Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = PUMILIO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 6170 KB  
Review
RNA-Binding Proteins in Dinoflagellates
by Mariia Berdieva, Pavel Safonov and Sergei Skarlato
Int. J. Mol. Sci. 2026, 27(1), 462; https://doi.org/10.3390/ijms27010462 - 1 Jan 2026
Viewed by 438
Abstract
The described features of dinoflagellate gene expression indicate the predominance of post-transcriptional and translational regulation over transcriptional control. These microorganisms also exhibit extensive RNA editing and distinctive splicing characteristics. This regulatory landscape underscores the central role of RNA-binding proteins in dinoflagellate biology. In [...] Read more.
The described features of dinoflagellate gene expression indicate the predominance of post-transcriptional and translational regulation over transcriptional control. These microorganisms also exhibit extensive RNA editing and distinctive splicing characteristics. This regulatory landscape underscores the central role of RNA-binding proteins in dinoflagellate biology. In this review, we summarize current knowledge on major RNA-binding protein groups identified or bioinformatically annotated in dinoflagellates, including RNA recognition motif domain-containing proteins, Sm and Sm-like family, KH domain-containing proteins, zinc-finger proteins, and Pumilio family proteins, S1 domain-containing and cold shock domain-containing proteins, DEAD/DEAH-box RNA helicases, and pentatricopeptide repeat proteins. We focus on the features of their conserved domains, their functions in eukaryotes, and available data on their presence and putative roles in dinoflagellate cells. Integrating genomic, transcriptomic, and proteomic evidence, and where possible experimental data, we highlight both their overall conservation and potential lineage-specific traits. Our aim is to provide a concise synthesis of current knowledge, identify key uncertainties, and outline promising directions for future research into the evolution and cellular roles of RNA-binding proteins in this ecologically and biologically remarkable group. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

24 pages, 2185 KB  
Article
Seasonal Turnover and Functional Structure of the Foliar Mycobiota in a Gondwanan Temperate Forest Keystone Tree
by Lucía Molina, Mario Rajchenberg, María Belén Pildain and Mary Catherine Aime
J. Fungi 2025, 11(11), 795; https://doi.org/10.3390/jof11110795 - 7 Nov 2025
Cited by 1 | Viewed by 808
Abstract
Fungal communities inhabiting leaves are key players in ecosystem processes but remain largely unexplored in Southern Hemisphere temperate forests. We characterized the foliar mycobiota of Nothofagus pumilio, a dominant deciduous tree in Patagonian forests, using ITS1 metabarcoding across seasons and tree health [...] Read more.
Fungal communities inhabiting leaves are key players in ecosystem processes but remain largely unexplored in Southern Hemisphere temperate forests. We characterized the foliar mycobiota of Nothofagus pumilio, a dominant deciduous tree in Patagonian forests, using ITS1 metabarcoding across seasons and tree health conditions. We detected 426 fungal taxa, including a 40-Amplicon Sequence Variant (ASV) core mycobiome persisting year-round. Fungal richness and biomass increased significantly in autumn, coinciding with leaf senescence, and community composition shifted markedly between seasons. Spring leaves were enriched in pathogens and basidiomycetous yeasts, while autumn leaves hosted more saprotrophs, ascomycetous yeasts, and lichen-associated fungi. Tree health had limited influence on overall community structure, but symptomatic trees showed higher ASV richness and specific indicator taxa, including the pathogen Trichosporiella multisporum and members of the Taphrinaceae and Saccotheciaceae families. Despite taxonomic turnover, ecological guilds remained relatively stable, suggesting functional redundancy. These findings reveal a seasonal successional trajectory in the foliar mycobiota of N. pumilio, from early-colonizing endophytes in spring to diverse decomposer assemblages in autumn. This study provides the first high-throughput insight into the structure and dynamics of foliar fungal communities in Southern Hemisphere temperate forests, offering a baseline for understanding microbial roles in forest health and resilience. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Graphical abstract

16 pages, 4419 KB  
Article
PUM1 in Breast Cancer: Tumor Expression and Prognostic and Predictive Significance
by Abrar I. Aljohani
Medicina 2025, 61(10), 1810; https://doi.org/10.3390/medicina61101810 - 9 Oct 2025
Viewed by 892
Abstract
Background and Objectives: Breast cancer (BC) is a complex disease requiring a comprehensive treatment approach due to its diverse characteristics. Critical molecular determinants of BC have been identified using advanced genomic, transcriptomic, and proteomic approaches. Assessing the biomarkers associated with the onset [...] Read more.
Background and Objectives: Breast cancer (BC) is a complex disease requiring a comprehensive treatment approach due to its diverse characteristics. Critical molecular determinants of BC have been identified using advanced genomic, transcriptomic, and proteomic approaches. Assessing the biomarkers associated with the onset of early-stage BC may help identify the risk of metastasis and inform treatment decisions. A previous bioinformatic analysis using two large BC cohorts identified pumilio RNA binding family member 1 (PUM1) as a key gene in invasive BC. However, no study has yet examined the prognostic and predictive value of PUM1 in invasive BC and its correlation with aggressive tumor behavior. This study aimed to fill this need. Materials and Methods: Correlations between PUM1 expression and patients’ clinicopathological characteristics and outcomes were explored in publicly available BC transcriptomic data acquired using DNA microarrays (n = 10,872) and RNA sequencing (n = 4421) using BC Gene-Expression Miner v5.0. PUM1 expression in samples from 100 patients with invasive BC at King Abdul Aziz Specialist Hospital, Saudi Arabia, was assessed immunohistochemically. Correlations between PUM1 expression and patients’ clinicopathological characteristics (e.g., age, tumor grade, tumor size, and outcome) were assessed. The online platform ROC Plotter was also used to investigate the predictive significance of PUM1. Results: High PUM1 gene and protein expression correlated positively with aggressive features of BC, including high histological grade, high Ki-67 expression, negative hormone receptors, and the triple-negative BC molecular subtype. High PUM1 expression correlated with poor outcomes, and high PUM1 expression was associated with a lower pathological complete response to anti-endocrine treatment but a high response to chemotherapy. Conclusions: These results indicate that PUM1 may serve as a potential prognostic and predictive biomarker in patients with invasive BC. PUM1 may serve as a therapeutic target in BC cases with unfavorable prognoses. However, further validation in larger, multi-center cohorts and further functional assessment are required to deepen our understanding of PUM1’s role in BC. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

27 pages, 8498 KB  
Article
Treeline Species Distribution Under Climate Change: Modelling the Current and Future Range of Nothofagus pumilio in the Southern Andes
by Melanie Werner, Jürgen Böhner, Jens Oldeland, Udo Schickhoff, Johannes Weidinger and Maria Bobrowski
Forests 2025, 16(8), 1211; https://doi.org/10.3390/f16081211 - 23 Jul 2025
Viewed by 1230
Abstract
Although treeline ecotones are significant components of vulnerable mountain ecosystems and key indicators of climate change, treelines of the Southern Hemisphere remain largely outside of research focus. In this study, we investigate, for the first time, the current and future distribution of the [...] Read more.
Although treeline ecotones are significant components of vulnerable mountain ecosystems and key indicators of climate change, treelines of the Southern Hemisphere remain largely outside of research focus. In this study, we investigate, for the first time, the current and future distribution of the treeline species Nothofagus pumilio in the Southern Andes using a Species Distribution Modelling approach. The lack of modelling studies in this region can be contributed to missing occurrence data for the species. In a preliminary study, both point and raster data were generated using a novel Instagram ground truthing approach and remote sensing. Here we tested the performance of the two datasets: a typical binary species dataset consisting of occurrence points and pseudo-absence points and a continuous dataset where species occurrence was determined by supervised classification. We used a Random Forest (RF) classification and a RF regression approach. RF is applicable for both datasets, has a very good performance, handles multicollinearity and remains largely interpretable. We used bioclimatic variables from CHELSA as predictors. The two models differ in terms of variable importance and spatial prediction. While a temperature variable is the most important variable in the RF classification, the RF regression model was mainly modelled by precipitation variables. Heat deficiency is the most important limiting factor for tree growth at treelines. It is evident, however, that water availability and drought stress will play an increasingly important role for the future competitiveness of treeline species and their distribution. Modelling with binary presence–absence point data in the RF classification model led to an overprediction of the potential distribution of the species in summit regions and in glacier areas, while the RF regression model, trained with continuous raster data, led to a spatial prediction with small-scale details. The time-consuming and costly acquisition of complex species information should be accepted in order to provide better predictions and insights into the potential current and future distribution of a species. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

13 pages, 3118 KB  
Article
Landscape Composition and Forest Structure Shape Phyllostomid Bat Assemblages in the Atlantic Forest Remnants
by Ricardo Bovendorp, Eduardo Mariano-Neto, Albérico Queiroz and Deborah Faria
Animals 2025, 15(14), 2082; https://doi.org/10.3390/ani15142082 - 15 Jul 2025
Cited by 1 | Viewed by 1881
Abstract
Habitat loss and land-use intensification are major threats to biodiversity in the Brazilian Atlantic Forest, particularly for bat assemblages that provide key ecosystem services. In this study, we examined how landscape composition (forest and pasture cover) and local forest structure influence the richness [...] Read more.
Habitat loss and land-use intensification are major threats to biodiversity in the Brazilian Atlantic Forest, particularly for bat assemblages that provide key ecosystem services. In this study, we examined how landscape composition (forest and pasture cover) and local forest structure influence the richness and abundance of phyllostomid bats across 20 forest fragments in southern Bahia. Bat sampling was conducted using mist nets, and forest structure was quantified using tree measurements and vertical foliage stratification. We applied structural equation modeling to test the direct and indirect effects of landscape and local variables. Our results show that forest cover has both direct and indirect positive effects on bat diversity, mediated by improved forest structure. In contrast, increased pasture cover negatively affected forest structure and was weakly associated with bat diversity. The most abundant species were generalist frugivores, such as Carollia perspicillata and Rhinophylla pumilio. These findings highlight the importance of maintaining forest cover and structural complexity to support bat diversity in agroforestry-dominated landscapes. Conservation strategies that integrate habitat protection with sustainable land-use practices are crucial to maintaining biodiversity and the ecological functions provided by bats in this globally threatened biome. Full article
(This article belongs to the Special Issue Conservation, Ecology and Health Issues of Forest Bats)
Show Figures

Figure 1

22 pages, 2684 KB  
Article
Impact of the Wood Species Used on the Chemical Composition, Color and Sensory Characteristics of Wine
by Ana María Martínez-Gil, Maria del Alamo-Sanza, María Asensio-Cuadrado, Rubén del Barrio-Galán and Ignacio Nevares
Foods 2025, 14(12), 2088; https://doi.org/10.3390/foods14122088 - 13 Jun 2025
Viewed by 1152
Abstract
In recent decades, the use of wood pieces has been promoted as a viable alternative to barrels to improve the quality of white wines. However, most available studies have focused on red wines. Given that white and red wines present significant oenological differences [...] Read more.
In recent decades, the use of wood pieces has been promoted as a viable alternative to barrels to improve the quality of white wines. However, most available studies have focused on red wines. Given that white and red wines present significant oenological differences that affect their development and final characteristics, it is necessary to expand research specifically to the case of white wines. For this reason, this study evaluates the impact of using pieces of traditional oak wood (Quercus petraea (two origins: French and Romanian) and Quercus alba), other oaks (Quercus humboldtti and Quercus candicans) and other genera (Robinia pseudoacacia, Acacia dealbata, Prunus avium and Nothofagus pumilio) on the quality of white wine during the short period of contact with the wood. The results show that aging with the different woods has little effect on the oenological parameters of the wine; however, it does lead to a change in the phenolic composition and in the final chromatic characteristics of the white wines. From a sensory point of view, the wines showed different sensory profiles depending on the type of wood used. In general, the tasting panel preferred the white wine aged with French Quercus petraea wood pieces, followed by the wine aged with Quercus humboldtti wood pieces and the wine aged with Robinia speudoacacia wood pieces. This research improves our understanding of the potential impact of using pieces of different woods in white wines, describing the potential interest of some that have not been studied before, such as Quercus humboldtti. Full article
Show Figures

Graphical abstract

23 pages, 4356 KB  
Article
Understory Forage Quality for Grazing Animals in Chilean Patagonian Forests
by Thomas Brisard, Amelie Brisard, Mónica D. R. Toro-Manríquez, Soraya Villagrán Chacón, Pablo Jesús Marín-García, Lola Llobat, Guillermo Martínez Pastur, Sabina Miguel Maluenda and Alejandro Huertas Herrera
Land 2025, 14(5), 1081; https://doi.org/10.3390/land14051081 - 16 May 2025
Viewed by 1238
Abstract
Native forests provide forage for grazing animals. We investigated whether native and exotic vegetation promotes the potential animal load (PAL, ind ha−1 yr−1) for cattle (Bos taurus, ~700 kg) and sheep (Ovis aries, ~60 kg) in [...] Read more.
Native forests provide forage for grazing animals. We investigated whether native and exotic vegetation promotes the potential animal load (PAL, ind ha−1 yr−1) for cattle (Bos taurus, ~700 kg) and sheep (Ovis aries, ~60 kg) in contrasting native forest types and canopy cover (closed, semi-open, open). This study was conducted in Chilean Patagonia (−44° to −49° SL). Vegetation cover (%) and growth habit data (trees, shrubs, forbs, graminoids, ferns, lianas, lichens, and bryophytes) were collected from 374 plots (>5 ha) in different environments: coihue (Nothofagus dombeyi, CO), lenga (N. pumilio, LE), mixed Nothofagus forests (MI), ñirre (N. antarctica, ÑI), evergreen forest (SV), and open land (OL). We combine this data with literature and laboratory analyses (e.g., crude protein, %) to develop PAL values for seasons. Data sampling was evaluated using descriptive analyses and uni- and multi-variate analyses (ANOVA, MCA, GLM). Results showed that closed forests had more native species (~56.6%) compared to open forests (~33.3%), while OL had higher cover of exotic species (~68.6%). LE presented the highest native species cover (~58.0%) and ÑI presented the highest exotic species cover (~53.0%). Closed forests had fewer exotic species than semi-open and open forests, which supported higher cover of native plants (p < 0.01). Forbs were the dominant growth habit in closed forests, while graminoids were dominant in OL (~45.8%). Multivariate analyses showed that LE and CO were associated with lower PAL values, explaining 91.2% variance. GLMs showed that the PAL increased in ÑI and the spring season, with forbs and graminoids having positive effects and shrubs and trees having negative effects (r2 = 0.57–0.67). Our analyses also showed that exotic species dominated environment types with a high PAL, particularly during spring and summer, when cover increased. This indicates a trade-off between forage production in forests with exotic plants. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

33 pages, 688 KB  
Review
The Regulatory Roles of RNA-Binding Proteins in Plant Salt Stress Response
by Tangying Wang, Kaiyuan Meng, Zilin Zhu, Linxuan Pan, Thomas W. Okita, Laining Zhang and Li Tian
Plants 2025, 14(9), 1402; https://doi.org/10.3390/plants14091402 - 7 May 2025
Cited by 5 | Viewed by 3841
Abstract
Salt stress is one of the most prominent abiotic stresses. Behind the intricate adaptive responses of plants to salt stress, the regulation of gene expression assumes a pivotal role. Complementing transcriptional mechanisms, post-transcriptional regulation performed by RNA-binding proteins provides an additional layer of [...] Read more.
Salt stress is one of the most prominent abiotic stresses. Behind the intricate adaptive responses of plants to salt stress, the regulation of gene expression assumes a pivotal role. Complementing transcriptional mechanisms, post-transcriptional regulation performed by RNA-binding proteins provides an additional layer of control through sophisticated molecular machinery. RBPs interact with both RNA molecules and protein partners to coordinate RNA metabolism and, thus, fine-tune the expression of salt-responsive genes, enabling plants to rapidly adapt to ionic challenges. This review systematically evaluates the functional roles of RBPs localized in distinct subcellular compartments, including nuclear, cytoplasmic, chloroplastic, and mitochondrial systems, in mediating post-transcriptional regulatory networks under salinity challenges. Specific classes of RBPs are discussed in detail, including glycine-rich RNA-binding proteins (GR-RBPs), serine/arginine-rich splicing factors (SR proteins), zinc finger domain-containing proteins, DEAD-box RNA helicases (DBRHs), KH domain-containing proteins, Pumilio domain-containing proteins (PUMs), pentatricopeptide repeat proteins (PPRs), and RBPs involved in cytoplasmic RNA granule formation. By integrating their subcellular localization and current mechanistic insights, this review concludes by summarizing the current knowledge and highlighting potential future research directions, aiming to inspire further investigations into the complex network of RBPs in modulating plant responses to salt stress and facilitating the development of strategies to enhance plant salt tolerance. Full article
Show Figures

Figure 1

15 pages, 14838 KB  
Article
Centaurea pumilio (Asteraceae): Conservation Status, Threats and Population Size of a Critically Endangered Species in Italy
by Alessio Turco, Robert Philipp Wagensommer, Pietro Medagli, Saverio D’Emerico, Fabio Ippolito, Giuseppe Scordella and Antonella Albano
Plants 2025, 14(7), 1074; https://doi.org/10.3390/plants14071074 - 1 Apr 2025
Cited by 2 | Viewed by 1118
Abstract
This paper presents a comprehensive study of the size and conservation status of the only Italian population of Centaurea pumilio (Asteraceae) and the threats to its survival. The population is located on a short stretch of sandy shoreline along the Ionian coast of [...] Read more.
This paper presents a comprehensive study of the size and conservation status of the only Italian population of Centaurea pumilio (Asteraceae) and the threats to its survival. The population is located on a short stretch of sandy shoreline along the Ionian coast of Puglia, near Torre S. Giovanni (Ugento, Lecce). It was estimated in the 1990s to number about 500 plants, but in recent years a significant reduction, bringing the population to fewer than 100 individuals, has been observed. This study involved a census of the individuals (differentiating young plants from adult and reproductive ones) conducted with a precision GPS tool, phytosociological analysis and high-definition orthophoto image acquisition using a drone. Concerning the latter, to evaluate anthropic pressure from tourism, data were acquired in spring 2023 and autumn 2024 and compared using GIS geoprocessing, showing a significant increase in the area occupied by footpaths. GIS analysis also revealed that the survival of C. pumilio is strongly linked to the intensity of the walking routes, which have fragmented the population into small and isolated clusters. On the basis of all the collected data, the current conservation status of the species in Italy was assessed as critically endangered. Finally, our study provides a series of suggestions to improve the conservation status of the species and strategies to reduce the risk of extinction in Italy. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

13 pages, 1174 KB  
Article
Successional Dynamics Are Influenced by Cattle and Selective Logging in Nothofagus Deciduous Forests of Western Patagonia
by Carlos Zamorano-Elgueta and Constanza Becerra-Rodas
Forests 2025, 16(4), 580; https://doi.org/10.3390/f16040580 - 27 Mar 2025
Cited by 3 | Viewed by 812
Abstract
Cattle grazing and selective logging alter the functioning of an ecosystem, but their impacts on forest regeneration, particularly in relation to forest successional stages, are yet poorly understood. This study examined how these activities affect the regeneration of Nothofagus antarctica (ñire or ñirre) [...] Read more.
Cattle grazing and selective logging alter the functioning of an ecosystem, but their impacts on forest regeneration, particularly in relation to forest successional stages, are yet poorly understood. This study examined how these activities affect the regeneration of Nothofagus antarctica (ñire or ñirre) and N. pumilio (lenga) pure forests in Patagonia and whether these effects vary between old-growth and secondary forests. We assessed seedlings by origin (sexual, asexual) and height classes (<0.3 m, 0.3–0.6 m, >0.6 m) across 88 plots (25 × 20 m). Selective logging intensity was measured via the basal area of tree stumps, and cattle grazing pressure via dung counts. Forest regeneration, as predicted by human disturbances, forest successional stage, and tree density (parent trees), was modeled using generalized linear models. For N. antarctica, regeneration was exclusively asexual and showed a positive influence for selective logging and cattle, but negative with both interacting. In contrast, the most recent regeneration (R1) was predominantly influenced by the density of parent trees and successional stage. Conversely, N. pumilio regeneration, entirely sexual, was unaffected by cattle grazing, relying instead on parent tree density, logging intensity, and successional stage. These findings highlight the species-specific dynamics of regeneration under anthropogenic pressures. Understanding the interactions between natural and human disturbances is critical for conserving Nothofagus forests. Our results provide a basis for targeted restoration efforts and policies to mitigate degradation and promote ecosystem resilience. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 8272 KB  
Article
Retention Levels and Years-After-Harvesting Influence over Soil Microbial Activity and Biomass in Southern Patagonian Forests
by Santiago Toledo, Guillermo Martínez Pastur, Julián Rodríguez-Souilla and Pablo L. Peri
Land 2024, 13(11), 1963; https://doi.org/10.3390/land13111963 - 20 Nov 2024
Cited by 2 | Viewed by 1774
Abstract
Variable retention harvesting (VRH) was designed for timber purposes and biodiversity conservation in natural forests. This system was globally tested, but few studies are related to soil microbial components. The objective was to evaluate different retention types (aggregated and dispersed retention) considering different [...] Read more.
Variable retention harvesting (VRH) was designed for timber purposes and biodiversity conservation in natural forests. This system was globally tested, but few studies are related to soil microbial components. The objective was to evaluate different retention types (aggregated and dispersed retention) considering different years-after-harvesting (6, 9, 16 YAH) on soil microbial community attributes compared with unmanaged primary forests (PF) in Nothofagus pumilio forests of Tierra del Fuego (Argentina). This study also evaluated the influence of climate, soil, and understory vegetation. Results showed that aggregated retention increased microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and soil basal respiration (SBR) compared to dispersed retention, but with similar values than PF. However, harvested areas decreased MBC/MBN values compared with PF. The results showed an overall decrease in microbial biomass and activity in 9 YAH stands, with a positive recovery at 16 YAH. Soil pH, mean annual temperature, and understory vegetation cover showed a positive relationship with MBC, MBN, and SBR. The recovery after 16 YAH reached to different microbial communities. Therefore, the maintenance of retention components in managed stands for longer periods is needed. The results highlight some advantages of VRH as a tool for conservation of forest-dwelling soil microorganisms, including microbial biomass and activity. Full article
Show Figures

Figure 1

18 pages, 4367 KB  
Article
Quantifying Blowdown Disturbance in Overstory Retention Patches in Managed Nothofagus pumilio Forests with Variable Retention Harvesting
by Guillermo Martínez Pastur, Julián Rodríguez-Souilla, Lucía Bottan, Santiago Favoretti and Juan M. Cellini
Forests 2024, 15(8), 1432; https://doi.org/10.3390/f15081432 - 14 Aug 2024
Cited by 1 | Viewed by 1293
Abstract
The natural resilience of the forests to face impacts of blowdown damages was affected by harvesting operations. Variable retention harvesting (VRH) increases forest structure heterogeneity in managed stands and decreases blowdown damages. The objective of this study was to characterize blowdown in Nothofagus [...] Read more.
The natural resilience of the forests to face impacts of blowdown damages was affected by harvesting operations. Variable retention harvesting (VRH) increases forest structure heterogeneity in managed stands and decreases blowdown damages. The objective of this study was to characterize blowdown in Nothofagus pumilio forests managed with VRH in Southern Patagonia (Argentina). We analyzed long-term plots and one area affected by a windstorm after harvesting (exposure to winds and influence of retention patches) using univariate analyses. We found a differential impact in retention patches compared to dispersed retention after a windstorm considering aspect and distance to edge (e.g., blowdown trees: F = 6.64, p < 0.001). The aspect in retention patches presented few structural differences before the windstorm (e.g., tree diameter: F = 3.92, p = 0.014) but was not greatly influenced by the received damage after the windstorm. In long-term plots, we found that aspect and location in patches (distance to edge) determined the tree stability. We also found differences in wind damage considering retention level and design (e.g., aggregates and dispersed retention vs. aggregates and clear-cuts). We conclude that VRH increased the heterogeneity in harvested areas, where retention patches presented greater resilience in confronting extreme climate events and decreased recurrent wind exposure impacts in the long term. We found the marginal influence of aspect in the retention patches despite dominant winds and damages received by remnant trees during harvesting. Full article
(This article belongs to the Special Issue Impacts of Climate Extremes on Forests)
Show Figures

Figure 1

15 pages, 3700 KB  
Article
Complete Chloroplast Genome of Krascheninnikovia ewersmanniana: Comparative and Phylogenetic Analysis
by Peng Wei, Youzheng Li, Mei Ke, Yurong Hou, Abudureyimu Aikebaier and Zinian Wu
Genes 2024, 15(5), 546; https://doi.org/10.3390/genes15050546 - 25 Apr 2024
Cited by 2 | Viewed by 2089
Abstract
Krascheninnikovia ewersmanniana is a dominant desert shrub in Xinjiang, China, with high economic and ecological value. However, molecular systematics research on K. ewersmanniana is lacking. To resolve the genetic composition of K. ewersmanniana within Amaranthaceae and its systematic relationship with related genera, we [...] Read more.
Krascheninnikovia ewersmanniana is a dominant desert shrub in Xinjiang, China, with high economic and ecological value. However, molecular systematics research on K. ewersmanniana is lacking. To resolve the genetic composition of K. ewersmanniana within Amaranthaceae and its systematic relationship with related genera, we used a second-generation Illumina sequencing system to detect the chloroplast genome of K. ewersmanniana and analyze its assembly, annotation, and phylogenetics. Total length of the chloroplast genome of K. ewersmanniana reached 152,287 bp, with 84 protein-coding genes, 36 tRNAs, and eight rRNAs. Codon usage analysis showed the majority of codons ending with base A/U. Mononucleotide repeats were the most common (85.42%) of the four identified simple sequence repeats. A comparison with chloroplast genomes of six other Amaranthaceae species indicated contraction and expansion of the inverted repeat boundary region in K. ewersmanniana, with some genes (rps19, ndhF, ycf1) differing in length and distribution. Among the seven species, the variation in non-coding regions was greater. Phylogenetic analysis revealed Krascheninnikovia ceratoides, Dysphania ambrosioides, Dysphania pumilio, and Dysphania botrys to have a close monophyletic relationship. By sequencing the K. ewersmanniana chloroplast genome, this research resolves the relatedness among 35 Amaranthaceae species, providing molecular insights for germplasm utilization, and theoretical support for studying evolutionary relationships. Full article
(This article belongs to the Special Issue Advances in Evolution of Plant Organelle Genome—2nd Edition)
Show Figures

Figure 1

21 pages, 941 KB  
Review
NORAD-Regulated Signaling Pathways in Breast Cancer Progression
by Ana Maria Capela, Carlota Tavares-Marcos, Hugo F. Estima-Arede, Sandrina Nóbrega-Pereira and Bruno Bernardes de Jesus
Cancers 2024, 16(3), 636; https://doi.org/10.3390/cancers16030636 - 1 Feb 2024
Cited by 2 | Viewed by 3310
Abstract
Long non-coding RNA activated by DNA damage (NORAD) has recently been associated with pathologic mechanisms underlying cancer progression. Due to NORAD’s extended range of interacting partners, there has been contradictory data on its oncogenic or tumor suppressor roles in BC. [...] Read more.
Long non-coding RNA activated by DNA damage (NORAD) has recently been associated with pathologic mechanisms underlying cancer progression. Due to NORAD’s extended range of interacting partners, there has been contradictory data on its oncogenic or tumor suppressor roles in BC. This review will summarize the function of NORAD in different BC subtypes and how NORAD impacts crucial signaling pathways in this pathology. Through the preferential binding to pumilio (PUM) proteins PUM1 and PUM2, NORAD has been shown to be involved in the control of cell cycle, angiogenesis, mitosis, DNA replication and transcription and protein translation. More recently, NORAD has been associated with PUM-independent roles, accomplished by interacting with other ncRNAs, mRNAs and proteins. The intricate network of NORAD-mediated signaling pathways may provide insights into the potential design of novel unexplored strategies to overcome chemotherapy resistance in BC treatment. Full article
(This article belongs to the Special Issue Signaling Pathways of Breast Cancer)
Show Figures

Figure 1

14 pages, 2711 KB  
Article
A Circular RNA Derived from the Pumilio 1 Gene Could Regulate PTEN in Human Cumulus Cells
by Angela Caponnetto, Carmen Ferrara, Anna Fazzio, Noemi Agosta, Marianna Scribano, Maria Elena Vento, Placido Borzì, Cristina Barbagallo, Michele Stella, Marco Ragusa, Paolo Scollo, Davide Barbagallo, Michele Purrello, Cinzia Di Pietro and Rosalia Battaglia
Genes 2024, 15(1), 124; https://doi.org/10.3390/genes15010124 - 19 Jan 2024
Cited by 5 | Viewed by 2510
Abstract
CircRNAs are a class of non-coding RNAs able to regulate gene expression at multiple levels. Their involvement in physiological processes, as well as their altered regulation in different human diseases, both tumoral and non-tumoral, is well documented. However, little is known about their [...] Read more.
CircRNAs are a class of non-coding RNAs able to regulate gene expression at multiple levels. Their involvement in physiological processes, as well as their altered regulation in different human diseases, both tumoral and non-tumoral, is well documented. However, little is known about their involvement in female reproduction. This study aims to identify circRNAs potentially involved in reproductive women’s health. Candidate circRNAs expressed in ovary and sponging miRNAs, already known to be expressed in the ovary, were selected by a computational approach. Using real time PCR, we verified their expression and identified circPUM1 as the most interesting candidate circRNA for further analyses. We assessed the expression of circPUM1 and its linear counterpart in all the follicle compartments and, using a computational and experimental approach, identified circPUM1 direct and indirect targets, miRNAs and mRNAs, respectively, in cumulus cells. We found that both circPUM1 and its mRNA host gene are co-expressed in all the follicle compartments and proposed circPUM1 as a potential regulator of PTEN, finding a strong positive correlation between circPUM1 and PTEN mRNA. These results suggest a possible regulation of PTEN by circPUM1 in cumulus cells and point out the important role of circRNA inside the pathways related to follicle growth and oocyte maturation. Full article
(This article belongs to the Special Issue Genetics and Genomics of Female Reproduction)
Show Figures

Figure 1

Back to TopTop