Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = PU/Ag film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5256 KiB  
Article
Unveiling the Potential of Plant-Derived Diarylheptanoids and Their Derivatives in Bio-Based Polyurethane Compositions
by Matiss Pals, Jevgenija Ponomarenko, Maris Lauberts, Lilija Jashina, Vilhelmine Jurkjane and Alexandr Arshanitsa
Plants 2025, 14(5), 775; https://doi.org/10.3390/plants14050775 - 3 Mar 2025
Viewed by 1203
Abstract
The key challenge in polymer science is developing sustainable synthesis methods using renewable feedstocks. This study explores plant-derived diarylheptanoids with various structures as the building blocks for polyurethane (PU) materials. Diarylheptanoid glucosides isolated from black alder (Alnus glutinosa) bark were hydrolyzed [...] Read more.
The key challenge in polymer science is developing sustainable synthesis methods using renewable feedstocks. This study explores plant-derived diarylheptanoids with various structures as the building blocks for polyurethane (PU) materials. Diarylheptanoid glucosides isolated from black alder (Alnus glutinosa) bark were hydrolyzed and fractionated to remove sugar moieties. The resulting diarylheptanoids, along with unhydrolyzed analogues and curcumin, were used as biomass-based polyols to synthesize model PU films. Incorporating diarylheptanoids enhanced the mechanical strength and reduced the flexibility of PU due to increased crosslinking, with effects proportional to the OH functionality of the biomass-based polyols. Weight loss, FTIR, and Py-GC-MS/FID analyses revealed that the catechol moieties and the glucosidic bonds are biodegradable structural subunits of diarylheptanoids incorporated into PU films. Rigid polyurethane foams (PURs) incorporating high-OH-functionality diarylheptanoid glucosides such as oregonin demonstrated significantly higher compression strength and less weight loss during non-isothermal thermal analysis in air compared to those of commercial polyol-based foams. A cone calorimeter test showed that the PUR foam with diarylheptanoid derivatives had a lower degradation rate, a longer flame-burning time, 30% less heat emission, and 25% less smoke, indicating improved flame retardancy. Adding 1–2% oregonin-enriched black alder bark extracts to commercial Elastopir 1132/509/0 PUR foam significantly improved its resistance to thermal oxidative aging, outperforming the commercial antioxidant Irganox. Full article
Show Figures

Figure 1

14 pages, 3250 KiB  
Article
Three-Layered Composite Scintillator Based on the Epitaxial Structures of YAG and LuAG Garnets Doped with Ce3+ and Sc3+ Impurities
by Sandra Witkiewicz-Łukaszek, Vitalii Gorbenko, Tetiana Zorenko, Jan Pejchal, Jiri A. Mares, Romana Kucerkova, Alena Beitlerova, Martin Nikl, Oleg Sidletskiy, Janusz Winiecki, Carmelo D’Ambrosio and Yuriy Zorenko
Materials 2024, 17(16), 4025; https://doi.org/10.3390/ma17164025 - 13 Aug 2024
Cited by 2 | Viewed by 1307
Abstract
In this study, we propose novel three-layer composite scintillators designed for the simultaneous detection of different ionizing radiation components. These scintillators are based on epitaxial structures of LuAG and YAG garnets, doped with Ce3+ and Sc3+ ions. Samples of these composite [...] Read more.
In this study, we propose novel three-layer composite scintillators designed for the simultaneous detection of different ionizing radiation components. These scintillators are based on epitaxial structures of LuAG and YAG garnets, doped with Ce3+ and Sc3+ ions. Samples of these composite scintillators, containing YAG:Ce and LuAG:Ce single crystalline films with different thicknesses and LuAG:Sc single crystal substrates, were grown using the liquid phase epitaxy method from melt solutions based on PbO-B2O3 fluxes. The scintillation properties of the proposed composites, YAG:Ce film/LuAG:Sc film/LuAG:Ce crystal and YAG:Ce film/LuAG:Ce film/LuAG:Sc crystal, were investigated under excitation by radiation with α-particles from a 239Pu source, β-particles from 90Sr sources and γ-rays from a 137Cs source. Considering the properties of the mentioned composite scintillators, special attention was paid to the ability of simultaneous separation of the different components of mixed ionizing radiation containing the mentioned particles and quanta using scintillation decay kinetics. The differences in scintillation decay curves under α- and β-particle and γ-ray excitations were characterized using figure of merit (FOM) values at various scintillation decay intensity levels (1/e, 0.1, 0.05, 0.01). Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

11 pages, 3581 KiB  
Article
All-Fiber Flexible Electrochemical Sensor for Wearable Glucose Monitoring
by Zeyi Tang, Jinming Jian, Mingxin Guo, Shangjian Liu, Shourui Ji, Yilong Li, Houfang Liu, Tianqi Shao, Jian Gao, Yi Yang and Tianling Ren
Sensors 2024, 24(14), 4580; https://doi.org/10.3390/s24144580 - 15 Jul 2024
Cited by 3 | Viewed by 3490
Abstract
Wearable sensors, specifically microneedle sensors based on electrochemical methods, have expanded extensively with recent technological advances. Today’s wearable electrochemical sensors present specific challenges: they show significant modulus disparities with skin tissue, implying possible discomfort in vivo, especially over extended wear periods or on [...] Read more.
Wearable sensors, specifically microneedle sensors based on electrochemical methods, have expanded extensively with recent technological advances. Today’s wearable electrochemical sensors present specific challenges: they show significant modulus disparities with skin tissue, implying possible discomfort in vivo, especially over extended wear periods or on sensitive skin areas. The sensors, primarily based on polyethylene terephthalate (PET) or polyimide (PI) substrates, might also cause pressure or unease during insertion due to the skin’s irregular deformation. To address these constraints, we developed an innovative, wearable, all-fiber-structured electrochemical sensor. Our composite sensor incorporates polyurethane (PU) fibers prepared via electrospinning as electrode substrates to achieve excellent adaptability. Electrospun PU nanofiber films with gold layers shaped via thermal evaporation are used as base electrodes with exemplary conductivity and electrochemical catalytic attributes. To achieve glucose monitoring, gold nanofibers functionalized by gold nanoflakes (AuNFs) and glucose oxidase (GOx) serve as the working electrode, while Pt nanofibers and Ag/AgCl nanofibers serve as the counter and reference electrode. The acrylamide-sodium alginate double-network hydrogel synthesized on electrospun PU fibers serves as the adhesive and substance-transferring layer between the electrodes. The all-fiber electrochemical sensor is assembled layer-by-layer to form a robust structure. Given the stretchability of PU nanofibers coupled with a high specific surface area, the manufactured porous microneedle glucose sensor exhibits enhanced stretchability, superior sensitivity at 31.94 μA (lg(mM))−1 cm−2, a broad detection range (1–30 mM), and a significantly low detection limit (1 mM, S/N = 3), as well as satisfactory biocompatibility. Therefore, the novel electrochemical microneedle design is well-suited for wearable or even implantable continuous monitoring applications, thereby showing promising significant potential within the global arena of wearable medical technology. Full article
(This article belongs to the Special Issue Wearable and Implantable Electrochemical Sensors)
Show Figures

Figure 1

11 pages, 2173 KiB  
Article
Synthesis and Evaluation of a Silver Nanoparticle/Polyurethane Composite That Exhibits Antiviral Activity against SARS-CoV-2
by Wing T. Lam, Tahkur S. Babra, Julian H. D. Smith, Mark C. Bagley, John Spencer, Edward Wright and Barnaby W. Greenland
Polymers 2022, 14(19), 4172; https://doi.org/10.3390/polym14194172 - 4 Oct 2022
Cited by 16 | Viewed by 3488
Abstract
In this proof-of-concept study, we aim to produce a polyurethane (PU)-based composite that can reduce the amount of viable SARS-CoV-2 virus in contact with the surface of the polymeric film without further interventions such as manual cleaning. Current protocols for maintaining the hygiene [...] Read more.
In this proof-of-concept study, we aim to produce a polyurethane (PU)-based composite that can reduce the amount of viable SARS-CoV-2 virus in contact with the surface of the polymeric film without further interventions such as manual cleaning. Current protocols for maintaining the hygiene of commonly used touchpoints (door handles, light switches, shop counters) typically rely on repeated washing with antimicrobial products. Since the start of the SARS-CoV-2 pandemic, frequent and costly surface sanitization by workers has become standard procedure in many public areas. Therefore, materials that can be retrofitted to touchpoints, yet inhibit pathogen growth for extended time periods are an important target. Herein, we design and synthesise the PU using a one-pot synthetic procedure on a multigram scale from commercial starting materials. The PU forms a robust composite thin film when loaded with 10 wt% silver nanoparticles (AgNPs). The addition of AgNPs increases the ultimate tensile strength, modules of toughness and modulus of elasticity at the cost of a reduced elongation at break when compared to the pristine PU. Comparative biological testing was carried out by the addition of pseudotyped virus (PV) bearing the SARS-CoV-2 beta (B.1.351) VOC spike protein onto the film surfaces of either the pristine PU or the PU nanocomposite. After 24 h without further human intervention the nanocomposite reduced the amount of viable virus by 67% (p = 0.0012) compared to the pristine PU treated under the same conditions. The significance of this reduction in viable virus load caused by our nanocomposite is that PUs form the basis of many commercial paints and coatings. Therefore, we envisage that this work will provide the basis for further progress towards producing a retrofittable surface that can be applied to a wide variety of common touchpoints. Full article
(This article belongs to the Special Issue Polyurethane Composites: Synthesis, Characterization and Applications)
Show Figures

Figure 1

21 pages, 7548 KiB  
Article
Self-Healing Silver Nanowires and Reduced Graphene Oxide/Polyurethane Composite Film Based on the Diels–Alder Reaction under Infrared Radiation
by Yi Wang, Zhimin Zhou, Jiali Chen, Sixing Li, Han Zheng, Jiaxin Lu, Shuyue Wang, Jiahao Zhang, Kaiwen Lin, Ke Wang and Yuehui Wang
Membranes 2022, 12(4), 405; https://doi.org/10.3390/membranes12040405 - 6 Apr 2022
Cited by 6 | Viewed by 2788
Abstract
The hybrid composite of silver nanowires (AgNWs) and reduced graphene oxide (RGO) was synthesized in situ by an improved polyol–thermal method. The AgNWs-RGO with mass contents of 5–37 wt% was added into the thermo-reversible Diels–Alder reaction polyurethane (DA-PU) matrix with the AgNWs as [...] Read more.
The hybrid composite of silver nanowires (AgNWs) and reduced graphene oxide (RGO) was synthesized in situ by an improved polyol–thermal method. The AgNWs-RGO with mass contents of 5–37 wt% was added into the thermo-reversible Diels–Alder reaction polyurethane (DA-PU) matrix with the AgNWs as the main conductor and the RGO as the auxiliary conductor to prepare self-healing composite conductive films. Further, the electrical conductivity, thermal conductivity, mechanical properties, infrared thermal response, and self-healing property of the composite film under infrared light irradiation were studied. The experimental results demonstrate that the AgNWs-RGO endows the composite film with good electrical and thermal conductivity and infrared thermal response ability, while the mechanical properties of the composite film decrease as the AgNWs-RGO mass content increases. The self-healing efficiency of the composite film is higher than that of the pure DA-PU under infrared light irradiation due to the good infrared photothermal response ability of the AgNWs-RGO. When the mass content of AgNWs-RGO in the composite film was 25 wt%, the AgNWs-RGO showed good dispersion in composite films, and the resistivity, thermal conductivity, and tensile strength of the composite film were 0.544 Ω·m, 0.3039 W·m−1·K−1, and 9.05 MPa, respectively. The infrared photothermal conversion temperature of the composite film is 158.5 °C (3450 lux for 1 min), and the infrared photothermal self-healing efficiency is 118% (3450 lux for 600 s). The AgNWs-RGO also improves the multiple self-healing ability of the composite film. The use of a high mass content of AgNWs-RGO in the composite film is beneficial in obtaining high multiple self-healing efficiencies. The first and the fifth infrared thermal self-healing efficiencies of the composite film with AgNWs-RGO of 35 wt% are 105% and 86%, respectively, and the resistivity of the composite film changes little and still maintains good conductivity. Full article
Show Figures

Figure 1

12 pages, 3123 KiB  
Article
Flexible Piezoresistive Pressure Sensor Based on Electrospun Rough Polyurethane Nanofibers Film for Human Motion Monitoring
by Bin Xue, Haiyi Xie, Jinxu Zhao, Jianming Zheng and Chunye Xu
Nanomaterials 2022, 12(4), 723; https://doi.org/10.3390/nano12040723 - 21 Feb 2022
Cited by 45 | Viewed by 5056
Abstract
Flexible piezoresistive pressure sensors have been attracted a lot of attention due to their simple mechanism, easy fabrication, and convenient signal acquisition and analysis. Herein, a new flexible piezoresistive sensor based on microstructured electrospun rough polyurethane (PU) nanofibers film is assembled. The microstructured [...] Read more.
Flexible piezoresistive pressure sensors have been attracted a lot of attention due to their simple mechanism, easy fabrication, and convenient signal acquisition and analysis. Herein, a new flexible piezoresistive sensor based on microstructured electrospun rough polyurethane (PU) nanofibers film is assembled. The microstructured PU film with tiny bumps is prepared in one step via electrospinning technology, which imparts a microstructured rough upper surface and a smooth lower surface. With this unique microstructure, we have made it possible for PU/Ag films to serve as sensing layers for piezoresistive sensors by introducing a silver conductive layer on the surface of electrospun PU film. The fabricated piezoresistive pressure sensor delivers high sensitivity (10.53 kPa−1 in the range of 0–5 kPa and 0.97 kPa−1 in the range of 6–15 kPa), fast response time (60 ms), fast recovery time (30 ms), and long-time stability (over 10,000 cycles). This study presents a fabrication strategy to prepare the microstructured PU nanofiber film using electrospinning technology directly, and the as-developed sensor shows promise in applications such as wrist pulse measurement, finger movement monitoring, etc., proving its great potential for monitoring human activities. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

16 pages, 14000 KiB  
Article
Bio-Based 2K PU Coating for Durable Textile Applications
by David De Smet, Willem Uyttendaele and Myriam Vanneste
Coatings 2022, 12(2), 169; https://doi.org/10.3390/coatings12020169 - 28 Jan 2022
Cited by 13 | Viewed by 6883
Abstract
Polyurethane (PU) coatings are often applied on high added value technical textiles. To date, most PU textile coatings are solvent based or water based. Recent advances are made in applying high solid and two-component (2K) PU on textiles. Currently, polymers made from renewable [...] Read more.
Polyurethane (PU) coatings are often applied on high added value technical textiles. To date, most PU textile coatings are solvent based or water based. Recent advances are made in applying high solid and two-component (2K) PU on textiles. Currently, polymers made from renewable raw materials are experiencing a renaissance, owing to the trend to reduce CO2 emissions and switch to CO2-neutral renewable products. There is also the tendency towards the “bio, eco, natural” consciousness-awakening of the end consumer and the market-driven question to implement renewable materials. However, the application of bio-based coatings on textiles is limited. In this regard, the present study is conducted to develop bio-based 2K PU coating specifically designed for waterproof textiles. A 2K PU coating formulation, composed of bio-based polyol and bio-based isocyanate Desmodur Eco N7300, was made and directly applied on a polyester fabric prior to thermal curing in an oven. The coating was characterized via Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The coatings were not thermoplastic and had a glass transition temperature of approximately 50 °C. Since a bio-based pentamethylene diisocyanate trimer (PDI-trimer), Desmodur Eco N7300 was used as an isocyanate source and not a diisocyanate derivative, and the resulting bio-based 2K coating was a thermoset instead of a thermoplastic. The effect of the additives and content of isocyanate on the elongation and stress at break was studied by performing tensile tests (ISO 13934-1) on 50 µm 2K PU films and comparing the obtained values. The performance of the coating was studied by evaluating the resistance to hydrostatic pressure initially and after washing, the Q-panel Laboratory UltraViolet (QUV) aging and the hydrolysis test. The developed bio-based 2K PU coating had excellent hydrostatic pressure, QUV aging resistance, hydrolysis resistance and wash fastness at 60 °C. Full article
Show Figures

Figure 1

17 pages, 3132 KiB  
Article
Me-Doped Ti–Me Intermetallic Thin Films Used for Dry Biopotential Electrodes: A Comparative Case Study
by Cláudia Lopes, Patrique Fiedler, Marco Sampaio Rodrigues, Joel Borges, Maurizio Bertollo, Eduardo Alves, Nuno Pessoa Barradas, Silvia Comani, Jens Haueisen and Filipe Vaz
Sensors 2021, 21(23), 8143; https://doi.org/10.3390/s21238143 - 6 Dec 2021
Cited by 7 | Viewed by 4590
Abstract
In a new era for digital health, dry electrodes for biopotential measurement enable the monitoring of essential vital functions outside of specialized healthcare centers. In this paper, a new type of nanostructured titanium-based thin film is proposed, revealing improved biopotential sensing performance and [...] Read more.
In a new era for digital health, dry electrodes for biopotential measurement enable the monitoring of essential vital functions outside of specialized healthcare centers. In this paper, a new type of nanostructured titanium-based thin film is proposed, revealing improved biopotential sensing performance and overcoming several of the limitations of conventional gel-based electrodes such as reusability, durability, biocompatibility, and comfort. The thin films were deposited on stainless steel (SS) discs and polyurethane (PU) substrates to be used as dry electrodes, for non-invasive monitoring of body surface biopotentials. Four different Ti–Me (Me = Al, Cu, Ag, or Au) metallic binary systems were prepared by magnetron sputtering. The morphology of the resulting Ti–Me systems was found to be dependent on the chemical composition of the films, specifically on the type and amount of Me. The existence of crystalline intermetallic phases or glassy amorphous structures also revealed a strong influence on the morphological features developed by the different systems. The electrodes were tested in an in-vivo study on 20 volunteers during sports activity, allowing study of the application-specific characteristics of the dry electrodes, based on Ti–Me intermetallic thin films, and evaluation of the impact of the electrode–skin impedance on biopotential sensing. The electrode–skin impedance results support the reusability and the high degree of reliability of the Ti–Me dry electrodes. The Ti–Al films revealed the least performance as biopotential electrodes, while the Ti–Au system provided excellent results very close to the Ag/AgCl reference electrodes. Full article
(This article belongs to the Special Issue EEG Sensors for Biomedical Applications)
Show Figures

Figure 1

17 pages, 17525 KiB  
Article
Active Double-Layered Films Enriched with AgNPs in Great Water Dock Root and Pu-Erh Extracts
by Ewelina Jamróz, Agnieszka Cabaj, Lesław Juszczak, Joanna Tkaczewska, Małgorzata Zimowska, Agnieszka Cholewa-Wójcik, Paweł Krzyściak and Pavel Kopel
Materials 2021, 14(22), 6925; https://doi.org/10.3390/ma14226925 - 16 Nov 2021
Cited by 13 | Viewed by 3077
Abstract
A novel, eco-friendly, and biocompatible method was applied to form silver nanoparticles (AgNPs) in great water dock (Lapathi radix) (KB) and pu-erh (Camellia sinensis) (PE) extracts. The surface plasma resonance peak of green synthesized AgNPs at 451.8 nm for [...] Read more.
A novel, eco-friendly, and biocompatible method was applied to form silver nanoparticles (AgNPs) in great water dock (Lapathi radix) (KB) and pu-erh (Camellia sinensis) (PE) extracts. The surface plasma resonance peak of green synthesized AgNPs at 451.8 nm for AgNPs+KB and 440.8 nm for AgNPs+PE was observed via spectral analysis of UV absorbance. In this study, double-layered biopolymer films (FUR/CHIT+HGEL) with AgNPs incorporated in KB solution (AgNPs+KB) and AgNPs in PE solution (AgNPs+PE), were successfully prepared using the casting method. The SEM, XRD, zeta potential and size analyses confirmed the presence of AgNP in the films. The addition of AgNPs in plant extracts improved antimicrobial and antioxidant activity and thermal stability, whereas WVTR experienced a decrease. The nanocomposite films’ orange-brown colour may aid in the protection of food products against UV rays. The composite films demonstrated antibacterial activity against food-borne pathogens and may offer potential in food packaging applications. Full article
Show Figures

Figure 1

11 pages, 2365 KiB  
Article
A Novel Design of Tri-Layer Membrane with Controlled Delivery of Paclitaxel and Anti-Biofilm Effect for Biliary Stent Applications
by Abdelrahman I. Rezk, Jeesoo Park, Joon Yeon Moon, Sunny Lee, Chan Hee Park and Cheol Sang Kim
Nanomaterials 2021, 11(2), 486; https://doi.org/10.3390/nano11020486 - 14 Feb 2021
Cited by 13 | Viewed by 3056
Abstract
Here, we developed a novel biliary stent coating material that is composed of tri-layer membrane with dual function of sustained release of paclitaxel (PTX) anticancer drug and antibacterial effect. The advantages of using electrospinning technique were considered for the even distribution of PTX [...] Read more.
Here, we developed a novel biliary stent coating material that is composed of tri-layer membrane with dual function of sustained release of paclitaxel (PTX) anticancer drug and antibacterial effect. The advantages of using electrospinning technique were considered for the even distribution of PTX and controlled release profile from the nanofiber mat. Furthermore, film cast method was utilized to fabricate AgNPs-immobilized PU film to direct the release towards the tumor site and suppress the biofilm formation. The in vitro antibacterial test conducted against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria species showed excellent antibacterial effect. The in vitro drug release study confirmed the sustained release of PTX from the tri-layer membrane and the release profile fitted first order with correlation coefficient of R2 = 0.98. Furthermore, the release mechanism was studied using Korsmeyer–Peppas model, revealing that the release mechanism follows Fickian diffusion. Based on the results, this novel tri-layer membrane shows curative potential in clinical development. Full article
Show Figures

Graphical abstract

16 pages, 4133 KiB  
Article
Polyurethane/Nanosilver-Doped Halloysite Nanocomposites: Thermal, Mechanical Properties, and Antibacterial Properties
by Jui-Ting Sun, Jia-Wun Li, Chi-Hui Tsou, Jen-Chieh Pang, Ren-Jei Chung and Chih-Wei Chiu
Polymers 2020, 12(11), 2729; https://doi.org/10.3390/polym12112729 - 17 Nov 2020
Cited by 21 | Viewed by 3124
Abstract
In this study, the researchers successfully embellished the surface of halloysite (Ag/HNTs) with silver using halloysite, silver nitrate (AgNO3), and polyvinylpyrrolidone (PVP). The researchers then prepared polyurethane that contained pyridine ring by using 4,4′-diphenylmethane diisocyanate (MDI) and polytetramethylene glycol (PTMG) as [...] Read more.
In this study, the researchers successfully embellished the surface of halloysite (Ag/HNTs) with silver using halloysite, silver nitrate (AgNO3), and polyvinylpyrrolidone (PVP). The researchers then prepared polyurethane that contained pyridine ring by using 4,4′-diphenylmethane diisocyanate (MDI) and polytetramethylene glycol (PTMG) as the hard chain segment and the soft chain segment of polyurethane (PU), as well as 2,6-pyridinedimethanol (2,6-PDM) as the chain extension agent. This was followed by the preparation of Ag/HNTs/PUs nanocomposite thin films, achieved by mixing Ag/HNTs with different ratios into polyurethane that contains pyridine ring. First, the Ag/HNTs powders were analyzed using energy-dispersive X-ray spectroscopy, X-ray diffraction, and transmission electron microscopy. Subsequently, Fourier-transform infrared spectroscopy was used to examine the dispersibility of Ag/HNTs in PU, whereas the thermal stability and the viscoelasticity of Ag/HNTs/PU were examined using thermal gravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. When the mechanical properties of Ag/HNTs/PU were tested using a universal strength tester, the results indicated a maximum increase of 109.5% in tensile strength. The researchers then examined the surface roughness and the hydrophobic ability of the Ag/HNTs/PU thin films by using atomic force microscopy and water contact angle. Lastly, antibacterial testing on Escherichia coli revealed that when the additive of Ag/HNTs reached 2.0 wt%, 99.3% of the E. coli were eliminated. These results indicated that the addition of Ag/HNTs into PU could enhance the thermal stability, mechanical properties, and antibacterial properties of PU, implying the potential of Ag/HNTs-02 as biomedicine material. Full article
(This article belongs to the Special Issue Advances in Functional Polyurethanes)
Show Figures

Graphical abstract

16 pages, 7591 KiB  
Article
Surface Functionalization of a Polyurethane Surface via Radio-Frequency Cold Plasma Treatment Using Different Gases
by Aya E. Abusrafa, Salma Habib and Anton Popelka
Coatings 2020, 10(11), 1067; https://doi.org/10.3390/coatings10111067 - 6 Nov 2020
Cited by 13 | Viewed by 3604
Abstract
Herein, the surface treatment of polyurethane (PU) films via air, O2, N2, Ar, and their mixtures were tested. The treatment was performed to incorporate new polar functionalities on the polymer surface and achieve improved hydrophilic characteristics. The PU films [...] Read more.
Herein, the surface treatment of polyurethane (PU) films via air, O2, N2, Ar, and their mixtures were tested. The treatment was performed to incorporate new polar functionalities on the polymer surface and achieve improved hydrophilic characteristics. The PU films were subjected to RF low-temperature plasma treatment. It was found that plasma treatment immensely enhanced the hydrophilic surface properties of the PU films in comparison with those of the pristine samples; the maximum plasma effect occurred for the PU sample in the presence of air plasma with treatment time of 180 s at nominal power of 80 W. The surface topography was also found to vary with plasma exposure time and the type of gas being used due to the reactivity of the gaseous media. Roughness analysis revealed that at higher treatment times, the etching/degradation of the surface became more pronounced. Surface chemistry studies revealed increased O2 and N2 elemental groups on the surface upon exposure to O2, N2, air, and Ar. Additionally, the aging study revealed that samples treated in the presence of air and Ar were more stable in comparison to those of the other gases for both the contact angle and peel test measurements. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

18 pages, 6198 KiB  
Article
Antimicrobial, Mechanical and Thermal Studies of Silver Particle-Loaded Polyurethane
by Deepen Paul, Sharmistha Paul, Nima Roohpour, Mark Wilks and Pankaj Vadgama
J. Funct. Biomater. 2013, 4(4), 358-375; https://doi.org/10.3390/jfb4040358 - 9 Dec 2013
Cited by 50 | Viewed by 9335
Abstract
Silver-particle-incorporated polyurethane films were evaluated for antimicrobial activity towards two different bacteria: Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Distributed silver particles sourced from silver nitrate, silver lactate and preformed silver nanoparticles were mixed with polyurethane (PU) [...] Read more.
Silver-particle-incorporated polyurethane films were evaluated for antimicrobial activity towards two different bacteria: Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Distributed silver particles sourced from silver nitrate, silver lactate and preformed silver nanoparticles were mixed with polyurethane (PU) and variously characterized by field emission scanning electron microscopy (FESEM), fourier transform infra-red (FTIR) spectroscopy, X-ray diffraction (XRD) and contact angle measurement. Antibacterial activity against E.coli was confirmed for films loaded with 10% (w/w) AgNO3, 1% and 10% (w/w) Ag lactate and preformed Ag nanoparticles. All were active against S. aureus, but Ag nanoparticles loaded with PU had a minor effect. The apparent antibacterial performance of Ag lactate-loaded PU is better than other Ag ion-loaded films, revealed from the zone of inhibition study. The better performance of silver lactate-loaded PU was the likely result of a porous PU structure. FESEM and FTIR indicated direct interaction of silver with the PU backbone, and XRD patterns confirmed that face-centred cubic-type silver, representative of Ag metal, was present. Young’s modulus, tensile strength and the hardness of silver containing PU films were not adversely affected and possibly marginally increased with silver incorporation. Dynamic mechanical analysis (DMA) indicated greater thermal stability. Full article
Show Figures

Graphical abstract

Back to TopTop