and tree age. Since there was no significant relationship between tree age and periodic mean increments for each period’s length, as shown in the correlation analysis, models used to estimate the periodic mean increments of inside-bark DBH were developed using the least squares regression and quantile regression (QR) techniques. As the period length increased, the estimation success of the diameter increment models increased while the mean absolute percentage error (MAE) values decreased from 40 to 32%. The best model was the one used for the last 25-year period with the quantile value q = 0.50 which estimated the diameter increment with an RMSE = 1.391 mm/year and MAE = 32.27%. Full article
Show Figures

Figure 1

25 pages, 9215 KiB  
Article
Phytochemical Composition and Characterization of In Vitro Bioactivities from Pinus Using Green Process
by Amel Chammam, Mehrez Romdhane, Luc Fillaudeau and Jalloul Bouajila
Molecules 2024, 29(22), 5295; https://doi.org/10.3390/molecules29225295 - 9 Nov 2024
Cited by 2 | Viewed by 1438
Abstract
Pinus species are notable in Mediterranean regions due to their ecological and economic importance. Various parts of these species are widely used in traditional medicine, especially pinecones, which are a significant source of bioactive compounds. The current study aimed to evaluate the phytochemical [...] Read more.
Pinus species are notable in Mediterranean regions due to their ecological and economic importance. Various parts of these species are widely used in traditional medicine, especially pinecones, which are a significant source of bioactive compounds. The current study aimed to evaluate the phytochemical composition and biological properties of the aqueous extracts obtained by maceration from three Pinus petal fractions, from P. halepensis Mill., P. brutia Ten., and P. pinea L. (APW, BPW, and PPW respectively), and the core fractions of the same species (ACW, BCW, and PCW respectively). The results showed that APW demonstrated superior performance compared to other species and fractions (p ≤ 0.05), with the highest total polyphenol content (203.51 mg GAE/g DW) and the highest antioxidant potential (IC50 = 13.51 µg/mL) against DPPH free radical. All extracts showed high anticancer activity against HeLa and HepG2 cancer cell lines, and low inhibition against HEK-293, a normal cell line (<15%), indicating that none of extracts have any toxicity effect. Furthermore, only APW exhibits a significant inhibition against α-glucosidase with 77.20% at 50 µg/mL. HPLC-DAD analysis was conducted to identify 14 compounds. GC-MS analysis was conducted to identify 28 compounds, of which 11 were detected for the first time in this species. This study offers valuable insights into phytochemistry and potential therapeutic applications of pinecones. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

12 pages, 1426 KiB  
Article
Resilience of Pinus pinea L. Trees to Drought in Central Chile Based on Tree Radial Growth Methods
by Verónica Loewe-Muñoz, Rodrigo Del Río, Claudia Delard, Antonio M. Cachinero-Vivar, J. Julio Camarero, Rafael Navarro-Cerrillo and Mónica Balzarini
Forests 2024, 15(10), 1775; https://doi.org/10.3390/f15101775 - 9 Oct 2024
Viewed by 1405
Abstract
The increasing occurrence of dry and hot summers generates chronic water deficits that negatively affect tree radial growth. This phenomenon has been widely studied in natural stands of native species but not in commercial plantations of exotic tree species. In central Chile, where [...] Read more.
The increasing occurrence of dry and hot summers generates chronic water deficits that negatively affect tree radial growth. This phenomenon has been widely studied in natural stands of native species but not in commercial plantations of exotic tree species. In central Chile, where the species is increasingly planted, the dynamics of stone pine (Pinus pinea L.) growth under drought have been little explored. We studied the impact of drought on four stone pine plantations growing in central Chile. We sampled and cross-dated a total of 112 trees from four sites, measured their tree-ring width (RWL) series, and obtained detrended series of ring width indices (RWIs). Then, we calculated three resilience indices during dry years (Rt, resistance; Rc, recovery; and Rs, resilience), and the correlations between the RWI series and seasonal climate variables. We found the lowest growth rate (1.94 mm) in the driest site (Peñuelas). Wet conditions in the previous winter and current spring favored growth. In the wettest site (Pastene), the growth rates were high (4.87 mm) and growth also increased in response to spring thermal amplitude. Overall, fast-growing trees were less resilient than slow-growing trees. Drought reduced stone pine stem growth and affected tree resilience to hydric deficit. At the stand level, growth rates and resistance were driven by winter and spring precipitation. Fast-growing trees were more resistant but showed less capacity to recover after a drought. In general, stone pine showed a high post-drought resilience due to a high recovery after drought events. The fact that we found high resilience in non-native habitats, opens new perspectives for stone pine cropping, revealing that it is possible to explore new areas to establish the species. We conclude that stone pine shows a good acclimation in non-native, seasonally dry environments. Full article
(This article belongs to the Special Issue Effects of Disturbances and Climate Change on Woody Plants)
Show Figures

Figure 1

15 pages, 2133 KiB  
Article
Influence of Climate Change on Carbon Sequestration in Pine Forests of Central Spain
by Álvaro Enríquez-de-Salamanca
Atmosphere 2024, 15(10), 1178; https://doi.org/10.3390/atmos15101178 - 30 Sep 2024
Cited by 1 | Viewed by 1531
Abstract
Climate change influences carbon sequestration by forests, either positively or negatively. In the Mediterranean region, this effect is predominantly negative, although it seems to be compensated by the elevation. This study aims to analyse the impact of climate change on carbon sequestration in [...] Read more.
Climate change influences carbon sequestration by forests, either positively or negatively. In the Mediterranean region, this effect is predominantly negative, although it seems to be compensated by the elevation. This study aims to analyse the impact of climate change on carbon sequestration in five pine species—Pinus halepensis, P. nigra, P. pinaster, P. pinea, and P. sylvestris—growing across an altitudinal gradient from 573 to 1743 m a.s.l. in central Spain. Data from 300 forest inventory plots in ten forests were used to first calculate carbon sequestration in 2024. To estimate future carbon sequestration, the expected values of precipitation and temperature for 2100 were determined, based on regionalised climate scenarios for RCP4.5 and RCP8.5. Values from 13 meteorological stations located around the forests, at different elevations, were analysed, conducting a statistical analysis to determine whether variations were significant. A statistically significant variation was detected for temperature and precipitation changes only under the RCP8.5 scenario. Using temperature and precipitation data for 2024 and 2100, net potential productivity in both years was established, considering its variation ratio equivalent as equivalent to that of growth and carbon sequestration. An inflection point was detected in 2100 at 1646 m a.s.l., with a decrease in productivity below and an increase above that elevation. Results reflect a decline in carbon sequestration in all the species, ranging from 6% in P. sylvestris to 28% in P. halepensis, conditioned by the elevation. Regionally, the average decrease would be 16.4%. In temperate and boreal regions, forest growth is expected to increase due to climate change, but the Mediterranean region will experience a significant decrease, except in mountain areas. To maintain current levels of carbon sequestration, it would be necessary to increase the existing carbon sinks through new plantations and the restoration of degraded forests. Full article
(This article belongs to the Special Issue Climate Change and Forest Environment (2nd Edition))
Show Figures

Figure 1

16 pages, 6023 KiB  
Article
Spatial Patterns of Productivity and Human Development Potentials for Pinus pinea L.
by Verónica Loewe-Muñoz, Rodrigo Del Río, Claudia Delard, Ricardo González and Mónica Balzarini
Forests 2024, 15(9), 1537; https://doi.org/10.3390/f15091537 - 31 Aug 2024
Cited by 1 | Viewed by 1145
Abstract
Pinus pinea (stone pine), a Mediterranean species, is valued for its highly nutritious pine nuts and its ability to adapt to different environmental conditions. The species has been increasingly planted in Chile, where its main ecological requirements are met across a vast area. [...] Read more.
Pinus pinea (stone pine), a Mediterranean species, is valued for its highly nutritious pine nuts and its ability to adapt to different environmental conditions. The species has been increasingly planted in Chile, where its main ecological requirements are met across a vast area. However, new plantations are established without considering social dimensions. Policymakers can regulate private decisions on tree planting through the appropriate design of economic incentives to foster social well-being. The objective of this work was to describe spatial patterns of potential areas for the cultivation of the exotic nut-bearing conifer P. pinea in central Chile and the possible correlation of those patterns with human development indices. Spatial data layers of the municipality development index (MDI), elevation, edaphoclimatic variables, and stone pine nut’s productive potential were overlapped at the municipality scale along 1225 km in central Chile. A spatial principal component analysis (sPCA) was used to integrate multiple dimensions, summarizing covariation structures, and identifying spatial patterns in the study area. Key results showed that spatial patterns of the potential productive index (PPI) were strongly regulated by the spatial pattern of climate and soil variables, whereas the spatial pattern of MDI showed a cryptic pattern and that the three dimensions of MDI—welfare, economy, and education—showed a different spatial movement, especially education and welfare. The results allow us to recommend that public policies boost municipality development through the promotion of P. pinea plantations and should target areas with a high productive potential and low MDI to generate socio-economic improvements. These findings are useful for the strategic spatial planning of the species cropping in Chile. Full article
(This article belongs to the Special Issue Multiple-Use and Ecosystem Services of Forests—2nd Edition)
Show Figures

Figure 1

17 pages, 13398 KiB  
Article
The Impact of Trees on the UHI Effect and Urban Environment Quality: A Case Study of a District in Pisa, Italy
by Greta Frosini, Agnese Amato, Francesca Mugnai and Fabrizio Cinelli
Atmosphere 2024, 15(1), 123; https://doi.org/10.3390/atmos15010123 - 19 Jan 2024
Cited by 10 | Viewed by 3058
Abstract
As the urban heat island effect has become a worldwide phenomenon commonly affecting densely built-up areas, public administrations need efficient strategies to mitigate its impact on human well-being and public health. The aim of this study was to define a replicable method to [...] Read more.
As the urban heat island effect has become a worldwide phenomenon commonly affecting densely built-up areas, public administrations need efficient strategies to mitigate its impact on human well-being and public health. The aim of this study was to define a replicable method to estimate the ecosystem services provided by public street trees as a supporting tool in the decision-making process of urban greenery management. We compared three street arrangements characteristic of a residential district in Pisa, Italy: (1) with large trees, (2) with small trees, and (3) without trees. First, the software i-Tree Eco was used to assess the benefits of public trees located in the case-study area when provided with the three scenarios. Second, the comparison was held on the field, and we collected data with a wet bulb globe temperature meter in order to evaluate the differences in pedestrian thermal comfort among the street arrangements. The results confirmed the importance of urban vegetation, as it has major impacts on carbon sequestration and storage, pollution removal, air humidity and quality, and shade, given bigger trees and canopy sizes. The loss of ecosystem services compared to the presence of large trees varied between 40% and 50% (no trees) and 30% and 40% (small trees). Full article
Show Figures

Figure 1

23 pages, 2783 KiB  
Review
Stone Pine (Pinus pinea L.) High-Added-Value Genetics: An Overview
by Ana Sofia B. Simões, Margarida Machado Borges, Liliana Grazina and João Nunes
Genes 2024, 15(1), 84; https://doi.org/10.3390/genes15010084 - 10 Jan 2024
Cited by 5 | Viewed by 2869
Abstract
Stone pine (Pinus pinea L.) has received limited attention in terms of genetic research. However, genomic techniques hold promise for decoding the stone pine genome and contributing to developing a more resilient bioeconomy. Retrotransposon and specific genetic markers are effective tools for [...] Read more.
Stone pine (Pinus pinea L.) has received limited attention in terms of genetic research. However, genomic techniques hold promise for decoding the stone pine genome and contributing to developing a more resilient bioeconomy. Retrotransposon and specific genetic markers are effective tools for determining population-specific genomic diversity. Studies on the transcriptome and proteome have identified differentially expressed genes PAS1, CLV1, ATAF1, and ACBF involved in shoot bud formation. The stone pine proteome shows variation among populations and shows the industrial potential of the enzyme pinosylvin. Microsatellite studies have revealed low levels of polymorphism and a unique genetic diversity in stone pine, which may contribute to its environmental adaptation. Transcriptomic and proteomic analyses uncover the genetic and molecular responses of stone pine to fungal infections and nematode infestations, elucidating the defense activation, gene regulation, and the potential role of terpenes in pathogen resistance. Transcriptomics associated with carbohydrate metabolism, dehydrins, and transcription factors show promise as targets for improving stone pine’s drought stress response and water retention capabilities. Stone pine presents itself as an important model tree for studying climate change adaptation due to its characteristics. While knowledge gaps exist, stone pine’s genetic resources hold significant potential, and ongoing advancements in techniques offer prospects for future exploration. Full article
(This article belongs to the Special Issue Genetic Research and Plant Breeding 2.0)
Show Figures

Figure 1

17 pages, 7499 KiB  
Article
Analysis of Dieback in a Coastal Pinewood in Campania, Southern Italy, through High-Resolution Remote Sensing
by Rosario Nicoletti, Luigi De Masi, Antonello Migliozzi and Marina Maura Calandrelli
Plants 2024, 13(2), 182; https://doi.org/10.3390/plants13020182 - 9 Jan 2024
Cited by 8 | Viewed by 2032
Abstract
For some years, the stone pine (Pinus pinea L.) forests of the Domitian coast in Campania, Southern Italy, have been at risk of conservation due to biological adversities. Among these, the pine tortoise scale Toumeyella parvicornis (Cockerell) has assumed a primary role [...] Read more.
For some years, the stone pine (Pinus pinea L.) forests of the Domitian coast in Campania, Southern Italy, have been at risk of conservation due to biological adversities. Among these, the pine tortoise scale Toumeyella parvicornis (Cockerell) has assumed a primary role since its spread in Campania began. Observation of pine forests using remote sensing techniques was useful for acquiring information on the health state of the vegetation. In this way, it was possible to monitor the functioning of the forest ecosystem and identify the existence of critical states. To study the variation in spectral behavior and identify conditions of plant stress due to the action of pests, the analysis of the multispectral data of the Copernicus Sentinel-2 satellite, acquired over seven years between 2016 and 2022, was conducted on the Domitian pine forest. This method was used to plot the values of individual pixels over time by processing spectral indices using Geographic Information System (GIS) tools. The use of vegetation indices has made it possible to highlight the degradation suffered by the vegetation due to infestation by T. parvicornis. The results showed the utility of monitoring the state of the vegetation through high-resolution remote sensing to protect and preserve the pine forest ecosystem peculiar to the Domitian coast. Full article
(This article belongs to the Special Issue Taxonomy, Biodiversity and Ecology of Mediterranean Plants)
Show Figures

Graphical abstract

18 pages, 3143 KiB  
Article
Differential Tree Growth Response to Management History and Climate in Multi-Aged Stands of Pinus pinea L.
by Vittorio Garfì and Giuseppe Garfì
Plants 2024, 13(1), 61; https://doi.org/10.3390/plants13010061 - 23 Dec 2023
Cited by 2 | Viewed by 1577
Abstract
The possible differential response to the climatic fluctuations of co-occurring trees of different ages is still poorly known and rather controversial. Moreover, in managed forests, such a picture is further complicated by the impact of silvicultural practices. With this concern, in a multi-aged [...] Read more.
The possible differential response to the climatic fluctuations of co-occurring trees of different ages is still poorly known and rather controversial. Moreover, in managed forests, such a picture is further complicated by the impact of silvicultural practices. With this concern, in a multi-aged umbrella pine stand in the Maremma Regional Park (Tuscany, Italy), the spatial patterns and tree-ring response to the climate were investigated by differentiating trees into three classes, i.e., young, mature, and old. The aim was to assess the role of past management in shaping the current stand structure and affecting the growth dynamics at different ages, as well as to evaluate the possible shifting of tree adaptation to the climatic variables throughout plant aging. Our outcomes proved that the current mosaic of even-aged small patches results from a multifaceted forest management history. Until the 1960s, silvicultural treatments seemed more suitable in promoting tree growth and regeneration. Later on, inappropriate and/or untimely thinning probably triggered excessive competition from the top canopy trees, involving reduced stem and root system development in the younger plants living in the understory. Also, the intra-annual growth response to the climate showed some dependence on age. Younger trees are assumed not to be able to efficiently exploit water resources from the deep aquifer during the dry season, probably due to an insufficiently developed taproot, differently than older trees. Accordingly, appropriate and timely thinning, simulating frequent natural disturbances on small areas, could be a suitable management approach to promote sustained growth rates and regeneration processes, as well as healthy and vital trees at all life stages. Full article
(This article belongs to the Special Issue Conservation Biology and Ecology of Forest Woody Species)
Show Figures

Figure 1

Back to TopTop