Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,155)

Search Parameters:
Keywords = PV limit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3940 KiB  
Article
Recovery Strategies for Combined Optical Storage Systems Based on System Short-Circuit Ratio (SCR) Thresholds
by Qingji Yang, Baohong Li, Qin Jiang and Qiao Peng
Energies 2025, 18(15), 4112; https://doi.org/10.3390/en18154112 (registering DOI) - 3 Aug 2025
Abstract
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a [...] Read more.
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a photovoltaic storage joint system based on the system’s short-circuit ratio threshold. Firstly, the principles and control modes of the photovoltaic (PV) system, energy storage system (ESS), and high-voltage direct current (DC) transmission system are studied separately to build an overall model; secondly, computational determinations of the short-circuit ratio under different scenarios are introduced to analyze the strength of the system, and the virtual inertia and virtual damping of the PV system are configured based on this; finally, the change trend of the storage system’s state of charge (SOC) is computed and observed, and the limits of what the system can support in each stage are determined. An electromagnetic transient simulation model of a black start system is constructed in PSCAD/EMTDC, and according to the proposed recovery strategy, the system frequency is maintained in the range of 49.4~50.6 Hz during the entire black start process; the fluctuation in maximum frequency after the recovery of the DC transmission system is no more than 0.1%; and the fluctuation in photovoltaic power at each stage is less than 3%. In addition, all the key indexes meet the requirements for black start technology, which verifies the validity of the strategy and provides theoretical support and a practical reference for the black start of a grid with variable energy sources. Full article
(This article belongs to the Special Issue Analysis and Control of Power System Stability)
Show Figures

Figure 1

27 pages, 1948 KiB  
Article
Real-World Performance and Economic Evaluation of a Residential PV Battery Energy Storage System Under Variable Tariffs: A Polish Case Study
by Wojciech Goryl
Energies 2025, 18(15), 4090; https://doi.org/10.3390/en18154090 (registering DOI) - 1 Aug 2025
Viewed by 21
Abstract
This paper presents an annual, real-world evaluation of the performance and economics of a residential photovoltaic (PV) system coupled with a battery energy storage system (BESS) in southern Poland. The system, monitored with 5 min resolution, operated under time-of-use (TOU) electricity tariffs. Seasonal [...] Read more.
This paper presents an annual, real-world evaluation of the performance and economics of a residential photovoltaic (PV) system coupled with a battery energy storage system (BESS) in southern Poland. The system, monitored with 5 min resolution, operated under time-of-use (TOU) electricity tariffs. Seasonal variation was significant; self-sufficiency exceeded 90% in summer, while winter conditions increased grid dependency. The hybrid system reduced electricity costs by over EUR 1400 annually, with battery operation optimized for high-tariff periods. Comparative analysis of three configurations—grid-only, PV-only, and PV + BESS—demonstrated the economic advantage of the integrated solution, with the shortest payback period (9.0 years) achieved with financial support. However, grid voltage instability during high PV production led to inverter shutdowns, highlighting limitations in the infrastructure. This study emphasizes the importance of tariff strategies, environmental conditions, and voltage control when designing residential PV-BESS systems. Full article
(This article belongs to the Special Issue Design, Analysis and Operation of Renewable Energy Systems)
Show Figures

Figure 1

32 pages, 1970 KiB  
Review
A Review of New Technologies in the Design and Application of Wind Turbine Generators
by Pawel Prajzendanc and Christian Kreischer
Energies 2025, 18(15), 4082; https://doi.org/10.3390/en18154082 (registering DOI) - 1 Aug 2025
Viewed by 51
Abstract
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power [...] Read more.
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power systems. This paper presents a comprehensive review of generator technologies used in wind turbine applications, ranging from conventional synchronous and asynchronous machines to advanced concepts such as low-speed direct-drive (DD) generators, axial-flux topologies, and superconducting generators utilizing low-temperature superconductors (LTS) and high-temperature superconductors (HTS). The advantages and limitations of each design are discussed in the context of efficiency, weight, reliability, scalability, and suitability for offshore deployment. Special attention is given to HTS-based generator systems, which offer superior power density and reduced losses, along with challenges related to cryogenic cooling and materials engineering. Furthermore, the paper analyzes selected modern generator designs to provide references for enhancing the performance of grid-synchronized hybrid microgrids integrating solar PV, wind, battery energy storage, and HTS-enhanced generators. This review serves as a valuable resource for researchers and engineers developing next-generation wind energy technologies with improved efficiency and integration potential. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

23 pages, 849 KiB  
Article
Assessment of the Impact of Solar Power Integration and AI Technologies on Sustainable Local Development: A Case Study from Serbia
by Aco Benović, Miroslav Miškić, Vladan Pantović, Slađana Vujičić, Dejan Vidojević, Mladen Opačić and Filip Jovanović
Sustainability 2025, 17(15), 6977; https://doi.org/10.3390/su17156977 (registering DOI) - 31 Jul 2025
Viewed by 91
Abstract
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, [...] Read more.
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, reduce emissions, and support community-level sustainability goals. Using a mixed-method approach combining spatial analysis, predictive modeling, and stakeholder interviews, this research study evaluates the performance and institutional readiness of local governments in terms of implementing intelligent solar infrastructure. Key AI applications included solar potential mapping, demand-side management, and predictive maintenance of photovoltaic (PV) systems. Quantitative results show an improvement >60% in forecasting accuracy, a 64% reduction in system downtime, and a 9.7% increase in energy cost savings. These technical gains were accompanied by positive trends in SDG-aligned indicators, such as improved electricity access and local job creation in the green economy. Despite challenges related to data infrastructure, regulatory gaps, and limited AI literacy, this study finds that institutional coordination and leadership commitment are decisive for successful implementation. The proposed AI–Solar Integration for Local Sustainability (AISILS) framework offers a replicable model for emerging economies. Policy recommendations include investing in foundational digital infrastructure, promoting low-code AI platforms, and aligning AI–solar projects with SDG targets to attract EU and national funding. This study contributes new empirical evidence on the digital–renewable energy nexus in Southeast Europe and underscores the strategic role of AI in accelerating inclusive, data-driven energy transitions at the municipal level. Full article
45 pages, 1090 KiB  
Review
Electric Vehicle Adoption in Egypt: A Review of Feasibility, Challenges, and Policy Directions
by Hilmy Awad, Michele De Santis and Ehab H. E. Bayoumi
World Electr. Veh. J. 2025, 16(8), 423; https://doi.org/10.3390/wevj16080423 - 28 Jul 2025
Viewed by 481
Abstract
This study evaluates the feasibility and visibility of electric vehicles (EVs) in Egypt, addressing critical research gaps and proposing actionable strategies to drive adoption. Employing a systematic review of academic, governmental, and industry sources, the paper identifies underexplored areas such as rural–urban adoption [...] Read more.
This study evaluates the feasibility and visibility of electric vehicles (EVs) in Egypt, addressing critical research gaps and proposing actionable strategies to drive adoption. Employing a systematic review of academic, governmental, and industry sources, the paper identifies underexplored areas such as rural–urban adoption disparities, lifecycle assessments of EV batteries, and sociocultural barriers, including gender dynamics and entrenched consumer preferences. Its primary contribution is an interdisciplinary framework that integrates technical aspects, such as grid resilience and climate-related battery degradation, with socioeconomic dimensions, providing a holistic overview of EV feasibility in Egypt tailored to Egypt’s context. Key findings reveal infrastructure limitations, inconsistent policy frameworks, and behavioral skepticism as major hurdles, and highlight the untapped potential of renewable energy integration, particularly through synergies between solar PV generation (e.g., Benban Solar Park) and EV charging infrastructure. Recommendations prioritize policy reforms (e.g., tax incentives, streamlined tariffs), solar-powered charging infrastructure expansion, public awareness campaigns, and local EV manufacturing to stimulate economic growth. The study underscores the urgency of stakeholder collaboration to transform EVs into a mainstream solution, positioning Egypt as a regional leader in sustainable mobility and equitable development. Full article
Show Figures

Figure 1

21 pages, 1558 KiB  
Article
Total Performance in Practice: Energy Efficiency in Modern Developer-Built Housing
by Wiktor Sitek, Michał Kosakiewicz, Karolina Krysińska, Magdalena Daria Vaverková and Anna Podlasek
Energies 2025, 18(15), 4003; https://doi.org/10.3390/en18154003 - 28 Jul 2025
Viewed by 202
Abstract
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building [...] Read more.
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building is designed with integrated systems that minimize energy consumption while maintaining resident comfort. The building is equipped with an air-to-water heat pump, underfloor heating, mechanical ventilation with heat recovery, and automatic temperature control systems. Energy efficiency was assessed using ArCADia–TERMOCAD 8.0 software in accordance with Polish Technical Specifications (TS) and verified by monitoring real-time electricity consumption during the heating season. The results show a PED from non-renewable sources of 54.05 kWh/(m2·year), representing a 23% reduction compared to the Polish regulatory limit of 70 kWh/(m2·year). Real-time monitoring conducted from December 2024 to April 2025 confirmed these results, indicating an actual energy demand of approximately 1771 kWh/year. Domestic hot water (DHW) preparation accounted for the largest share of energy consumption. Despite its dependence on grid electricity, the building has the infrastructure to enable future photovoltaic (PV) installation, offering further potential for emissions reduction. The results confirm that Total Performance strategies are not only compliant with applicable standards, but also economically and environmentally viable. They represent a scalable model for sustainable residential construction, in line with the European Union’s (EU’s) decarbonization policy and the goals of the European Green Deal. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

13 pages, 866 KiB  
Article
Integrating Polygenic Scores into Multifactorial Breast Cancer Risk Assessment: Insights from the First Year of Clinical Implementation in Western Austria
by Lukas Forer, Gunda Schwaninger, Kathrin Taxer, Florian Schnitzer, Daniel Egle, Johannes Zschocke and Simon Schnaiter
Cancers 2025, 17(15), 2472; https://doi.org/10.3390/cancers17152472 - 26 Jul 2025
Viewed by 307
Abstract
Background/Objectives: The implementation of polygenic scores (PGSs) and multifactorial risk assessments (MFRAs) has the potential to enhance breast cancer risk stratification, particularly in carriers of moderate-penetrance pathogenic variants (PVs), whose risk profiles often remain unclear if testing is limited to monogenic risk factors. [...] Read more.
Background/Objectives: The implementation of polygenic scores (PGSs) and multifactorial risk assessments (MFRAs) has the potential to enhance breast cancer risk stratification, particularly in carriers of moderate-penetrance pathogenic variants (PVs), whose risk profiles often remain unclear if testing is limited to monogenic risk factors. Methods: To enhance breast cancer risk stratification, we included the BCAC313 polygenic score, together with MFRA, for carriers of moderate-penetrance pathogenic variants (PVs) during routine diagnostics and assessed its effect on the classification of patients’ risk categories in a real-world cohort at our center in its first year of implementation. Seventeen carriers with PVs in moderate-risk breast cancer genes were included in this study. Thirteen of them qualified for analysis for a full MFRA, including PGS, according to ancestry estimation and clinical criteria. The MFRA was performed using the CanRisk tool, which incorporates clinical, lifestyle, familial, and genetic data, including the BCAC313 score. Results: PGS z-scores were significantly higher in breast cancer patients compared to the unaffected control cohort (p = 0.016). The MFRA, including PGS, increased risk estimates for contralateral breast cancer in seven of eight patients with breast cancer and for primary breast cancer in three of five healthy carriers, compared to the risk conferred by the MFRA and moderate-penetrance pathogenic variant alone. Risk estimates varied widely, demonstrating the value of MFRA in personalized care. In five cases, one with a CHEK2-PV and four with an ATM-PV, the modified risk assessment contributed to the surgical decision for a prophylactic mastectomy. Conclusions: The MFRA, including PGS, provides the clinically meaningful refinement of breast cancer risk estimates in individuals with moderate-risk PVs. Personalized risk predictions can inform clinical management and support decision-making, which highlights the utility of this approach in clinical practice. Full article
(This article belongs to the Special Issue Oncology: State-of-the-Art Research in Austria)
Show Figures

Figure 1

11 pages, 493 KiB  
Proceeding Paper
PV Power Generation Forecasting with Fuzzy Inference Systems
by Cinthia Rodriguez, Marco Pacheco, Marley Vellasco, Manoela Kohler and Thiago Medeiros
Eng. Proc. 2025, 101(1), 5; https://doi.org/10.3390/engproc2025101005 - 23 Jul 2025
Viewed by 178
Abstract
This paper aims to implement a fuzzy system for the purpose of forecasting the output of photovoltaic (PV) systems. A bibliometric review was conducted to establish a baseline, involving the exploration of six different configuration of fuzzy systems. These systems were trained and [...] Read more.
This paper aims to implement a fuzzy system for the purpose of forecasting the output of photovoltaic (PV) systems. A bibliometric review was conducted to establish a baseline, involving the exploration of six different configuration of fuzzy systems. These systems were trained and evaluated using a sliding window technique and a validation set. The development of the study utilized data collected from 1 May 2018 to 30 June 2018 at the Universidad Autónoma de Occidente campus. The dataset was analyzed in order to identify any discernible trends, seasonal patterns, and instances of stationarity. A comparison of the six models revealed their ability to predict PV power generation, with the model with 13 lags and five fuzzy sets demonstrating results with a reasonable trade-off between training and test performance. The model achieved an R-squared value of 0.8124 and an RMSE of 29.7025 kWh in the test data, indicating that the predictions were closely aligned with the actual values. However, this suggests that the model may be overly simple or may require additional data to more accurately capture the inherent variability of the data. The paper concludes with a discussion of the model’s limitations and potential avenues for future research. Full article
Show Figures

Figure 1

33 pages, 7605 KiB  
Article
Dynamic Heat Transfer Modelling and Thermal Performance Evaluation for Cadmium Telluride-Based Vacuum Photovoltaic Glazing
by Changyu Qiu, Hongxing Yang and Kaijun Dong
Buildings 2025, 15(15), 2612; https://doi.org/10.3390/buildings15152612 - 23 Jul 2025
Viewed by 251
Abstract
Building-integrated photovoltaic (BIPV) windows present a viable path towards carbon neutrality in the building sector. However, conventional BIPV windows, such as semi-transparent photovoltaic (STPV) glazings, still suffer from inadequate thermal insulation, which limits their effectiveness across different climate conditions. To address this issue, [...] Read more.
Building-integrated photovoltaic (BIPV) windows present a viable path towards carbon neutrality in the building sector. However, conventional BIPV windows, such as semi-transparent photovoltaic (STPV) glazings, still suffer from inadequate thermal insulation, which limits their effectiveness across different climate conditions. To address this issue, the cadmium telluride-based vacuum PV glazing has been developed to enhance the thermal performance of BIPV applications. To fully understand the complex thermal behaviour under real-world operational scenarios, this study introduces a one-dimensional transient heat transfer model that can efficiently capture the time-dependent thermal dynamics of this novel glazing system. Based on the numerical solutions using the explicit finite difference method (FDM), the temperature profile of the vacuum PV glazing can be obtained dynamically. Consequently, the heat gain of the semi-transparent vacuum PV glazing can be calculated under time-varying outdoor and indoor conditions. The validated heat transfer model was applied under four different scenarios, viz. summer daytime, summer nighttime, winter daytime, and winter nighttime, to provide a detailed analysis of the dynamic thermal behaviour, including the temperature variation and the energy flow. The dynamic thermal characteristics of the vacuum PV glazing calculated by the transient heat transfer model demonstrate its excellent thermal insulation and solar control capabilities. Moreover, the thermal performance of vacuum PV glazing was compared with a standard double-pane window under various weather conditions of a typical summer day and a typical winter day. The results indicate that the vacuum PV glazing can effectively minimise both heat gain and heat loss. The fluctuation of the inner surface temperature can be controlled within a limited range away from the set point of the indoor room temperature. Therefore, the vacuum PV glazing contributes to stabilising the temperature of the indoor environment despite the fluctuating solar radiation and periodic outdoor temperature. It is suggested that the vacuum PV glazing has the potential to enhance the climate adaptability of BIPV windows under different climate backgrounds. Full article
(This article belongs to the Collection Renewable Energy in Buildings)
Show Figures

Figure 1

20 pages, 1446 KiB  
Article
Astaxanthin from Shrimp By-Products Enhances Oxidative Stability of Lard During Storage
by Olga Draghici
Foods 2025, 14(15), 2585; https://doi.org/10.3390/foods14152585 - 23 Jul 2025
Viewed by 233
Abstract
Previous research has primarily focused on the antioxidant effect of astaxanthin (AX) in various vegetable oils, with limited attention given to its behavior in lard. This study aimed to evaluate the degradation of AX during lard storage and to assess the physicochemical changes [...] Read more.
Previous research has primarily focused on the antioxidant effect of astaxanthin (AX) in various vegetable oils, with limited attention given to its behavior in lard. This study aimed to evaluate the degradation of AX during lard storage and to assess the physicochemical changes occurring in lard containing different AX concentrations over time. The variation in AX concentration was monitored using spectrophotometric analysis. To characterize the changes in lard, both thermal and chemical methods were employed: thermal analysis was used to determine the onset oxidation temperature (To) and activation energy (Ea), while chemical methods included peroxide value (PV) and thiobarbituric acid reactive substance (TBA) assays. Optimization of AX concentration and temporal evaluation of its antioxidant effect were performed using Response Surface Methodology (RSM). The results indicated a significant degradation of AX after 30 days of storage. An AX concentration of approximately 3 mg/g was identified as optimal, as it provided the highest thermal stability and the lowest levels of oxidation markers, offering a well-balanced compromise between technological performance and preservative effectiveness in lard during storage. Additionally, the color of the lard was found to be more strongly influenced by the presence of AX itself rather than by its specific concentration. Full article
Show Figures

Figure 1

23 pages, 13179 KiB  
Article
A Low-Cost Arduino-Based I–V Curve Tracer with Automated Load Switching for PV Panel Characterization
by Pedro Leineker Ochoski Machado, Luis V. Gulineli Fachini, Erich T. Tiuman, Tathiana M. Barchi, Sergio L. Stevan, Hugo V. Siqueira, Romeu M. Szmoski and Thiago Antonini Alves
Appl. Sci. 2025, 15(15), 8186; https://doi.org/10.3390/app15158186 - 23 Jul 2025
Viewed by 179
Abstract
Accurate photovoltaic (PV) panel characterization is critical for optimizing renewable energy systems, but it is often hindered by the high cost of commercial tracers or the slow, error-prone nature of manual methods. This paper presents a low-cost, Arduino-based I–V curve tracer that overcomes [...] Read more.
Accurate photovoltaic (PV) panel characterization is critical for optimizing renewable energy systems, but it is often hindered by the high cost of commercial tracers or the slow, error-prone nature of manual methods. This paper presents a low-cost, Arduino-based I–V curve tracer that overcomes these limitations through fully automated resistive load switching. By integrating a relay-controlled resistor bank managed by a single microcontroller, the system eliminates the need for manual intervention, enabling rapid and repeatable measurements in just 45 s. This rapid acquisition is a key advantage over manual systems, as it minimizes the impact of fluctuating environmental conditions and ensures the resulting I–V curve represents a stable operating point. Compared to commercial alternatives, our open-source solution offers significant benefits in cost, portability, and flexibility, making it ideal for field deployment. The system’s use of fixed, stable resistive loads for each measurement point also ensures high repeatability and straightforward comparison with theoretical models. Experimental validation demonstrated high agreement with a single-diode PV model, achieving a mean absolute percentage error (MAPE) of 4.40% against the manufacturer’s data. Furthermore, re-optimizing the model with field-acquired data reduces the MAPE from 18.23% to 7.06% under variable irradiance. This work provides an accessible, robust, and efficient tool for PV characterization, democratizing access for research, education, and field diagnostics. Full article
Show Figures

Figure 1

22 pages, 4620 KiB  
Article
Spatial Strategies for the Renewable Energy Transition: Integrating Solar Photovoltaics into Barcelona’s Urban Morphology
by Maryam Roodneshin, Adrian Muros Alcojor and Torsten Masseck
Solar 2025, 5(3), 34; https://doi.org/10.3390/solar5030034 - 23 Jul 2025
Viewed by 421
Abstract
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO [...] Read more.
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO2 emissions, air pollution, and energy inefficiency. Rooftop availability and photovoltaic (PV) design constraints are analysed under current urban regulations. The spatial analysis incorporates building geometry and solar exposure, while an evolutionary optimisation algorithm in Grasshopper refines shading analysis, energy yield, and financial performance. Clustering methods (K-means and 3D proximity) group PV panels by solar irradiance uniformity and spatial coherence to enhance system efficiency. Eight PV deployment scenarios are evaluated, incorporating submodule integrated converter technology under a solar power purchase agreement model. Results show distinct trade-offs among PV scenarios. The standard fixed tilted (31.5° tilt, south-facing) scenario offers a top environmental and performance ratio (PR) = 66.81% but limited financial returns. In contrast, large- and huge-sized modules offer peak financial returns, aligning with private-sector priorities but with moderate energy efficiency. Medium- and large-size scenarios provide balanced outcomes, while a small module and its optimised rotated version scenarios maximise energy output yet suffer from high capital costs. A hybrid strategy combining standard fixed tilted with medium and large modules balances environmental and economic goals. The district’s morphology supports “solar neighbourhoods” and demonstrates how multi-scenario evaluation can guide resilient PV planning in Mediterranean cities. Full article
Show Figures

Figure 1

30 pages, 1981 KiB  
Article
Stochastic Control for Sustainable Hydrogen Generation in Standalone PV–Battery–PEM Electrolyzer Systems
by Mohamed Aatabe, Wissam Jenkal, Mohamed I. Mosaad and Shimaa A. Hussien
Energies 2025, 18(15), 3899; https://doi.org/10.3390/en18153899 - 22 Jul 2025
Viewed by 358
Abstract
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green [...] Read more.
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green hydrogen, generated via proton exchange membrane (PEM) electrolyzers, offers a scalable alternative. This study proposes a stochastic energy management framework that leverages a Markov decision process (MDP) to coordinate PV generation, battery storage, and hydrogen production under variable irradiance and uncertain load demand. The strategy dynamically allocates power flows, ensuring system stability and efficient energy utilization. Real-time weather data from Goiás, Brazil, is used to simulate system behavior under realistic conditions. Compared to the conventional perturb and observe (P&O) technique, the proposed method significantly improves system performance, achieving a 99.9% average efficiency (vs. 98.64%) and a drastically lower average tracking error of 0.3125 (vs. 9.8836). This enhanced tracking accuracy ensures faster convergence to the maximum power point, even during abrupt load changes, thereby increasing the effective use of solar energy. As a direct consequence, green hydrogen production is maximized while energy curtailment is minimized. The results confirm the robustness of the MDP-based control, demonstrating improved responsiveness, reduced downtime, and enhanced hydrogen yield, thus supporting sustainable energy conversion in off-grid environments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

6 pages, 161 KiB  
Brief Report
Reconstruction of an Occluded Portal Vein During Pancreatic Resection
by Ahmer Irfan, Farah Ladak, David Chan, Carol-Anne Moulton, Trevor Reichman, Sean Cleary, Gonzalo Sapisochin, Chaya Shwaartz and Ian McGilvray
J. Vasc. Dis. 2025, 4(3), 28; https://doi.org/10.3390/jvd4030028 - 22 Jul 2025
Viewed by 164
Abstract
Background: Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most common malignancies associated with thrombotic events. While there is research present on various techniques of portal vein reconstruction, there is limited published data on the techniques and/or considerations of reconstruction in the setting [...] Read more.
Background: Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most common malignancies associated with thrombotic events. While there is research present on various techniques of portal vein reconstruction, there is limited published data on the techniques and/or considerations of reconstruction in the setting of complete portal vein occlusion. We therefore sought to analyze and present our experience of this clinical scenario. Methods: This was a retrospective analysis of a prospectively collected database. All patients who underwent portal vein resection and/or reconstruction during a pancreatic resection were included. Post-operatively, all patients underwent a contrast-enhanced CT scan on post-operative day 1 to assess for any portal vein thrombus. Results: Pancreatic resection with portal vein reconstruction was performed in 183 patients. Complete PV occlusion was seen in 12 patients at the time of surgery. In those patients with an occluded PV, reconstruction options included primary repair with end-end anastomosis (n = 2) or use of an interposition graft (n = 9). Interposition graft conduits included the left renal vein (n = 6), tubularized bovine pericardium (n = 3), and femoral vein (n = 1). Post-operative portal vein thrombus was seen in 4/12 patients. The majority of patients (n = 7) were discharged on therapeutic anticoagulation, 4 were discharged on an antiplatelet, and 1 patient received neither. Conclusions: Based on our series, we would recommend attempting PV reconstruction in these patients with an interposition graft (with autologous left renal vein or bovine pericardium). We believe that with this technique, the post-operative thrombosis risk is similar to PV reconstructions in non-occluded patients. Full article
(This article belongs to the Section Peripheral Vascular Diseases)
24 pages, 4004 KiB  
Article
Assessing the Impact of Solar Spectral Variability on the Performance of Photovoltaic Technologies Across European Climates
by Ivan Bevanda, Petar Marić, Ante Kristić and Tihomir Betti
Energies 2025, 18(14), 3868; https://doi.org/10.3390/en18143868 - 21 Jul 2025
Viewed by 241
Abstract
Precise photovoltaic (PV) performance modeling is essential for optimizing system design, operational monitoring, and reliable power forecasting—yet spectral correction is often overlooked, despite its significant impact on energy yield uncertainty. This study employs the FARMS-NIT model to assess the impact of spectral irradiance [...] Read more.
Precise photovoltaic (PV) performance modeling is essential for optimizing system design, operational monitoring, and reliable power forecasting—yet spectral correction is often overlooked, despite its significant impact on energy yield uncertainty. This study employs the FARMS-NIT model to assess the impact of spectral irradiance on eight PV technologies across 79 European sites, grouped by Köppen–Geiger climate classification. Unlike previous studies limited to clear-sky or single-site analysis, this work integrates satellite-derived spectral data for both all-sky and clear-sky scenarios, enabling hourly, tilt-optimized simulations that reflect real-world operating conditions. Spectral analyses reveal European climates exhibit blue-shifted spectra versus AM1.5 reference, only 2–5% resembling standard conditions. Thin-film technologies demonstrate superior spectral gains under all-sky conditions, though the underlying drivers vary significantly across climatic regions—a distinction that becomes particularly evident in the clear-sky analysis. Crystalline silicon exhibits minimal spectral sensitivity (<1.6% variations), with PERC/PERT providing highest stability. CZTSSe shows latitude-dependent performance with ≤0.7% variation: small gains at high latitudes and losses at low latitudes. Atmospheric parameters were analyzed in detail, revealing that air mass (AM), clearness index (Kt), precipitable water (W), and aerosol optical depth (AOD) play key roles in shaping spectral effects, with different parameters dominating in distinct climate groups. Full article
Show Figures

Figure 1

Back to TopTop