Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Pinus albicaulis Engelm.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4693 KiB  
Article
Study of the Genetic Mechanisms of Siberian Stone Pine (Pinus sibirica Du Tour) Adaptation to the Climatic and Pest Outbreak Stresses Using Dendrogenomic Approach
by Serafima V. Novikova, Natalia V. Oreshkova, Vadim V. Sharov, Dmitry A. Kuzmin, Denis A. Demidko, Elvina M. Bisirova, Dina F. Zhirnova, Liliana V. Belokopytova, Elena A. Babushkina and Konstantin V. Krutovsky
Int. J. Mol. Sci. 2024, 25(21), 11767; https://doi.org/10.3390/ijms252111767 - 1 Nov 2024
Cited by 1 | Viewed by 1606
Abstract
A joint analysis of dendrochronological and genomic data was performed to identify genetic mechanisms of adaptation and assess the adaptive genetic potential of Siberian stone pine (Pinus sibirica Du Tour) populations. The data obtained are necessary for predicting the effect of climate [...] Read more.
A joint analysis of dendrochronological and genomic data was performed to identify genetic mechanisms of adaptation and assess the adaptive genetic potential of Siberian stone pine (Pinus sibirica Du Tour) populations. The data obtained are necessary for predicting the effect of climate change and mitigating its negative consequences. Presented are the results of an association analysis of the variation of 84,853 genetic markers (single nucleotide polymorphisms—SNPs) obtained by double digest restriction-site associated DNA sequencing (ddRADseq) and 110 individual phenotypic traits, including dendrophenotypes based on the dynamics of tree-ring widths (TRWs) of 234 individual trees in six natural populations of Siberian stone pine, which have a history of extreme climatic stresses (e.g., droughts) and outbreaks of defoliators (e.g., pine sawfly [Neodiprion sertifer Geoff.]). The genetic structure of studied populations was relatively weak; samples are poorly differentiated and belong to genetically similar populations. Genotype–dendrophenotype associations were analyzed using three different approaches and corresponding models: General Linear Model (GLM), Bayesian Sparse Linear Mixed Model (BSLMM), and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK), respectively. Thirty SNPs were detected by at least two different approaches, and two SNPs by all three. In addition, three SNPs associated with mean values of recovery dendrophenotype (Rc) averaged across multiple years of climatic stresses were also found by all three methods. The sequences containing these SNPs were annotated using genome annotation of a very closely related species, whitebark pine (P. albicaulis Engelm.). We found that most of the SNPs with supposedly adaptive variation were located in intergenic regions. Three dendrophenotype-associated SNPs were located within the 10 Kbp regions and one in the intron of the genes encoding proteins that play a crucial role in ensuring the integrity of the plant’s genetic information, particularly under environmental stress conditions that can induce DNA damage. In addition, we found a correlation of individual heterozygosity with some dendrophenotypes. Heterosis was observed in most of these statistically significant cases; signs of homeostasis were also detected. Although most of the identified SNPs were not assigned to a particular gene, their high polymorphism and association with adaptive traits likely indicate high adaptive potential that can facilitate adaptation of Siberian stone pine populations to the climatic stresses and climate change. Full article
(This article belongs to the Special Issue Genomic Perspective on Forest Genetics and Phytopathobiomes)
Show Figures

Figure 1

20 pages, 4526 KiB  
Article
Transcriptional Profiling of Early Defense Response to White Pine Blister Rust Infection in Pinus albicaulis (Whitebark Pine)
by Laura Figueroa-Corona, Kailey Baesen, Akriti Bhattarai, Angelia Kegley, Richard A. Sniezko, Jill Wegrzyn and Amanda R. De La Torre
Genes 2024, 15(5), 602; https://doi.org/10.3390/genes15050602 - 9 May 2024
Viewed by 1992
Abstract
Pathogen perception generates the activation of signal transduction cascades to host defense. White pine blister rust (WPBR) is caused by Cronartium ribicola J.C. Fisch and affects a number of species of Pinus. One of the most severely affected species is Pinus albicaulis [...] Read more.
Pathogen perception generates the activation of signal transduction cascades to host defense. White pine blister rust (WPBR) is caused by Cronartium ribicola J.C. Fisch and affects a number of species of Pinus. One of the most severely affected species is Pinus albicaulis Engelm (whitebark pine). WPBR resistance in the species is a polygenic and complex trait that requires an optimized immune response. We identified early responses in 2-year-old seedlings after four days of fungal inoculation and compared the underlying transcriptomic response with that of healthy non-inoculated individuals. A de novo transcriptome assembly was constructed with 56,796 high quality-annotations derived from the needles of susceptible and resistant individuals in a resistant half-sib family. Differential expression analysis identified 599 differentially expressed transcripts, from which 375 were upregulated and 224 were downregulated in the inoculated seedlings. These included components of the initial phase of active responses to abiotic factors and stress regulators, such as those involved in the first steps of flavonoid biosynthesis. Four days after the inoculation, infected individuals showed an overexpression of chitinases, reactive oxygen species (ROS) regulation signaling, and flavonoid intermediates. Our research sheds light on the first stage of infection and emergence of disease symptoms among whitebark pine seedlings. RNA sequencing (RNA-seq) data encoding hypersensitive response, cell wall modification, oxidative regulation signaling, programmed cell death, and plant innate immunity were differentially expressed during the defense response against C. ribicola. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

14 pages, 2158 KiB  
Article
Harvest Retention Survivorship of Endangered Whitebark Pine Trees
by Michael P. Murray, Jenny Berg and David J. Huggard
Forests 2021, 12(6), 654; https://doi.org/10.3390/f12060654 - 21 May 2021
Cited by 2 | Viewed by 2753
Abstract
Whitebark pine (Pinus albicaulis Engelm.) is a widely distributed high-elevation species in western North America that is threatened primarily by an introduced disease and other disturbances. In British Columbia, this tree is a component of harvested forests, yet knowledge of post-harvest survivorship [...] Read more.
Whitebark pine (Pinus albicaulis Engelm.) is a widely distributed high-elevation species in western North America that is threatened primarily by an introduced disease and other disturbances. In British Columbia, this tree is a component of harvested forests, yet knowledge of post-harvest survivorship and factors that promote successful retention is lacking. Our objectives are to describe the temporal attrition of retained mature whitebark pine trees and to identify factors that likely influence survivorship during the critical initial post-harvest period. We assessed five separate harvest units in southeastern British Columbia. Dendrochronological investigation revealed that retained trees experienced high annual mortality rates (3–16%) across harvest sites during the initial five-year post-harvest period. By eight years post-harvest, retention survivorship ranged from 17–80%. After eight years post-harvest, mortality rates drastically declined. The preponderance of fallen stems oriented towards the northeast suggests that storm system events arriving from the Pacific Ocean are the most significant drivers of blowdown. We estimate that survivorship is positively associated with shorter tree heights and longer crown lengths, a lack of disease cankers, a greater presence of rodent wounding, and higher numbers of surrounding retained trees. We found little effect based on slope and aspect. As these trees are an endangered species, harvest operations should be practiced cautiously in associated forests. We recommend carefully selecting retention trees, ensuring an adequate number of neighbor trees, and orienting retention patches to avoid predominant storm wind directions. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

19 pages, 1969 KiB  
Review
Assisted Migration Field Tests in Canada and Mexico: Lessons, Limitations, and Challenges
by Cuauhtémoc Sáenz-Romero, Greg O'Neill, Sally N. Aitken and Roberto Lindig-Cisneros
Forests 2021, 12(1), 9; https://doi.org/10.3390/f12010009 - 23 Dec 2020
Cited by 61 | Viewed by 10326
Abstract
Assisted migration of forest tree populations through reforestation and restoration is a climate change adaptation strategy under consideration in many jurisdictions. Matching climates in which seed sources evolved with near future climates projected for plantation sites should help reduce maladaptation and increase plantation [...] Read more.
Assisted migration of forest tree populations through reforestation and restoration is a climate change adaptation strategy under consideration in many jurisdictions. Matching climates in which seed sources evolved with near future climates projected for plantation sites should help reduce maladaptation and increase plantation health and productivity. For threatened tree species, assisted migration outside of the species range could help avert extinction. Here, we examine lessons, limitations, and challenges of assisted migration through the lens of three assisted migration field trials of conifers in Canada and Mexico: Pinus albicaulis Engelm., an endangered subalpine tree species in the mountains of western North America; the Picea glauca (Moench) Voss × P. engelmannii Parry ex Engelm hybrid complex, of great economic and ecological importance in western Canada, and Abies religiosa (Kunth) Schltdl. & Cham., a tree species that provides overwintering sites for the monarch butterfly. We conclude that: (a) negative impacts of climate change on productivity of Picea glauca × P. engelmannii may be mitigated by planting seed sources from locations that are 3 °C mean coldest month temperature warmer than the plantation; (b) it is possible to establish Pinus albicaulis outside of its current natural distribution at sites that have climates that are within the species’ modelled historic climatic niche, although developing disease-resistant trees through selective breeding is a higher priority in the short term; (c) Abies religiosa performs well when moved 400 m upward in elevation and local shrubs (such as Baccharis conferta Kunth) are used as nurse plants; (d) new assisted migration field trials that contain populations from a wide range of climates tested in multiple disparate climates are needed, despite the costs; and (e) where naturalization of a migrated tree species in recipient ecosystem is viewed as undesirable, the invasive potential of the tree species should be assessed prior to large scale establishment, and stands should be monitored regularly following establishment. Full article
Show Figures

Figure 1

22 pages, 2815 KiB  
Article
Whitebark Pine in Crater Lake and Lassen Volcanic National Parks: Assessment of Stand Structure and Condition in a Management and Conservation Perspective
by Jenell I. Jackson, Sean B. Smith, Jonathan C.B. Nesmith, Leigh Ann Starcevich, Jennifer S. Hooke, Steve Buckley and Erik S. Jules
Forests 2019, 10(10), 834; https://doi.org/10.3390/f10100834 - 21 Sep 2019
Cited by 6 | Viewed by 4175
Abstract
Whitebark pine (Pinus albicaulis. Engelm.) is vulnerable to a number of threats including an introduced pathogen (Cronartium ribicola J.C. Fisch.), epidemic levels of native mountain pine beetle (Dendroctonus ponderosae Hopkins), fire suppression, and climate change. To describe the structure of [...] Read more.
Whitebark pine (Pinus albicaulis. Engelm.) is vulnerable to a number of threats including an introduced pathogen (Cronartium ribicola J.C. Fisch.), epidemic levels of native mountain pine beetle (Dendroctonus ponderosae Hopkins), fire suppression, and climate change. To describe the structure of whitebark pine populations in two national parks in the southern Cascades (Crater Lake, Oregon, USA (CRLA) and Lassen Volcanic, California, USA (LAVO) National Parks), we surveyed trees in 30 × 50 × 50 m plots in both parks. We used these plots to describe the extent of white pine blister rust (the disease caused by Cronartium ribicola), mountain pine beetle occurrence, and to elucidate factors influencing the presence of pests and pathogens, cone production, and canopy kill. In each plot, we recorded data related to tree health, including symptoms of blister rust and mountain pine beetle, and reproductive vigor (cone production). In both parks, encroachment from other species, particularly mountain hemlock (Tsuga mertensiana (Bong.) Carrière), was negatively associated with cone production. In CRLA, water stress was a good predictor of blister rust infection and cone production. For CRLA and LAVO, the presence of mountain pine beetle and blister rust was associated with higher canopy kill for whitebark pine. Lastly, we found evidence for a pest-pathogen interaction, mountain pine beetle attack was greater for trees that showed symptoms of blister rust infection in CRLA. Our results indicate that whitebark pine populations in the southern Cascade Range are experiencing moderate levels of blister rust infection compared with other sites across the species range, and that competition from shade-tolerant species may result in an additional threat to whitebark pine in both parks. We present our findings in the context of park management and situate them in range-wide and regional conservation strategies aimed at the protection and restoration of a declining species. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Figure 1

35 pages, 6389 KiB  
Article
Landscape Topoedaphic Features Create Refugia from Drought and Insect Disturbance in a Lodgepole and Whitebark Pine Forest
by Jennifer Cartwright
Forests 2018, 9(11), 715; https://doi.org/10.3390/f9110715 - 18 Nov 2018
Cited by 14 | Viewed by 6025
Abstract
Droughts and insect outbreaks are primary disturbance processes linking climate change to tree mortality in western North America. Refugia from these disturbances—locations where impacts are less severe relative to the surrounding landscape—may be priorities for conservation, restoration, and monitoring. In this study, hypotheses [...] Read more.
Droughts and insect outbreaks are primary disturbance processes linking climate change to tree mortality in western North America. Refugia from these disturbances—locations where impacts are less severe relative to the surrounding landscape—may be priorities for conservation, restoration, and monitoring. In this study, hypotheses concerning physical and biological processes supporting refugia were investigated by modelling the landscape controls on disturbance refugia that were identified using remotely sensed vegetation indicators. Refugia were identified at 30-m resolution using anomalies of Landsat-derived Normalized Difference Moisture Index in lodgepole and whitebark pine forests in southern Oregon, USA, in 2001 (a single-year drought with no insect outbreak) and 2009 (during a multi-year drought and severe outbreak of mountain pine beetle). Landscape controls on refugia (topographic, soil, and forest characteristics) were modeled using boosted regression trees. Landscape characteristics better explained and predicted refugia locations in 2009, when forest impacts were greater, than in 2001. Refugia in lodgepole and whitebark pine forests were generally associated with topographically shaded slopes, convergent environments such as valleys, areas of relatively low soil bulk density, and in thinner forest stands. In whitebark pine forest, refugia were associated with riparian areas along headwater streams. Spatial patterns in evapotranspiration, snowmelt dynamics, soil water storage, and drought-tolerance and insect-resistance abilities may help create refugia from drought and mountain pine beetle. Identification of the landscape characteristics supporting refugia can help forest managers target conservation resources in an era of climate-change exacerbation of droughts and insect outbreaks. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Figure 1

19 pages, 3491 KiB  
Article
Whitebark Pine Prevalence and Ecological Function in Treeline Communities of the Greater Yellowstone Ecosystem, U.S.A.: Potential Disruption by White Pine Blister Rust
by Aaron C. Wagner, Diana F. Tomback, Lynn M. Resler and Elizabeth R. Pansing
Forests 2018, 9(10), 635; https://doi.org/10.3390/f9100635 - 12 Oct 2018
Cited by 7 | Viewed by 4908
Abstract
In the northern Rocky Mountains of the U.S. and Canada, whitebark pine (Pinus albicaulis Engelm.) is a functionally important species in treeline communities. The introduced fungal pathogen Cronartium ribicola, which causes white pine blister rust, has led to extensive whitebark pine [...] Read more.
In the northern Rocky Mountains of the U.S. and Canada, whitebark pine (Pinus albicaulis Engelm.) is a functionally important species in treeline communities. The introduced fungal pathogen Cronartium ribicola, which causes white pine blister rust, has led to extensive whitebark pine mortality nearly rangewide. We examined four treeline communities within the Greater Yellowstone Ecosystem (GYE) to assess structure and composition, whitebark pine prevalence and functional role, differences in growing season mesoclimate among study areas, and blister rust infection incidence. We found that (1) whitebark pine frequently serves as the majority overall, solitary, and leeward tree island conifer; (2) the prevalence of different tree species in the windward position in tree islands, and thus their potential as tree island initiators, may be predicted from their relative abundance as solitary trees; and (3) white pine blister rust infection incidence ranged from 0.6% to 18.0% across study areas. White pine blister rust poses a threat to treeline development and structure and the provision of ecosystem services in the GYE. Increasing blister rust resistance in nearby subalpine whitebark pine communities through seedling planting or direct seeding projects should eventually result in higher levels of blister rust resistance in whitebark pine in treeline communities. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Graphical abstract

23 pages, 1976 KiB  
Article
Effects of Disturbance on Tree Community Dynamics in Whitebark Pine (Pinus albicaulis Engelm.) Ecosystems
by Jeremy T. Amberson, Megan P. Keville and Cara R. Nelson
Forests 2018, 9(9), 566; https://doi.org/10.3390/f9090566 - 13 Sep 2018
Cited by 10 | Viewed by 4517
Abstract
Whitebark pine (Pinus albicaulis Engelm.), an ecologically important tree species in high-elevation ecosystems of western North America, is threatened by white pine blister rust (Cronartium ribicola Fischer) and increased pressure from mountain pine beetle (Dendroctonus ponderosae Hopkins) due to climate [...] Read more.
Whitebark pine (Pinus albicaulis Engelm.), an ecologically important tree species in high-elevation ecosystems of western North America, is threatened by white pine blister rust (Cronartium ribicola Fischer) and increased pressure from mountain pine beetle (Dendroctonus ponderosae Hopkins) due to climate warming. In addition, there is concern that fire suppression may be leading to successional replacement of whitebark by late-seral trees. Despite widespread knowledge that the tree is in decline, there is limited understanding of its successional dynamics, particularly in forests disturbed by white pine blister rust and mountain pine beetle. Our objective was to examine how disturbances have affected forest composition, structure, and seedling regeneration over a 22-year period (1990–2012) at 19 sites in the Cascade Mountains of Washington State (USA). Over that time, 13 sites (68%) were infected by white pine blister rust, 11 (58%) were disturbed by mountain pine beetle, and 5 (26%) experienced wildfire. Tree community composition changed significantly during the study period, primarily due to significant mortality of mature (≥20-cm diameter at breast height) whitebark pine. Despite loss of mature whitebark trees, we found little evidence of successional replacement by other tree species. Whitebark seedling density was unrelated to basal area of mature whitebark pine, but positively correlated with the presence of herb and shrub cover. Our results demonstrate the value of long-term repeated measurements for elucidating successional dynamics. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Figure 1

13 pages, 1679 KiB  
Article
Growth Response of Whitebark Pine (Pinus albicaulis Engelm) Regeneration to Thinning and Prescribed Burn Treatments
by Molly L. Retzlaff, Robert E. Keane, David L. Affleck and Sharon M. Hood
Forests 2018, 9(6), 311; https://doi.org/10.3390/f9060311 - 1 Jun 2018
Cited by 13 | Viewed by 4263
Abstract
Whitebark pine (Pinus albicaulis Engelm.) forests play a prominent role throughout high-elevation ecosystems in the northern Rocky Mountains, however, they are vanishing from the high mountain landscape due to three factors: exotic white pine blister rust (Cronartium ribicola Fischer) invasions, mountain [...] Read more.
Whitebark pine (Pinus albicaulis Engelm.) forests play a prominent role throughout high-elevation ecosystems in the northern Rocky Mountains, however, they are vanishing from the high mountain landscape due to three factors: exotic white pine blister rust (Cronartium ribicola Fischer) invasions, mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks, and successional replacement by more shade-tolerant tree species historically controlled by wildfire. Land managers are attempting to restore whitebark pine communities using prescribed fire and silvicultural cuttings, but they are unsure if these techniques are effective. The objective of this study was to determine how whitebark pine regeneration responds to selective thinning and prescribed burn treatments. We studied changes in diameter growth after restoration treatments using ring width measurements obtained from 93 trees at four sites in Montana and Idaho that were treated in the late 1990s. Overall, the average annual radial growth rates of the trees in treated areas were greater than those of trees in control areas. Specifically, there were significant increases in the growth ratio (180%) in the two sites that were both thinned and later burned. Younger regeneration showed more response to the treatments than older regeneration. All sites showed high variability in post-treatment growth rates across individual trees, with greater variability for trees in treated areas than in trees from the control areas. Results suggest that whitebark pine regeneration can respond to thin and burn release treatments and that managers may see positive results in areas that are treated similarly. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Figure 1

18 pages, 4000 KiB  
Article
Whitebark Pine in the Northern Cascades: Tracking the Effects of Blister Rust on Population Health in North Cascades National Park Service Complex and Mount Rainier National Park
by Regina M. Rochefort, Shay Howlin, Lacey Jeroue, John R. Boetsch and Lise P. Grace
Forests 2018, 9(5), 244; https://doi.org/10.3390/f9050244 - 3 May 2018
Cited by 5 | Viewed by 5835
Abstract
Whitebark pine (Pinus albicaulis Engelm.) is a key component of subalpine and alpine ecosystems in the northern Cascades. The species’ survival is threatened by white pine blister rust, mountain pine beetle, fire exclusion, and climate change. We monitored whitebark pine in permanent [...] Read more.
Whitebark pine (Pinus albicaulis Engelm.) is a key component of subalpine and alpine ecosystems in the northern Cascades. The species’ survival is threatened by white pine blister rust, mountain pine beetle, fire exclusion, and climate change. We monitored whitebark pine in permanent plots in two national parks three times between 2004 and 2016. The proportion of live trees showing evidence of blister rust infection increased in North Cascades National Park Service Complex from 32% in 2004 to 51% in 2016 and from 18% to 38% in Mount Rainier National Park. Mortality increased from 7% to 21% in North Cascades National Park Service Complex and 38% to 44% in Mount Rainier National Park. The percent of live infected and dead whitebark pine increased with south and east aspects and mortality decreased with elevation. Annualized mortality rates calculated for the entire study period were 1.5% in Mount Rainier National Park and 2.3% in North Cascades National Park Service Complex. Although these rates decreased between the first time period (2004–2009) and the second time period (2009–2016), the prevalence of infected and dead whitebark pine increased across all park landscapes over time and increased in smaller diameter whitebark pine trees. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Figure 1

16 pages, 2820 KiB  
Article
Pinus albicaulis Engelm. (Whitebark Pine) in Mixed-Species Stands throughout Its US Range: Broad-Scale Indicators of Extent and Recent Decline
by Sara A. Goeking and Deborah Kay Izlar
Forests 2018, 9(3), 131; https://doi.org/10.3390/f9030131 - 9 Mar 2018
Cited by 29 | Viewed by 7298
Abstract
We used data collected from >1400 plots by a national forest inventory to quantify population-level indicators for a tree species of concern. Whitebark pine (Pinus albicaulis) has recently experienced high mortality throughout its US range, where we assessed the area of [...] Read more.
We used data collected from >1400 plots by a national forest inventory to quantify population-level indicators for a tree species of concern. Whitebark pine (Pinus albicaulis) has recently experienced high mortality throughout its US range, where we assessed the area of land with whitebark pine present, size-class distribution of individual whitebark pine, growth rates, and mortality rates, all with respect to dominant forest type. As of 2016, 51% of all standing whitebark pine trees in the US were dead. Dead whitebark pines outnumbered live ones—and whitebark pine mortality outpaced growth—in all size classes ≥22.8 cm diameter at breast height (DBH), across all forest types. Although whitebark pine occurred across 4.1 million ha in the US, the vast majority of this area (85%) and of the total number of whitebark pine seedlings (72%) fell within forest types other than the whitebark pine type. Standardized growth of whitebark pines was most strongly correlated with the relative basal area of whitebark pine trees (rho = 0.67; p < 0.01), while both standardized growth and mortality were moderately correlated with relative whitebark pine stem density (rho = 0.39 and 0.40; p = 0.031 and p < 0.01, respectively). Neither growth nor mortality were well correlated with total stand basal area, total stem density, or stand mean diameter. The abundance, extent, and relative growth vs. mortality rates of whitebark pine in multiple forest types presents opportunities for management to encourage whitebark pine recruitment in mixed-species stands. The lodgepole pine forest type contained more whitebark pine seedlings (35%) than any other forest type, suggesting that this forest type represents a potential management target for silvicultural treatments that seek to facilitate the recruitment of whitebark pine seedlings into larger size classes. National forest inventories in other countries may use a similar approach to assess species of concern. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Figure 1

10 pages, 2742 KiB  
Article
Historic Frequency and Severity of Fire in Whitebark Pine Forests of the Cascade Mountain Range, USA
by Michael P. Murray and Joel Siderius
Forests 2018, 9(2), 78; https://doi.org/10.3390/f9020078 - 7 Feb 2018
Cited by 4 | Viewed by 5336
Abstract
Whitebark pine (Pinus albicaulis Engelm.) is a foundation species of high elevation forest ecosystems in the Cascade Mountain Range of Oregon, Washington, and British Columbia. We examined fire evidence on 55 fire history sites located in the Cascade Range. To estimate dates [...] Read more.
Whitebark pine (Pinus albicaulis Engelm.) is a foundation species of high elevation forest ecosystems in the Cascade Mountain Range of Oregon, Washington, and British Columbia. We examined fire evidence on 55 fire history sites located in the Cascade Range. To estimate dates of historic fires we analyzed 57 partial cross-sections from fire-scarred trees plus 700 increment cores. The resulting 101 fire events indicate fire has been a widespread component of Cascadian whitebark pine stands. Results are site specific and vary considerably. Whitebark pine stands appear to burn in a variety of severities and frequencies. Sites where fire intervals were detected ranged from 9 to 314 years, with a median of 49 years, and averaging 67 years. Fire intervals shortened significantly with higher latitudes. In assessing the most recent fire event at each site, overall, 56 percent burned as stand replacing events. In the 20th century, the number of fires diminished significantly. Due to conservation imperatives, re-introducing fire should be undertaken with extreme care to avoid substantial mortality of this endangered species. Full article
(This article belongs to the Special Issue Ecology and Restoration of Whitebark Pine)
Show Figures

Figure 1

14 pages, 3120 KiB  
Article
Separating Trends in Whitebark Pine Radial Growth Related to Climate and Mountain Pine Beetle Outbreaks in the Northern Rocky Mountains, USA
by Saskia L. Van de Gevel, Evan R. Larson and Henri D. Grissino-Mayer
Forests 2017, 8(6), 195; https://doi.org/10.3390/f8060195 - 3 Jun 2017
Cited by 9 | Viewed by 5619
Abstract
Drought and mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks have affected millions of hectares of high-elevation conifer forests in the Northern Rocky Mountains during the past century. Little research has examined the distinction between mountain pine beetle outbreaks and climatic influence on [...] Read more.
Drought and mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks have affected millions of hectares of high-elevation conifer forests in the Northern Rocky Mountains during the past century. Little research has examined the distinction between mountain pine beetle outbreaks and climatic influence on radial growth in endangered whitebark pine (Pinus albicaulis Engelm.) ecosystems. We used a new method to explore divergent periods in whitebark pine radial growth after mountain pine beetle outbreaks across six sites in western Montana. We examined a 100-year history of mountain pine beetle outbreaks and climate relationships in whitebark pine radial growth to distinguish whether monthly climate variables or mountain pine outbreaks were the dominant influence on whitebark pine growth during the 20th century. High mortality of whitebark pines was caused by the overlapping effects of previous and current mountain pine beetle outbreaks and white pine blister rust infection. Wet conditions from precipitation and snowpack melt in the previous summer, current spring, and current summer benefit whitebark pine radial growth during the following growing season. Whitebark pine radial growth and climate relationships were strongest in sites less affected by the mountain pine beetle outbreaks or anthropogenic disturbances. Whitebark pine population resiliency should continue to be monitored as more common periods of drought will make whitebark pines more susceptible to mountain pine beetle attack and to white pine blister rust infection. Full article
Show Figures

Figure 1

Back to TopTop