Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = Pinus pinea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5270 KiB  
Article
Ecophysiological Keys to the Success of a Native-Expansive Mediterranean Species in Threatened Coastal Dune Habitats
by Mario Fernández-Martínez, Carmen Jiménez-Carrasco, Mari Cruz Díaz Barradas, Juan B. Gallego-Fernández and María Zunzunegui
Plants 2025, 14(15), 2342; https://doi.org/10.3390/plants14152342 - 29 Jul 2025
Viewed by 190
Abstract
Range-expanding species, or neonatives, are native plants that spread beyond their original range due to recent climate or human-induced environmental changes. Retama monosperma was initially planted near the Guadalquivir estuary for dune stabilisation. However, changes in the sedimentary regime and animal-mediated dispersal have [...] Read more.
Range-expanding species, or neonatives, are native plants that spread beyond their original range due to recent climate or human-induced environmental changes. Retama monosperma was initially planted near the Guadalquivir estuary for dune stabilisation. However, changes in the sedimentary regime and animal-mediated dispersal have facilitated its exponential expansion, threatening endemic species and critical dune habitats. The main objective of this study was to identify the key functional traits that may explain the competitive advantage and rapid spread of R. monosperma in coastal dune ecosystems. We compared its seasonal responses with those of three co-occurring woody species, two native (Juniperus phoenicea and J. macrocarpa) and one naturalised (Pinus pinea), at two sites differing in groundwater availability within a coastal dune area (Doñana National Park, Spain). We measured water relations, leaf traits, stomatal conductance, photochemical efficiency, stable isotopes, and shoot elongation in 12 individuals per species. Repeated-measures ANOVA showed significant effects of species and species × season interaction for relative water content, shoot elongation, effective photochemical efficiency, and stable isotopes. R. monosperma showed significantly higher shoot elongation, relative water content, and photochemical efficiency in summer compared with the other species. Stable isotope data confirmed its nitrogen-fixing capacity. This characteristic, along with the higher seasonal plasticity, contributes to its competitive advantage. Given the ecological fragility of coastal dunes, understanding the functional traits favouring the success of neonatives such as R. monosperma is essential for biodiversity conservation and ecosystem management. Full article
Show Figures

Figure 1

22 pages, 2490 KiB  
Article
Endophytic Bacterial Consortia Isolated from Disease-Resistant Pinus pinea L. Increase Germination and Plant Quality in Susceptible Pine Species (Pinus radiata D. Don)
by Frederico Leitão, Marta Alves, Isabel Henriques and Glória Pinto
Forests 2025, 16(7), 1161; https://doi.org/10.3390/f16071161 - 14 Jul 2025
Viewed by 280
Abstract
The nursery phase is vital for forest regeneration, yet studies on plant growth-promoting (PGP) bacteria to enhance sustainable nursery production in forest species are scarce. This study explores whether endophytic bacteria from disease-resistant Pinus pinea L. can improve germination and seedling quality in [...] Read more.
The nursery phase is vital for forest regeneration, yet studies on plant growth-promoting (PGP) bacteria to enhance sustainable nursery production in forest species are scarce. This study explores whether endophytic bacteria from disease-resistant Pinus pinea L. can improve germination and seedling quality in susceptible Pinus radiata D. Don. Root endophytes were isolated, screened for PGP traits, and identified via 16S rRNA gene sequencing. Bacterial formulations were applied to P. radiata seeds to determine their impact on germination and plant quality indicators (photosynthetic pigments and other metabolites). Paenibacillaceae (19%) and Bacillaceae (13%) were predominant among 68 isolates, with 94% producing indole-3-acetic acid, and Burkholderiaceae showing the broadest PGP trait diversity. Seedlings inoculated with formulation C3 (Caballeronia R.M3R3, Rhodococcus T.M4R4, and Mesorhizobium R.M1R2) displayed an improved germination rate (89% compared to 71% from the uninoculated control), while those inoculated with formulation P4 (Paenibacillus T.M5R4, Bacillus R.M2R7, Acinetobacter T.M2R22, and Paraburkholderia R.M1R3) showed an improved germination rate (81%), increased amount of starch (0.4-fold), and free amino acids (1.5-fold). This study presents a comprehensive approach, from endophyte isolation to in vivo tests, highlighting two bacterial formulations as candidates for further proof-of-concept nursery trials. Ultimately, these bioinoculants represent eco-friendly strategies to enhance forest seedling establishment and support sustainable forest management. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 2220 KiB  
Article
Soil Prokaryotic Diversity Responds to Seasonality in Dehesas, Modulated by Tree Identity and Canopy Effect
by José Manjón-Cabeza, Mercedes Ibáñez, María José Leiva, Cristina Chocarro, Anders Lanzén, Lur Epelde and Maria Teresa Sebastià
Microbiol. Res. 2025, 16(7), 153; https://doi.org/10.3390/microbiolres16070153 - 5 Jul 2025
Viewed by 193
Abstract
Dehesas are mosaics of open grassland and standalone trees that are diversity reservoirs. However, they have recently faced abandonment and intensification, being replaced by plantations of fast-growing trees or subject to encroachment. Following a change in dehesa communities and structure, a change in [...] Read more.
Dehesas are mosaics of open grassland and standalone trees that are diversity reservoirs. However, they have recently faced abandonment and intensification, being replaced by plantations of fast-growing trees or subject to encroachment. Following a change in dehesa communities and structure, a change in soil microbial diversity and functionality in dehesas is expected, but dehesas’ microbial diversity is still a big unknown. In this work, we bring to light the soil prokaryotic taxonomic diversity in dehesa ecosystems and present a first approach to assessing their metabolic diversity through metabarcoding data. For this, we compared three dehesas dominated by different tree species: (i) one dehesa dominated by Quercus ilex; (ii) one dominated by Pinus pinea; and (iii) one dominated by a mixture of Q. ilex and Q. suber. At each dehesa, samples were taken under the canopy and in the open grassland, as well as through two seasons of peak vegetation productivity (autumn and spring). Our results show the following findings: (1) seasonality plays an important role in prokaryotic richness, showing higher values in autumn, and higher evenness in spring; (2) the effect of seasonality on the soil’s prokaryotic diversity is often modulated by the effect of tree species and canopy; (3) taxonomic diversity is driven mainly by the site effects, i.e., the opposite of the metabolic diversity that seemed to be driven by complex interactions among seasons, tree species, and canopies. Full article
Show Figures

Figure 1

17 pages, 2609 KiB  
Article
Genetic and Epigenetic Diversity of Pinus pinea L.: Conservation Implications for Priority Populations in Greece
by Evangelia V. Avramidou, Ermioni Malliarou, Evangelia Korakaki, George Mantakas and Konstantinos Kaoukis
Genes 2025, 16(4), 361; https://doi.org/10.3390/genes16040361 - 21 Mar 2025
Viewed by 2505
Abstract
Background/Objectives: The stone pine (Pinus pinea L.) is an evergreen coniferous species valued for its edible seeds, which provide significant economic benefits to local populations. Remarkable phenotypic plasticity but low genetic variation characterizes the species. In Greece, natural populations of P. pinea [...] Read more.
Background/Objectives: The stone pine (Pinus pinea L.) is an evergreen coniferous species valued for its edible seeds, which provide significant economic benefits to local populations. Remarkable phenotypic plasticity but low genetic variation characterizes the species. In Greece, natural populations of P. pinea are part of the Natura 2000 network and are protected under Annex I Priority Habitat type 2270. These populations, located across six Natura 2000 sites (including two islands), face increasing threats from tourism and climate change, leading to ecosystem degradation. Genetic and epigenetic studies are critical for the conservation of forest species because they provide insights into the genetic diversity, adaptive potential, and resilience of species, helping to inform effective management strategies and protect biodiversity in changing environments. This study aims to assess the genetic and epigenetic diversity of P. pinea in four Natura 2000 sites using molecular markers and to propose conservation strategies to ensure the species’ long-term sustainability. Additionally, a preliminary investigation of water potential under maximum daily water demand was conducted to evaluate the species’ adaptive response. Methods: Genetic analysis was performed using Amplified Fragment Length Polymorphism (AFLP) markers, while epigenetic analysis was conducted using Methylation-Susceptible Amplified Polymorphism (MSAP) markers. Sampling was carried out in four Natura 2000 areas, where genetic and epigenetic diversity patterns were examined. Furthermore, a preliminary study on water potential under peak daily water demand conditions was conducted to assess the species’ physiological adaptation to environmental stress. Results: The results of this study provide valuable insights into conservation strategies by highlighting the potential role of epigenetic variation in the adaptability of P. pinea, despite its low genetic variability. Understanding the species’ epigenetic flexibility can inform conservation efforts aimed at enhancing its resilience to environmental stressors, such as climate change. Additionally, the preliminary water potential analysis contributes to identifying physiological traits that may help predict the species’ survival under varying environmental conditions, guiding the development of more targeted conservation practices and management plans. Further research could refine these findings and strengthen their application in conservation efforts. Conclusions: The conclusions emphasize the critical importance of this research in informing conservation efforts for P. pinea in Greece, particularly considering climate change and human pressures. The results highlight the need for both in-situ and ex-situ conservation strategies to ensure the long-term sustainability of the species. The key recommendations include the protection of natural habitats, the implementation of controlled seed collection practices, and further research into the epigenetic mechanisms that may enhance the species’ resilience to environmental stress. Future studies should focus on deepening our understanding of these epigenetic factors and their role in the adaptability of P. pinea, which will be essential for developing more effective conservation measures. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

17 pages, 3684 KiB  
Article
Detecting Symptoms and Dispersal of Pine Tortoise Scale Pest in an Urban Forest by Remote Sensing
by Marco Bascietto, Gherardo Chirici, Emma Mastrogregori, Loredana Oreti, Adriano Palma, Antonio Tiberini and Sabrina Bertin
Land 2025, 14(3), 630; https://doi.org/10.3390/land14030630 - 17 Mar 2025
Viewed by 640
Abstract
Forests provide essential ecosystem services but face increasing threats from invasive species like Toumeyella parvicornis (pine tortoise scale). Since its introduction to Italy in 2014, this pest has severely impacted Pinus pinea forests, with a major outbreak in 2019 affecting an urban forest [...] Read more.
Forests provide essential ecosystem services but face increasing threats from invasive species like Toumeyella parvicornis (pine tortoise scale). Since its introduction to Italy in 2014, this pest has severely impacted Pinus pinea forests, with a major outbreak in 2019 affecting an urban forest in the Rome municipality area. This study aims to develop a tool for detecting forest dieback symptoms caused by the scale and assess the role of prevailing winds in its dispersal by integrating multispectral and hyperspectral earth observation systems, including Sentinel-2 and the Hyperspectral Precursor of the Application Mission (PRISMA). At a 6000-hectare protected area with diverse vegetation, a binary Random Forest classifier, trained on near-infrared and short-wave infrared reflectance data, identified symptomatic stands. A generalized linear mixed model compared uniform and wind-influenced probabilistic dispersal models, assessing the pest spread relative to the initial infestation hotspot. The results confirmed a sharp decline in near-infrared reflectance in 2019, indicating severe defoliation and a shift from evergreen to deciduous canopy phenology by 2021. The classifier achieved 82% accuracy, effectively detecting symptomatic pine forests (91% precision). The scale spread to 51% of the pine forest area by 2021, with no strong correlation to prevailing winds, suggesting other augmenting dispersal drivers, such as vehicles along congested routes, wind tunnels, pest-resistant forests, and the potential mitigating role of alternating coastal wind patterns that are effective in the study area. Full article
Show Figures

Figure 1

9 pages, 832 KiB  
Brief Report
Effect of Fertilization on the Performance of Adult Pinus pinea Trees
by Verónica Loewe-Muñoz, Claudia Bonomelli, Claudia Delard, Rodrigo Del Río and Monica Balzarini
Biology 2025, 14(2), 216; https://doi.org/10.3390/biology14020216 - 19 Feb 2025
Viewed by 698
Abstract
Background: Pinus pinea L. (stone pine) produces pine nuts of high value. Its cultivation is carried out in forests and plantations, with intensive management techniques being studied to stimulate diameter growth, which is positively related to cone production. Aims: To evaluate the effect [...] Read more.
Background: Pinus pinea L. (stone pine) produces pine nuts of high value. Its cultivation is carried out in forests and plantations, with intensive management techniques being studied to stimulate diameter growth, which is positively related to cone production. Aims: To evaluate the effect of fertilization in a 30-year-old plantation and to understand if adult trees respond to nutritional management. Methods: A trial with completely randomized block design was established with two treatments (fertilization/control) and three repetitions. The plantation, with a density of 204 trees/ha, is located in central Chile, on a sandy-loam soil with neutral pH, medium organic matter content, and a fertility condition that limits tree development. Fertilization considered the repeated application of macro (N, P, K, S, Mg) and micronutrients (B, Fe, and Zn). Periodic measurements of height, stem and crown diameter, and cone production were made up to age 36. Cone production was evaluated using mixed generalized linear models and growth variables using ANOVA (analysis of variance). Results: Significant effects of fertilization on DBH annual growth (35% higher than the control, p < 0.001) and in cone production (3 times higher, p < 0.0001) were found. Conclusions: Fertilization is a useful practice to improve the growth and cone productivity of the species. Full article
(This article belongs to the Special Issue Dendrochronology in Arid and Semiarid Regions)
Show Figures

Figure 1

16 pages, 8433 KiB  
Article
Land Use/Change and Local Population Movements in Stone Pine Forests: A Case Study of Western Türkiye
by Seda Erkan Buğday, Ender Buğday, Taner Okan, Coşkun Köse and Sezgin Özden
Forests 2025, 16(2), 243; https://doi.org/10.3390/f16020243 - 27 Jan 2025
Viewed by 1007
Abstract
One of the important distribution areas of stone pine (Pinus pinea L.), a native tree species of the Mediterranean Basin in Türkiye, is the Kozak Basin. Pine nut production plays an important role in the livelihood of the rural people of the [...] Read more.
One of the important distribution areas of stone pine (Pinus pinea L.), a native tree species of the Mediterranean Basin in Türkiye, is the Kozak Basin. Pine nut production plays an important role in the livelihood of the rural people of the Kozak Basin. However, in recent years, as a result of mining activities, climate change, and damage caused by the alien invasive species, the western conifer seed bug (Leptoglossus occidentalis Heidemann 1910 (Hemiptera; Coreidae), the decrease in cone and seed yield in the basin has reached significant dimensions. This process has caused the local people’s income sources to decrease. In this study, land use and land cover (LULC) changes and population changes in the Kozak Basin were discussed during the process, where changing forest land functions, especially economic effects, triggered vulnerable communities due to various factors such as climate change and insect damage. LULC classes of the Kozak Basin and their changes in three time periods are presented using the maximum likelihood method. In addition, the exponential population growth rates of the local people in three different time periods were calculated and these rates were interpolated in the spatial plane with a Kriging analysis. In conclusion, the responses of vulnerable communities to the cone and seed yield decline in the Kozak Basin are manifested by LULC changes and migration from the basin. Therefore, in the management of P. pinea areas, the creation of regulations within the framework of sustainability understanding regardless of ownership difference, stakeholder participatory approach management, close monitoring of ecological events occurring in the basin, awareness of vulnerable communities, and alternative livelihoods can be supported. Full article
(This article belongs to the Special Issue Forest Management: Planning, Decision Making and Implementation)
Show Figures

Figure 1

24 pages, 13944 KiB  
Article
A Comparative Analysis of Spatial Resolution Sentinel-2 and Pleiades Imagery for Mapping Urban Tree Species
by Fabio Recanatesi, Antonietta De Santis, Lorenzo Gatti, Alessio Patriarca, Eros Caputi, Giulia Mancini, Chiara Iavarone, Carlo Maria Rossi, Gabriele Delogu, Miriam Perretta, Lorenzo Boccia and Maria Nicolina Ripa
Land 2025, 14(1), 106; https://doi.org/10.3390/land14010106 - 7 Jan 2025
Cited by 2 | Viewed by 1684
Abstract
Urbanization poses significant challenges to ecosystems, resources, and human well-being, necessitating sustainable planning. Urban vegetation, particularly trees, provides critical ecosystem services such as carbon sequestration, air quality improvement, and biodiversity conservation. Traditional tree assessments are resource-intensive and time-consuming. Recent advances in remote sensing, [...] Read more.
Urbanization poses significant challenges to ecosystems, resources, and human well-being, necessitating sustainable planning. Urban vegetation, particularly trees, provides critical ecosystem services such as carbon sequestration, air quality improvement, and biodiversity conservation. Traditional tree assessments are resource-intensive and time-consuming. Recent advances in remote sensing, especially high-resolution multispectral imagery and object-based image analysis (OBIA), offer efficient alternatives for mapping urban vegetation. This study evaluates and compares the efficacy of Sentinel-2 and Pléiades satellite imagery in classifying tree species within historic urban parks in Rome—Villa Borghese, Villa Ada Savoia, and Villa Doria Pamphilj. Pléiades imagery demonstrated superior classification accuracy, achieving an overall accuracy (OA) of 89% and a Kappa index of 0.84 in Villa Ada Savoia, compared to Sentinel-2’s OA of 66% and Kappa index of 0.47. Specific tree species, such as Pinus pinea (Stone Pine), reached a user accuracy (UA) of 84% with Pléiades versus 53% with Sentinel-2. These insights underscore the potential of integrating high-resolution remote sensing data into urban forestry practices to support sustainable urban management and planning. Full article
Show Figures

Figure 1

17 pages, 3490 KiB  
Article
Near-Real-Time Detection of Insect Outbreaks in Urban Trees Using a PlanetScope Time Series
by Valentina Falanga, Saverio Francini, Francesco Parisi, Alice Cavalli, Paolo De Fioravante, Benedetta Cucca, Giovanni D’Amico, Gherardo Chirici, Bruno Lasserre, Marco Ottaviano, Michele Munafò and Marco Marchetti
Forests 2024, 15(12), 2261; https://doi.org/10.3390/f15122261 - 23 Dec 2024
Viewed by 1300
Abstract
A critical challenge for urban forests is the arrival of Toumeyella parvicornis (or pine tortoise scale) in Italy, as this species damages stone pine (Pinus pinea L.), an emblematic Mediterranean species. The aim of this study is to evaluate the effectiveness of [...] Read more.
A critical challenge for urban forests is the arrival of Toumeyella parvicornis (or pine tortoise scale) in Italy, as this species damages stone pine (Pinus pinea L.), an emblematic Mediterranean species. The aim of this study is to evaluate the effectiveness of remote-sensing data for monitoring pest invasions in the urban area of Rome, using PlanetScope images with a 1-day revisit time and 3 m spatial resolution, making them ideal for detecting outbreaks in complex urban areas. First, we constructed a reference dataset, georeferencing 238 healthy trees in Tenuta San Rossore (Tuscany) and more than 2000 damaged trees in Rome’s green areas. In any case, this dataset of healthy trees—obtained from forest areas—was expected to exhibit higher photosynthetic activity compared to urban green areas. Second, more than 30,000 PlanetScope images were analyzed to test the effectiveness of the Renormalized Difference Vegetation Index in detecting this specific forest disturbance. Finally, different thresholds were examined, allowing for the identification of an optimal threshold to discriminate healthy trees from damaged trees. The index results showed a marked drop during the summer in the infested areas, compared to the healthy areas. The identified threshold provided 99% accuracy in detecting infested trees. The approach applied in this study demonstrated that PlanetScope imagery proved effective in detecting T. parvicornis, leading to promising results. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

13 pages, 1583 KiB  
Article
Iron Deficiency in Tomatoes Reversed by Pseudomonas Strains: A Synergistic Role of Siderophores and Plant Gene Activation
by Belén Montero-Palmero, Jose A. Lucas, Blanca Montalbán, Ana García-Villaraco, Javier Gutierrez-Mañero and Beatriz Ramos-Solano
Plants 2024, 13(24), 3585; https://doi.org/10.3390/plants13243585 - 22 Dec 2024
Cited by 1 | Viewed by 1134
Abstract
An alkaline pH in soils reduces Fe availability, limiting Fe uptake, compromising plant growth, and showing chlorosis due to a decrease in chlorophyll content. To achieve proper Fe homeostasis, dicotyledonous plants activate a battery of strategies involving not only Fe absorption mechanisms, but [...] Read more.
An alkaline pH in soils reduces Fe availability, limiting Fe uptake, compromising plant growth, and showing chlorosis due to a decrease in chlorophyll content. To achieve proper Fe homeostasis, dicotyledonous plants activate a battery of strategies involving not only Fe absorption mechanisms, but also releasing phyto-siderophores and recruiting siderophore-producing bacterial strains. A screening for siderophore-producing bacterial isolates from the rhizosphere of Pinus pinea was carried out, resulting in two Pseudomonas strains, Z8.8 and Z10.4, with an outstanding in vitro potential to solubilize Fe, Mn, and Co. The delivery of each strain to 4-week-old iron-starved tomatoes reverted chlorosis, consistent with enhanced Fe contents up to 40%. Photosynthesis performance was improved, revealing different strategies. While Z8.8 increased energy absorption together with enhanced chlorophyll “a” content, followed by enhanced energy dissipation, Z10.4 lowered pigment contents, indicating a better use of absorbed energy, leading to a better survival rate. The systemic reprogramming induced by both strains reveals a lower expression of Fe uptake-related genes, suggesting that both strains have activated plant metabolism to accelerate Fe absorption faster than controls, consistent with increased Fe content in leaves (47% by Z8.8 and 42% by Z10.4), with the difference probably due to the ability of Z8.8 to produce auxins affecting root structure. In view of these results, both strains are effective candidates to develop biofertilizers. Full article
Show Figures

Figure 1

21 pages, 3541 KiB  
Article
Mapping of Forest Species Using Sentinel-2A Images in the Alentejo and Algarve Regions, Portugal
by Crismeire Isbaex, Ana Margarida Coelho, Ana Cristina Gonçalves and Adélia M. O. Sousa
Land 2024, 13(12), 2184; https://doi.org/10.3390/land13122184 - 14 Dec 2024
Cited by 1 | Viewed by 1157
Abstract
Land use and land cover (LULC) studies, particularly those focused on mapping forest species using Sentinel-2 (S2A) data, face challenges in delineating and identifying areas of heterogeneous forest components with spectral similarity at the canopy level. In this context, the main objective of [...] Read more.
Land use and land cover (LULC) studies, particularly those focused on mapping forest species using Sentinel-2 (S2A) data, face challenges in delineating and identifying areas of heterogeneous forest components with spectral similarity at the canopy level. In this context, the main objective of this study was to compare and analyze the feasibility of two classification algorithms, K-Nearest Neighbor (KNN) and Random Forest (RF), with S2A data for mapping forest cover in the southern regions of Portugal, using tools with a free, open-source, accessible, and easy-to-use interface. Sentinel-2A data from summer 2019 provided 26 independent variables at 10 m spatial resolution for the analysis. Nine object-based LULC categories were distinguished, including five forest species (Quercus suber, Quercus rotundifolia, Eucalyptus spp., Pinus pinaster, and Pinus pinea), and four non-forest classes. Orfeo ToolBox (OTB) proved to be a reliable and powerful tool for the classification process. The best results were achieved using the RF algorithm in all regions, where it reached the highest accuracy values in Alentejo Central region (OA = 92.16% and K = 0.91). The use of open-source tools has enabled high-resolution mapping of forest species in the Mediterranean, democratizing access to research and monitoring. Full article
Show Figures

Figure 1

19 pages, 2856 KiB  
Article
Efficiency of Mobile Laser Scanning for Digital Marteloscopes for Conifer Forests in the Mediterranean Region
by Francesca Giannetti, Livia Passarino, Gianfrancesco Aleandri, Costanza Borghi, Elia Vangi, Solaria Anzilotti, Sabrina Raddi, Gherardo Chirici, Davide Travaglini, Alberto Maltoni, Barbara Mariotti, Andrés Bravo-Oviedo, Yamuna Giambastiani, Patrizia Rossi and Giovanni D’Amico
Forests 2024, 15(12), 2202; https://doi.org/10.3390/f15122202 - 14 Dec 2024
Cited by 1 | Viewed by 1309
Abstract
This study evaluates the performance of the ZEB Horizon RT portable mobile laser scanner (MLS) in simulating silvicultural thinning operations across three different Tuscan forests dominated by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Italian cypress (Cupressus sempervirens L.), and Stone pine ( [...] Read more.
This study evaluates the performance of the ZEB Horizon RT portable mobile laser scanner (MLS) in simulating silvicultural thinning operations across three different Tuscan forests dominated by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Italian cypress (Cupressus sempervirens L.), and Stone pine (Pinus pinea L.). The aim is to compare the efficiency and accuracy of the MLS with traditional dendrometric methods. The study established three marteloscopes, each covering a 50 m × 50 m plot area (0.25 ha). Traditional dendrometric methods involved a team georeferencing trees using a total station and measuring the diameter at breast height (DBH) and selected tree heights (H) to calculate the growing stock volume (GSV). The MLS survey was carried out by a two-person team, who processed the point cloud data with LiDAR 360 software to automatically identify the tree positions, DBH, and H. The methods were compared based on the time, cost, and simulated felling volume. The MLS method was more time-efficient, saving nearly one and a half hours per marteloscope, equivalent to EUR 170. This advantage was most significant in denser stands, especially the Italian cypress forest. Both methods were comparable in terms of accuracy for Douglas-fir and Stone pine stands, with no significant differences in felling number or volume, although greater differences were noted for the Italian cypress forest. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

12 pages, 1647 KiB  
Article
Dendroclimatic Response of Jack Pine (Pinus banksiana) Affected by Shoot Blight Caused by Diplodia pinea
by Sophan Chhin and Kaelyn Finley
Forests 2024, 15(11), 2011; https://doi.org/10.3390/f15112011 - 15 Nov 2024
Viewed by 793
Abstract
The overall objective of our study was to examine the influence of climatic factors and tree-based competition on the radial growth of jack pine (Pinus banksiana) forests affected by the fungal pathogen, Diplodia pinea. Our study utilized dendroclimatic techniques to [...] Read more.
The overall objective of our study was to examine the influence of climatic factors and tree-based competition on the radial growth of jack pine (Pinus banksiana) forests affected by the fungal pathogen, Diplodia pinea. Our study utilized dendroclimatic techniques to examine how past annual diameter growth can be influenced by the historical climate of the region. Twenty jack pine sites were sampled in Michigan within the Upper Peninsula (UP) and the Lower Peninsula (LP) region. Furthermore, two condition levels of forest health (D. pinea-affected vs. healthy reference stands) were considered between two levels of stand density (i.e., high vs. low density). The relationships between radial growth and climate identified in this study indicated that jack pine radial growth was typically affected by the climatic moisture index, whereas the response to temperature variables was weak to non-existent. In the Upper Peninsula region, crown damage likely sustained during harsh winters could have made jack pine stands prone to D. pinea by facilitating a point of entry for infection; furthermore, higher-density stands infected by D. pinea were influenced by moisture stress that occurred during the summer of the prior year. In the LP region, regardless of stand density, D. pinea was sensitive to moisture stress in the summer of the prior growing season; furthermore, negative relationships with precipitation in the spring may have improved spore dispersion in D. pinea-affected stands. Overall, our study provides improved understanding of the interactive role of climatic stress and forest pathogens on jack pine productivity. Full article
(This article belongs to the Special Issue Impact of Pests, Climate and Other Factors on Forest Health)
Show Figures

Figure 1

15 pages, 1283 KiB  
Article
Diameter Increment Estimations of Open-Grown Stone Pine (Pinus pinea L.) Trees in Urban Parks in Istanbul, Türkiye
by Hacı Abdullah Uçan, Emrah Özdemir, Serhun Sağlam, Gafura Aylak Özdemir and Ender Makineci
Sustainability 2024, 16(22), 9793; https://doi.org/10.3390/su16229793 - 10 Nov 2024
Viewed by 1284
Abstract
Open-grown trees in cities can improve environmental conditions by providing sustainable ecosystem services. Reliable data are necessary for assessing the functions of urban trees. The diameter at breast height (DBH), diameter increment, and annual ring measurements are the main parameters in the development [...] Read more.
Open-grown trees in cities can improve environmental conditions by providing sustainable ecosystem services. Reliable data are necessary for assessing the functions of urban trees. The diameter at breast height (DBH), diameter increment, and annual ring measurements are the main parameters in the development of reliable models. To model periodic mean diameter increments calculated for different time periods (5, 10, 15, 20, and 25 years), a total of 43 open-grown stone pines (Pinus pinea L.) of different diameter classes were sampled in several urban parks in Istanbul, Türkiye. The DBH was measured, and increment cores were extracted from each tree at 1.30 m stem height using an increment borer. Tree age at breast height was determined by counting annual rings, and periodic mean diameter increments were calculated for different periods based on the measured tree-ring widths. The periodic mean increments of different periods were related to the inside-bark diameter at breast height and tree age. Since there was no significant relationship between tree age and periodic mean increments for each period’s length, as shown in the correlation analysis, models used to estimate the periodic mean increments of inside-bark DBH were developed using the least squares regression and quantile regression (QR) techniques. As the period length increased, the estimation success of the diameter increment models increased while the mean absolute percentage error (MAE) values decreased from 40 to 32%. The best model was the one used for the last 25-year period with the quantile value q = 0.50 which estimated the diameter increment with an RMSE = 1.391 mm/year and MAE = 32.27%. Full article
Show Figures

Figure 1

25 pages, 9215 KiB  
Article
Phytochemical Composition and Characterization of In Vitro Bioactivities from Pinus Using Green Process
by Amel Chammam, Mehrez Romdhane, Luc Fillaudeau and Jalloul Bouajila
Molecules 2024, 29(22), 5295; https://doi.org/10.3390/molecules29225295 - 9 Nov 2024
Cited by 2 | Viewed by 1429
Abstract
Pinus species are notable in Mediterranean regions due to their ecological and economic importance. Various parts of these species are widely used in traditional medicine, especially pinecones, which are a significant source of bioactive compounds. The current study aimed to evaluate the phytochemical [...] Read more.
Pinus species are notable in Mediterranean regions due to their ecological and economic importance. Various parts of these species are widely used in traditional medicine, especially pinecones, which are a significant source of bioactive compounds. The current study aimed to evaluate the phytochemical composition and biological properties of the aqueous extracts obtained by maceration from three Pinus petal fractions, from P. halepensis Mill., P. brutia Ten., and P. pinea L. (APW, BPW, and PPW respectively), and the core fractions of the same species (ACW, BCW, and PCW respectively). The results showed that APW demonstrated superior performance compared to other species and fractions (p ≤ 0.05), with the highest total polyphenol content (203.51 mg GAE/g DW) and the highest antioxidant potential (IC50 = 13.51 µg/mL) against DPPH free radical. All extracts showed high anticancer activity against HeLa and HepG2 cancer cell lines, and low inhibition against HEK-293, a normal cell line (<15%), indicating that none of extracts have any toxicity effect. Furthermore, only APW exhibits a significant inhibition against α-glucosidase with 77.20% at 50 µg/mL. HPLC-DAD analysis was conducted to identify 14 compounds. GC-MS analysis was conducted to identify 28 compounds, of which 11 were detected for the first time in this species. This study offers valuable insights into phytochemistry and potential therapeutic applications of pinecones. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop